Skip to main content
Log in

Identification of Failure Modes in Composites from Clustered Acoustic Emission Data Using Pattern Recognition and Wavelet Transformation

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Acoustic emission (AE) is widely used to characterize damage occurring in composite materials: however, the discrimination between AE signatures due to different damage mechanisms is still an open issue. In this study, the various failure mechanisms in bidirectional glass/epoxy laminates subjected to uni-axial tension are identified using AE monitoring. AE data recorded during the tensile testing of a single-layer specimen are used to identify matrix cracking and fiber failure. In contrast, delamination signals are characterized using a two-layer specimen with a pre-induced defect, produced by artificially inserting a 10 mm wide Teflon tape in the middle portion of the two layers. Twelve-layer Glass fiber reinforced plastics laminates were also tested as a reference for the comparison of results. The procedure leading to signal discrimination involves a number of steps. First, Fuzzy C-means clustering associated with principal component analysis are used to discriminate between failure mechanisms, while parametric studies using AE count rate and cumulative counts allowed damage discrimination at various stages of loading. The two above methods led to AE waveform selection: on the selected waveforms, fast Fourier transform (FFT) enabled calculating the frequency content of each damage mechanism. Continuous wavelet transform (WT) allowed identifying frequency range and time history for failure modes in each signal, while noise content associated with the different failure modes is calculated and removed by discrete WT. Short time FFT (STFFT) finally highlighted the possible failure mechanism associated with each signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Godin N., Huguet S., Gaertner R.: Integration of the Kohonen’s self organizing map and K-means algorithms for the segmentation of the AE data collected during tensile tests on cross ply composites. NDT & E Int. 38, 299–309 (2005)

    Article  Google Scholar 

  2. Philippidis T.P., Nikolaidis V.N., Anastassopoulos A.A.: Damage characterization of carbon/carbon laminates using neural network techniques on AE signals. NDT & E Int. 31, 329–340 (1998)

    Article  Google Scholar 

  3. De Oliveira R., Marques A.T.: Health monitoring of FRP using acoustic emission and artificial neural network. Comput. Struct. 86, 367–373 (2008)

    Article  Google Scholar 

  4. Barre S., Benzeggagh M.L.: On the use of acoustic emission to investigate damage mechanism in glass-fiber-reinforced polypropylene. Compos. Sci. Technol. 52, 369–376 (1994)

    Article  Google Scholar 

  5. Dzenis Y.A., Qian J.: Analysis of micro damage evolution histories in composites. Int. J. Solids Struct. 38, 1831–1854 (2001)

    Article  MATH  Google Scholar 

  6. Bar H.N., Bhat M.R., Murthy C.R.L.: Parametric analysis of acoustic emission signals for evaluating damage in composites using PVDF film sensors. NDT & E Int. 24, 121–134 (2005)

    Google Scholar 

  7. Santulli C.: Post-impact damage characterization on natural fiber reinforced composites using acoustic emission. NDT & E Int. 34, 531–536 (2001)

    Article  Google Scholar 

  8. Siron O., Chollan G., Tsudha H., Yamauchi H., Maeda K., Kosaka K.: Microstructural and mechanical properties of filler-added coal-tar pitch-based C/C composites.: the damage and fracture process in correlation with AE waveform parameter. Carbon 38, 1369–1389 (2000)

    Article  Google Scholar 

  9. Marec A., Thomas J.-H., Guerjouma R.El.: Damage characterization of polymer-based composites materials: multivariable analysis and wavelet transform for clustering acoustic emission data. Mech. Syst. Signal Process. 22, 1441–1464 (2008)

    Article  Google Scholar 

  10. Godin N., Huguet S., Gaertner R., Salmon L.: Clustering of Acoustic Emission signals collected during tensile test on unidirectional glass/polyester composites using supervised and unsupervised classifiers. NDT & E Int. 37, 253–264 (2004)

    Article  Google Scholar 

  11. Kohonen T.: Self-organized network: Proc. IEEE 43, 59–69 (1990)

    Google Scholar 

  12. Likas A., Vlassis N., Verbeek J.: The global k-means clustering algorithm. Pattern Recognit. 36(2), 451–461 (2003)

    Article  Google Scholar 

  13. Huguet S., Godin N., Gaertner R., Salmon L., Villiard D.: Use of acoustic emission to identify damage modes in glass fiber reinforced polyester. Compos. Sci. Technol. 62, 1433–1444 (2008)

    Article  Google Scholar 

  14. Bhat C., Bhat M.R., Murthy C.R.L.: Acoustic emission characterization of failure modes in composites with ANN. Compos. Struct. 61, 213–220 (2003)

    Article  Google Scholar 

  15. Bar H.N., Bhat M.R., Murthy C.R.L.: Identification of failures modes in GFRP using PVDF sensors: ANN approach. Compos. Struct. 65, 231–237 (2004)

    Article  Google Scholar 

  16. Qi G.: Wavelet based AE characterization of composite materials. NDT & E Int. 33, 133–144 (2000)

    Article  Google Scholar 

  17. Bussiba, A.; Piat, R.; Kupiec, M.; Carmi, R.; Alon, I.; Bohlke, T.: Threshold parameters and damage accumulation profile in C/C composites monitored by Acoustic Emission Response: progress in Acoustic Emission XIV, the Japanese society for NDI (2008)

  18. Bussiba A., Kupiec M., Ifergane S., Piat R., Bohlke T.: Damage evolution and fracture events sequence in various composites by acoustic emission technique. Compos. Sci. Technol. 68, 1144–1155 (2008)

    Google Scholar 

  19. Bussiba A., Kupiec M., Piat R., Bohlke T.: Fracture Characterization of C/C composites under various stress modes by monitoring both mechanical and acoustic responses. Carbon 46, 618–630 (2008)

    Article  Google Scholar 

  20. Ramirez-Jimenez C., Papadakis N., Reynolds N.: Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission events. Compos. Sci. Technol. 64, 1819–1827 (2004)

    Article  Google Scholar 

  21. Bohse, J.: Damage analysis of polymer matrix composites by acoustic emission testing. In: Proceedings of European WG on AE, Berlin, pp. 339–348 (2004)

  22. Giordano M., Calabrò A., Esposito C., D’Amore A., Nicolais L.: An Acoustic-Emission characterization of the failure modes in polymer-composite materials. Compos. Sci. Technol. 58, 1923–1928 (1998)

    Article  Google Scholar 

  23. Ni Q.-Q., Iwamoto M.: Wavelet transform of acoustic emission signals in failure of model composites. Eng. Fract. Mech. 69, 717–728 (2002)

    Article  Google Scholar 

  24. Hamstad M.A., O’Gallagher A., Gary J.: A wavelet transform applied to acoustic emission signals: Part I: Source identification. J. Acoust. Emiss. 20, 39–61 (2002)

    Google Scholar 

  25. De Groot P.J., Wijnen P.A.M., Janssen R.B.F.: Real time frequency determination of acoustic emission for different fracture mechanism in carbon/ epoxy composites. Compos. Sci. Technol. 55, 405–412 (1995)

    Article  Google Scholar 

  26. Suzuki H., Kinjo T., Hayashi Y., Takemoto M., Ono K.: Wavelet transforms of acoustic emission signals. J. Acoust. Emiss. 14, 69–84 (1996)

    Google Scholar 

  27. Kalogiannakis, G.; Van Hemelrijck, D.: Classification of wavelet decomposed AE signals based on parameter-less self organized mapping. In: 4th International Conference on NDT of the Hellenic Society for NDT (HSNT), 11–14 October, Crete, Greece (2007)

  28. Oskouei A.R., Ahmadi M., Hajikhani M.: Wavelet-based acoustic emission characterization of damage mechanism in composite materials under mode I delamination at different interfaces.. eXPRESS Polymer Lett. 3, 804–813 (2009)

    Article  Google Scholar 

  29. Pappas Y.Z., Kontsos A., Loutas T.H., Kostopoulos V.: On the characterization of continuous fibres fracture by quantifying acoustic emission and acousto-ultrasonics waveforms. NDT & E Int. 37, 389–401 (2004)

    Article  Google Scholar 

  30. Agresti E.M., Caneva C., De Rosa I.M., Sarasini F., Valente M.: Effect of jute fibres on post-impact behaviour of E-glass reinforced composites assessed through acoustic emission. Int. J. Mater. Product Technol. 36, 30–46 (2009)

    Article  Google Scholar 

  31. Nguyen B.N., Tucker B.J., Khaleel M.A.: A mechanistic approach to matrix cracking coupled with fiber–matrix debonding in short-fiber composites. J. Eng. Mater. Technol. 127, 337–350 (2005)

    Article  Google Scholar 

  32. Pal N.R., Bezdek J.C.: On cluster validity for the Fuzzy c-Means model. IEEE Trans. Fuzzy Syst. 3, 370–379 (1995)

    Article  Google Scholar 

  33. Mallat S.: A Wavelet Tour of Signal Processing. Academic Press, New York (1998)

    MATH  Google Scholar 

  34. Johnson M.: Waveform based clustering and classification of AE transients in composite laminates using principal component analysis. NDT&E Int. 35, 367–376 (2002)

    Article  Google Scholar 

  35. Rippert L., Wevers M., Van Huffel S.: Optical and acoustic damage detection in laminated CFRP composite materials. Compos. Sci. Technol. 60, 2713–2724 (2000)

    Article  Google Scholar 

  36. Yang B.L., Zhuang X.M., Zhang T.H., Yan X.: Damage mode identification for the clustering analysis of AE signals in thermoplastic composites. J. Nondestruct. Eval. 28, 163–168 (2009)

    Article  Google Scholar 

  37. Munoz-Najar, A.; Hashemi, J.: Continuous wavelet transform analysis of acoustic emission signals. In: IMAC—Proceedings of the 17th International Modal Analysis Conference, vol. 3727, pp. 99–102 (1999)

  38. Junxing, M.; Jin, W.: Research on the selection of the order of daubechies wavelet-based elements. In: International Conference on E-Product E-Service and E-Entertainment (ICEEE), 7–9 2010, pp. 1–3

  39. Sung D.-U., Kim C.-G., Hong C.-S.: Monitoring of impact damages in composite laminates using wavelet transform. Compos. Part B 33, 35–43 (2002)

    Article  Google Scholar 

  40. Mallet Y., Coomans D., Kautsky J., De Vel O.: Classification using adaptive wavelets for feature extraction. IEEE Trans. Pattern Anal. Mach. Intell. 19, 1058–1066 (1997)

    Article  Google Scholar 

  41. Feng, Y.: Thanagasundram, S.; Schlindwein, F.S.: Discrete wavelet-based thresholding study on acoustic emission signals to detect bearing defect on a rotating machine. In: ICSV13 Proceedings, Vienna, July 2006

  42. Johnson M.: Classification of AE transients based on numerical simulations of composite laminates. NDT&E Int. 36, 319–329 (2003)

    Article  Google Scholar 

  43. Gutkin R., Green C.J., Vangrattanachai S., Pinho S.T., Robinson P., Curtis P.T.: On acoustic emission for failure investigation in CFRP. Pattern recognition and peak frequency analyses. Mech. Syst. Signal Process. 25, 1393–1407 (2011)

    Article  Google Scholar 

  44. Puck A., Schürmann H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 62, 1633–1662 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Santulli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arumugam, V., Kumar, C.S., Santulli, C. et al. Identification of Failure Modes in Composites from Clustered Acoustic Emission Data Using Pattern Recognition and Wavelet Transformation. Arab J Sci Eng 38, 1087–1102 (2013). https://doi.org/10.1007/s13369-012-0351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0351-x

Keywords

Navigation