
Beitr Algebra Geom (2024) 65:97–127
https://doi.org/10.1007/s13366-022-00678-4

ORIG INAL PAPER

Infinitesimal Torelli for weighted complete intersections
and certain Fano threefolds

Philipp Licht1

Received: 22 March 2022 / Accepted: 1 December 2022 / Published online: 2 January 2023
© The Author(s) 2023

Abstract
We generalize the classical approach of describing the infinitesimal Torelli map in
terms of multiplication in a Jacobi ring to the case of quasi-smooth complete intersec-
tions in weighted projective space. As an application, we prove that the infinitesimal
Torelli theorem does not hold for hyperelliptic Fano threefolds of Picard rank 1, index
1, degree 4, and study the action of the automorphism group on cohomology. The
results of this paper are used to prove Lang-Vojta’s conjecture for the moduli of such
Fano threefolds in a follow-up paper.
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1 Introduction

The Torelli problem asks the question if given a family of varieties, whether the period
map is injective, i.e., if the variety is uniquely determined by its Hodge structure.
This question has first been studied for curves; see Andreotti (1958). The infinitesimal
Torelli problem is the related question that askswhether the periodmap has an injective
differential. The problem can be formulated very concretely for a smooth projective
variety X over C of dimension n. Namely, we say that X satisfies the infinitesimal
Torelli theorem if the map

H1(X ,�1
X ) →

⊕

p+q=n

HomC

(
Hp(X ,�

q
X ),Hp+1(X ,�

q−1
X )

)
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induced by the contraction map is injective. In addition to curves, whether this holds
has been studied among others for the following types of varieties:

• Hypersurfaces in projective space (Carlson et al. 1983; Donagi 1983)
• Hypersurfaces in weighted projective space (Saitō 1986)
• Complete intersections in projective space (Peters 1975, 1976; Terasoma 1990;
Usui 1976)

• Zerosets of sections of vector bundles (Flenner 1986)
• Certain cyclic covers of a Hirzebruch surface (Konno 1985)
• Complete intersections in certain homogeneous Kähler manifolds (Konno 1986)
• Some weighted complete intersections (Usui 1977)
• Certain Fano quasi-smooth weighted hypersurfaces (Fatighenti et al. 2019)
• Some elliptic surfaces (Kii 1978; Kloosterman 2004; Saitō 1983)

The methods used in many of these studies have in common that they describe
the cohomology groups relevant for the infinitesimal Torelli map as components of
a so-called Jacobi ring and argue that the map can be interpreted as multiplication
by some element in this ring. We generalize this method to the case of quasi-smooth
complete intersections in weighted projective space. Following (Dolgachev 1982), we
introduce the terminology:

Definition 1.1 Let k be a field. For W = (W0, . . . ,Wn) ∈ N
n+1 a tuple of positive

integers, let SW = k[x0, . . . , xn] be the graded polynomial algebrawith deg(xi ) = Wi .
We define weighted projective space over k with weights W to be P(W ) = Proj SW .

Given d = (d1, . . . , dc) ∈ N
c, c ≤ n, a closed subvariety X ⊆ P(W ) is a complete

intersection of degree d if it has codimension c and is given as the vanishing locus of
homogeneous polynomials f1, . . . , fc ∈ SW with deg( fi ) = di . A weighted complete
intersection X = V ( f1, . . . , fc) ⊆ P(W ) is quasi-smooth if its affine cone A(X) =
Spec(SW /( f1, . . . , fc)) \ {0} is smooth.

Given a quasi-smooth weighted complete intersection X over C as above, we can
define generalized sheaves of differentials �̃

q
X . One of the equivalent definitions of

�̃
q
X is as the reflexive hull�∗∗

X of the usual sheaf of differentials; see Sect. 8 for details.
There is a decomposition

Hn−c(X ,C) =
⊕

p+q=n−c

Hp(X , �̃
q
X )

that coincides with the usual Hodge decomposition in case X is smooth; see Theo-
rem 8.3. Consider the polynomial F = y1 f1+· · ·+yc fc ∈ C[x0, . . . , xn, y1, . . . , yc],
which is homogeneous with respect to the bigrading given by deg(xi ) = (0,Wi ) and
deg(y j ) = (1,−d j ). The Jacobi ring associated to the complete intersection X is the
bigraded ring

R = C[x0, . . . , xn, y1, . . . , yc]/(∂x0F, . . . , ∂xn F, ∂y1F, . . . , ∂yc F).
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Main results

Our first main result can be interpreted as giving an explicit description of the differ-
ential of the period map associated to a quasi-smooth weighted complete intersection
in terms of its Jacobi ring.

Theorem 1.2 Let X = V+( f1, . . . , fc) ⊆ PC(W0, . . . ,Wn) be a quasi-smooth
weighted complete intersection of degree (d1, . . . , dc)with tangent sheaf�1

X of dimen-
sion dim(X) = n−c > 2. Let R be the associated Jacobi ring. Let ν = ∑

Wi −∑
d j .

For all integers p ∈ Zwith 0 < p < n−c and p �= n−c− p, there are isomorphisms

Hn−c−p(X , �̃
p
X ) ∼= HomC(Rp,−ν,C)

and

H1(X ,�1
X ) ∼= R1,0.

Under these isomorphisms, the contraction map

H1(X ,�1
X ) → Hom(Hn−c−p(X , �̃

p
X ),Hn−c−p+1(X , �̃

p−1
X ))

is the map

R1,0 → Hom(HomC(Rp,−ν,C),HomC(Rp−1,−ν,C)) = Hom(Rp−1,−ν, Rp,−ν)

that sends α ∈ R1,0 to the multiplication-by-α map.

Our second main result is an application of this theorem to prove the infinitesimal
Torelli theorem for smooth Fano threefolds of Picard rank 1, index 1, and degree 4. In
this paper all Fano threefolds are assumed to be smooth. By Iskovskikh’s classification,
there are two types of such varieties; see (Iskovskih, 1979, Table 3.5). The varieties
of the first type are smooth quartics in P

4. For smooth hypersurfaces in projective
space, the infinitesimal Torelli problem is completely understood. In particular, smooth
quartic threefolds satisfy the infinitesimal Torelli theorem; see Carlson et al. (1983).
The second type of Fano threefolds with Picard rank 1, index 1, degree 4 are called
hyperelliptic; each suchFano threefold X is a double cover of a smooth quadricQ ⊆ P

4

ramified along a smooth divisor of degree 8 in Q. Such a double cover comes naturally
with an involution ι associated to the double cover. It turns out that such hyperelliptic
Fano threefolds do not satisfy the infinitesimal Torelli theorem, i.e., the period map
on the moduli of Fano threefolds of Picard rank 1, index 1, and degree 4 does not have
an injective differential. However, the following result says that the “restricted” period
map on the locus of hyperelliptic Fano threefolds does have an injective differential.

Theorem 1.3 (Infinitesimal Torelli problem for hyperelliptic Fano threefolds) Let X
be a hyperelliptic smooth Fano threefold of Picard rank 1, index 1, and degree 4 overC.
Then X does not satisfy the infinitesimal Torelli theorem. However, if ι ∈ Aut(X) is the
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involution associated to the double cover, then the ι-invariant part of the infinitesimal
Torelli map

H1(X ,�X )ι →
⊕

p+q=3

HomC

(
Hp(X ,�

q
X ),Hp+1(X ,�

q−1
X )

)

is injective.

As explained in (Javanpeykar and Loughran, 2018, Sect. 3.5), among the Fano
threefolds of Picard number 1 and index 1, the infinitesimal Torelli theorem is satisfied
if the degree is 2, 6 or 8, and it is known to fail for degrees 10 and 14. Our work deals
with one of the remaining cases, namely that of degree 4.

Note that the failure of infinitesimal Torelli for Fano threefolds of Picard number
1, index 1, and degree 4 is analogous to the failure of infinitesimal Torelli for curves
of genus g ≥ 3. Such a curve satisfies the infinitesimal Torelli theorem if and only if
it is not hyperelliptic [20], but the period map restricted to the hyperelliptic locus is
an embedding (Landesman 2021).

It is natural to study the action of the automorphism group of a variety on its
cohomology group; see for example (Cai et al. 2013; Javanpeykar and Loughran
2017; Kuznetsov et al. 2018). As an application of the explicit description of the
cohomology groups of a Fano threefold with Picard rank 1, index 1, and degree 4
given byTheorem1.2,we get the following result about the action of the automorphism
group.

Theorem 1.4 Let X be a smooth Fano threefold of Picard rank 1, index 1, and degree
4 over C. Then the following statements hold.

1. The automorphism group Aut(X) acts faithfully on H1(X ,�X ).
2. If X is hyperelliptic, then the kernel ker

(
Aut(X) → Aut(H3(X ,C))

)
is isomorphic

to Z/2Z and generated by the involution ι.

Additionally, it is known that if X is a smooth quartic threefold, then Aut(X) acts
faithfully on H3(X ,C); see for example (Javanpeykar and Loughran, 2017, Proposi-
tion 2.12).

Ingredients of proof

For smooth complete intersections X = V ( f1, . . . , fc) in usual projective space,
similar results to Theorem 1.2 have been achieved by relating the IVHS of X to the
IVHS of the hypersurface V (F) ⊆ P(E), with E = ⊕OPn (di ); see Terasoma (1990).
To avoid problems of this geometric approach arising from the singular nature of the
surroundingweighted projective space in our case,wewill use another purely algebraic
approach inspired by the calculations of Flenner; see (Flenner 1981, Sect. 8). We will
construct resolutions of the sheaves �̃

p
X that will give us spectral sequences converging

towards the cohomology groups of interest. The difficult part will be to make sure that
the identification of the cohomology parts with the homogeneous components of the
Jacobi ring is done in such a way that the contraction map can be identified with the
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ring-multiplication. To do this, we will extend the contraction pairing to a pairing of
the resolutions and then to a pairing of the spectral sequences.

Arithmetic motivation

It is well-known that a variety admitting a quasi-finite period map is hyperbolic
(Griffiths and Schmid 1969, Sect. 8-9), and therefore (by Lang-Vojta’s conjecture)
should have only finitely many integral points, i.e., be “arithmetically hyperbolic”;
see (Abramovich, 1997, § 0.3) or Javanpeykar (2020); Lang (1986). For evidence on
Lang-Vojta’s arithmetic conjectures, see (Autissier 2009, 2011; Corvaja and Zannier
2006; Faltings 1994; Levin 2009; Javanpeykar 2021; Ullmo 2004).

We were first led to investigate the infinitesimal Torelli problem for these Fano
threefolds when studying the arithmetic hyperbolicity of the moduli stack F of Fano
threefolds of Picard rank 1, index 1, degree 4; see (Javanpeykar and Loughran, 2018,
Sect. 2) for a definition of this stack. The property of a stack being arithmetically hyper-
bolic, i.e., having “only finitely many integral points” is formalized in Javanpeykar
and Loughran (2021).

In Licht (2022), we prove the arithmetic hyperbolicity of this stack by first proving
that the period map

p : Fan
C

→ Aan
30

is quasi-finite and then using Faltings’s theorem (Faltings 1983) which says that the
stack of principally polarized abelian varieties A30 is arithmetically hyperbolic. For
the cases of Fano threefolds of Picard rank 1, index 1, and degree 2, 6 or 8, the quasi-
finiteness of the period map is deduced from it being unramified, i.e. its differential,
the infinitesimal Torelli map, being injective; see Javanpeykar and Loughran (2018).
However, by our result in the degree 4 case, the infinitesimalTorellimap is not injective.
We overcome this difficulty in Licht (2022) by showing that the moduli stack F has a
natural two-step “stratification” and that on each stratum, the “restricted” period map
is unramified. This then suffices to deduce the desired quasi-finiteness of the above
period map.

2 Multigraded differential modules

In this section, we introduce multi-graded differential modules, which is a notion used
for example in [41]. In particular, this notion describes single and double complexes
and pages of spectral sequences.

Let R be a (commutative) ring or, more generally, the structure sheaf OT of a
scheme T . A differential d on an n-graded R-module E = ⊕

p∈Zn E p for us is
always considered to be an R-linear self map that is homogeneous of a certain degree
with d ◦d = 0. A bidifferential n-graded module is an n-graded module together with
two commuting differentials.
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Let (E1, d1) and (E2, d2) be differential n-graded R-modules with homogeneous
differentials of the same degree a ∈ Z

n . Then the tensor product E1 ⊗ E2 comes with
an induced (2n)-grading

E1 ⊗ E2 =
⊕

(p,q)∈Zn×Zn

E p
1 ⊗ Eq

2

and the two homogeneous differentials d1 ⊗ id and id⊗d2, giving us a bidifferential
2n-graded R-module.

Definition 2.1 Let n ∈ Z>0 be a positive integer and let (E, d1, d2) be a bidifferential
2n-graded R-module. Write the degree of di as (ai , bi ) where ai , bi ∈ Z

n . Suppose
a1+b1 = a2+b2, then we define the associated total differential n-graded R-module
of (E, d1, d2) to be the n-graded module

Tot(E) =
⊕

p∈Zn

Tot p(E)

where

Tot p(E) =
⊕

s,t∈Zn

s+t=p

Es,t

with homogeneous differential d ∈ End(Tot(E)) of degree a1 +b1 = a2 +b2 defined
by d|Es,t = d1 + (−1)s1d2.

Example 2.2 Let (K •,•, d1, d2) be a double complex. Then K = ⊕
p,q∈Z K p,q is a

bigraded module and d1, d2 define differentials of degree (1, 0), (0, 1) on K , thus
giving K the structure of a bidifferential bigraded module. In fact, giving the data
of a double complex is equivalent to defining a bigraded module with differentials
of degree (1, 0) and (0, 1). Similarly, a complex (L•, d) can be identified with the
differential graded module (L = ⊕

p∈Z L p, d). Under these identifications, the total
single complex associated to K •,• and the total differential graded module associated
to K •,• are the same.

Example 2.3 For us, the total differential bigraded module associated to a tensor prod-
uct of bigraded differential modules with differentials of the same degree a ∈ Z

2 is
of particular interest. So let (E1, d1) and (E2, d2) be differential bigraded modules.
Then the differentials d1 ⊗ id and id⊗d2 on the quadgraded module E1 ⊗ E2 have
degrees (a1, a2, 0, 0) and (0, 0, a1, a2). For p, q ∈ Z, we have

Tot p,q(E1 ⊗ E2) =
⊕

s+t=p
u+v=q

Es,u
1 ⊗ Et,v

2 .

On Es,u ⊗ Et,v the differential is given as

dTot |Es,u⊗Et,v = d1|Es,u ⊗ idEt,v +(−1)s id |Es,u ⊗ d2|Et,v .
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3 Pairings of filtered complexes

In this section, we explain how a pairing of filtered complexes induces a pairing of
the associated homology complexes that respects the induced filtration. Let R be a
ring or, more generally, the structure sheaf R = OT of a scheme T . All modules are
considered to be R-modules and all single (resp. double) complexes are considered to
be single (resp. double) complexes of R-modules.

Let (K , d), (K •
1 , d1) and (K •

2 , d2) be complexes. The total complex of the tensor
product of K •

1 and K •
2 , as introduced in Sect. 2, is given by

Totn(K •
1 ⊗ K •

2 ) =
⊕

p+q=n

K p
1 ⊗ Kq

2

with the differential given by

dTot |K p
1 ⊗Kq

2
= d1 ⊗ id |Kq

2
+ (−1)p id |K p

1
⊗ d2.

Definition 3.1 A pairing of complexes from (K •
1 , d1) and (K •

2 , d2) to (K •, d) is a
morphism of complexes

φ : (Tot•(K •
1 ⊗ K •

2 )), dTot ) → (K •, d).

We write the components of φ as φ p,q : K p
1 ⊗ Kq

2 → K p+q , for p, q ∈ Z.

A pairing of complexes induces a pairing of the associated homology complexes.

Lemma 3.2 Let (K •, d), (K •
1 , d1) and (K •

2 , d2) be complexes and let

φ : Tot•(K •
1 ⊗ K •

2 ) → K •

be a pairing of complexes. Then φ induces a pairing of the associated homology
complexes (which are equipped with the zero differential)

φ : Tot•(H•(K •
1 , d1) ⊗ H•(K •

2 , d2)) → H•(Tot•(K •
1 ⊗ K •

2 ), dTot ).

Proof. There is a canonical graded map

Tot•(H•(K •
1 , d1) ⊗ H•(K •

2 , d2)) → H•(Tot•(K •
1 ⊗ K •

2 ), dTot ).

We get φ by composing this map with

H•(φ) : H•(Tot•(K •
1 ⊗ K •

2 ), dTot ) → H•(K •, d).

A filtered complex is a triple (K •, d, F), where K • is a complex with differential
d, and F is a decreasing filtration on K • compatible with the differential, i.e., for each
n ∈ Z, we have a decreasing filtration

Kn ⊇ . . . ⊇ F pKn ⊇ F p+1Kn ⊇ . . .
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such that d(F pKn) ⊆ F pKn+1 for all n, p ∈ Z. This means that F pK • becomes a
subcomplex of K • for every p ∈ Z.

Given a filtered complex (K •, d, F), there is an induced filtration on the homology
complex H•(K •, d) given by

F pHn(K •, d)) := im(Hn(F pK •) → Hn(K •)) = ker(d) ∩ F pKn + im(d) ∩ Kn

im(d) ∩ Kn
.

For the associated graded pieces, we have

gr pHn(K •) := F pHn(K •, d))

F p+1Hn(K •, d)
= ker(d) ∩ F pKn

ker(d) ∩ F p+1Kn + im(d) ∩ F pKn
; (3.1)

see [The Stacks Project Authors 2022, Tag 0BDT].

Definition 3.3 Let R be a a ring (resp. let R = OT be the structure sheaf of a scheme
T ). Let (K •, d, F),(K •

1 , d1, F1) and (K •
2 , d2, F2) be filtered complexes of R-modules.

A pairing of complexes

φ : Tot•(K •
1 ⊗ K •

2 ) → K •

is a pairing of filtered complexes if it is compatible with the filtrations, that is for all
elements (resp. sections) α of Fi

1K
p
1 and β of F j

2 K
q
2 , we have that φ

p,q(α ⊗ β) is an
element (resp. section) of Fi+ j K p+q .

From the definition, it is evident that for each p, q ∈ Z, such a pairing of filtered
complexes induces a pairing of complexes

φ : Tot•(F p
1 K •

1 ⊗ Fq
2 K

•
2 ) → F p+q K •.

Hence the induced pairing of the homology complexes

φ : Tot•(H•(K •
1 , d1) ⊗ H•(K •

2 , d2)) → H•(K •, d)

fromLemma3.2 is compatiblewith the inducedfiltrations on the homology complexes.

Therefore, for each p, q, i, j ∈ Z, we get induced maps φ
p,q,i, j

and gr p,q,i, j (φ)

making the diagram

Hp(K •
1 ) ⊗ Hq(K •

2 ) Hp+q(K •)

FiHp(K •
1 ) ⊗ F jHq(K •

2 ) Fi+ jHp+q(K •)

gri Hp(K •
1 ) ⊗ gr j Hq(K •

2 ) gri+ j Hp+q(K •)

φ
p,q

φ
p,q,i, j

α p,i⊗αq, j

β p,i⊗βq, j

α p+q,i+ j

β p+q,i+ j

gr p,q,i, j (φ)

(3.2)
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commute, where the maps αa,b denote the natural injections and the maps βa,b denote
the natural surjections.

4 Spectral pairing

In this section, we follow [The Stacks Project Authors 2022, Tag 012K] and explain
how to construct the spectral sequence associated to a filtered complex. Building on
this, we show that a pairing of filtered complexes induces a pairing of the associated
spectral sequences.

Let R be a ring or, more generally, the structure sheaf R = OT of a scheme T . All
complexes are complexes of R-modules. A spectral sequence is given by the data

E = (Er , dr )r∈Z≥0

where Er = ⊕
(p,q)∈Z2 E p,q is a bigraded R-module and dr ∈ End(Er ) is a homo-

geneous differential of degree (r ,−r + 1) such that

Er+1 = H(Er , dr ) := ker(dr )/ im(dr ).

All spectral sequences considered in this paper are bigraded. We can associate a
spectral sequence to a filtered complex (K •, d, F) in the following way. We define

Z p,q
r = F pK p+q ∩ d−1(F p+r K p+q+1) + F p+1K p+q

F p+1K p+q

B p,q
r = F pK p+q ∩ d(F p−r+1K p+q−1) + F p+1K p+q

F p+1K p+q

and E p,q
r = Z p,q

r /B p,q
r . Now set Br = ⊕

p,q B p,q
r , Zr = ⊕

p,q Z p,q
r and Er =⊕

p,q E p,q
r . Define the map dr : Er → Er as the direct sum of the maps

d p,q
r : E p,q

r → E p+r ,q−r+1
r : z �→ d(z)

where z ∈ F pK p+q∩d−1(F p+r K p+q+1). This defines the spectral sequence (Er , dr )
associated to the filtered complex (K •, d, F).

Definition 4.1 Let (Er , dr ), ( ′Er ,
′dr ) and ( ′′Er ,

′′dr ) be spectral sequences. Letφ =
(φr )r∈Z≥0 be a collection of morphisms of bigraded differential modules

φr : Tot•,•( ′E•,•
r ⊗ ′′E•,•

r ) → E•,•
r

that are homogeneous of degree 0. We write the components of φr as

φs,t,u,v
r : ′Es,u

r ⊗ ′′Et,v
r → Es+t,u+v

r .
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The collection φ is called a pairing of spectral sequences if the diagram φ
s,t,u,v
r+1 is

induced by φ
s,t,u,v
r for all r , s, t, u, v ∈ Z, r ≥ 0. That means the diagram

′Es,u
r ⊗ ′′Et,v

r Es+t,u+v
r

′Zs,u
r ⊗ ′′Zt,v

r Zs+t,u+v
r

′Es,u
r+1 ⊗ ′′Et,v

r+1 Es+t,u+v
r+1

φ
s,t,u,v
r

φ
s,t,u,v
r

φ
s,t,u,v
r+1

commutes.

Form the definitions, we see:

Lemma 4.2 Let ((K •, d, F), (Er , dr )), (( ′K •, ′d, ′F), ( ′Er ,
′dr )) and (( ′′K •, ′′d,

′′F), ( ′′Er ,
′′dr )) be pairs of filtered complexes with their associated spectral

sequences. Any pairing of filtered complexes

φ : Tot•(( ′K •, ′d, ′F) ⊗ ( ′′K •, ′′d, ′′F)) → (K •, d, F)

induces a pairing of the associated spectral sequences φ̃ = (φ̃r )r∈Z≥0 ,

φ̃r : Tot•,•(( ′E•,•
r , ′dr ) ⊗ ( ′′E•,•

r , ′′dr )) → (E•,•
r , dr ).

Proof A computation shows that φ induces a map ′Zs,u
r ⊗ ′′Zt,v

r → Zs+t,u+v
r which

maps both ′Bs,u
r ⊗ ′′Zt,v

r and ′Zs,u
r ⊗ ′′Bt,v

r to Bs+t,u+v
r . That φ̃s,t,u,v

r+1 is induced by

φ̃
s,t,u,v
r follows from the fact that both maps are induced by φ. For details see Licht

(2022).

For a filtered complex (K •, d, F), we define

Z p,q∞ =
⋂

r

Z p,q
r =

⋂

r

F pK p+q ∩ d−1(F p+r K p+q+1) + F p+1K p+q

F p+1K p+q

and

B p,q∞ =
⋃

r

B p,q
r =

⋃

r

F pK p+q ∩ d(F p−r+1K p+q−1) + F p+1K p+q

F p+1K p+q

and E p,q∞ = Z p,q∞ /B p,q∞ . If we now suppose that the filtration is finite, i.e., for all
n ∈ Z, there are l,m ∈ Z such that Fl Kn = Kn and FmKn = 0, then the chains

Z p,q
0 ⊇ . . . Z p,q

r ⊇ Z p,q
r+1 ⊇ . . .
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and

B p,q
0 ⊆ . . . B p,q

r ⊆ B p,q
r+1 ⊆ . . .

become stationary and assume Z p,q∞ and B p,q∞ after finitely many steps. We have

Z p,q∞ = F pK p+q ∩ ker(d) + F p+1K p+q

F p+1K p+q

and

B p,q∞ = F pK p+q ∩ im(d) + F p+1K p+q

F p+1K p+q
.

If we now put n = p + q and compare with Eq. (3.1), we get an identity

gr pHn(K •) = ker(d) ∩ F pKn + F p+1Kn

im(d) ∩ F pKn + F p+1Kn
= E p,q∞ . (4.1)

Theorem 4.3 Let ((K •, d, F), (Er , dr )), (( ′K •, ′d, ′F), ( ′Er ,
′dr )) and (( ′′K •,

′′d, ′′F), ( ′′Er ,
′′dr )) be pairs of filtered complexes with their associated spectral

sequences such that all the filtrations are finite, and let

φ : Tot•( ′K • ⊗ ′′K •) → K •

be a pairing of filtered complexes. The induced pairing of the associated spectral
sequences induces a pairing of bigraded modules

φ̃∞ : Tot•( ′E•,•∞ ⊗ ′′E•,•∞ ) → E•,•∞

such that for all i, j, p, q ∈ Z, the diagram

′Ei,p∞ ⊗ ′′E j,q∞ gri Hp+i ( ′K •) ⊗ gr j Hq+ j ( ′′K •)

Ei+ j,p+q∞ gri+ j Hp+q+i+ j (K •)

=

φ̃
i, j,p,q∞ gr p+i,q+ j,i, j (φ)

=

commutes.

Proof By Lemma 4.2, the pairing of filtered complexes φ induces a pairing of spectral
sequences

φ̃r : Tot•,•(( ′E•,•
r , ′dr ) ⊗ ( ′′E•,•

r , ′′dr )) → (E•,•
r , dr ).
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For each i, j, p, q ∈ Z the modules Ei,p
r , ′Ei,p

r and ′′Ei,p
r assume Ei,p∞ , ′Ei,p∞ and

′′Ei,p∞ after finitely many pages. Hence the maps φ̃
i, j,p,q
r converge to a map

φ̃
i, j,p,q∞ : ′Ei,p∞ ⊗ ′′E j,q∞ → Ei+ j,p+q∞ .

It coincides with gr p+i,q+ j,i, j (φ) as both maps are induced by φ.

5 The contraction pairing on the affine cone

Let k be a field of characteristic zero and let X = V+( f1, . . . , fc) ⊆ Pk(W0, . . . ,Wn)

be a quasi-smooth weighted complete intersection of degree (d1, . . . , dc) with coor-
dinate ring

A = SW /( f1, . . . , fc)

and affine coneU = Y \ {0}, where Y = Spec A. Let I ⊆ OAn+1\{0} be the ideal sheaf
ofU inAn+1 \ {0}. Let �1

U be the sheaf of k-differentials onU and let �1
U be its dual,

namely the tangent sheaf. Let p be an integer satisfying 1 ≤ p ≤ n − c. Building on
Flenner’s calculations (Flenner 1981, Sect. 8), in this section we will construct free
resolutions of the sheaves �

p
U and extend the contraction pairing

�
p
U ⊗ �1

U
γ−→ �

p−1
U

to these resolutions and their associated total Čech cohomology complexes.

The resolutions

The conormal sequence associated to the closed immersion of the smooth complete
intersection U into An+1 \ {0}, namely

0 → I/I2 → �1
An+1\{0} ⊗ OU → �1

U → 0,

is exact and�1
U is locally free; see (Hartshorne, 1977, Theorem II.8.17). This uses the

smoothness ofU . TheOU -module �1
An+1\{0} ⊗OU is free of rank n + 1 and spanned

by the elements dx0, . . . , dxn . The conormal sheaf I/I2 of the complete intersection
U is free of rank c and is generated by the elements f1, . . . , fc. Hence the conormal
sequence is described by the exact sequence

0 → F =
⊕

i∈{1,...,c}
OU · yi φ−→ G =

⊕

j∈{0,...n}
OU · dx j π−→ �1

U → 0 (5.1)
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of OU -modules, where the yi are basis elements, the morphism φ is the OU -linear
map with

φ(yi ) = d( fi ) =
n∑

j=0

∂ j ( fi ) · dx j

and π is the natural surjection. Note, if we set deg(yi ) = di and deg(dxi ) = Wi , then
the induces morphisms φU : �(U , F) → �(U ,G) and πU : �(U ,G) → �(U ,�1

U )

are homogeneous of degree 0.
For any quasi-coherent OU -module N and r ∈ Z≥0, let Sr (N ) denote the r -th

symmetric power of N . As the OU -module F is free with a basis y1, . . . , yc, the
symmetric power Sr (F) is free with a basis formed by the elements

yλ := yλ1
1 · . . . · yλc

c

where λ ∈ Z
c≥0 with

∑
λi = r . For the notation yλ, we will allow λ ∈ Z

c. Namely, if
λi < 0 for some i , then we set yλ = 0. Similarly to (Lebelt, 1977, example (ii)), for
1 ≤ p ≤ n − c, we define the complex (K •

p, d
•
Kp

) of OU -modules with components

Kq
p = S−q(F) ⊗

p+q∧
(G)

for −p ≤ q ≤ 0 and Kq
p = 0 otherwise and differential

Kq
p = S−q(F) ⊗

p+q∧
(G) → Kq+1

p = S−q−1(F) ⊗
p+q+1∧

(G)

given as the OU -linear map that sends yλ ⊗ ω, where λ ∈ Z
c≥0 with

∑
i=c λi = −q

and ω = dxi1 ∧ · · · ∧ dxi p+q , to

c∑

i=1

yλ−ei ⊗ d( fi ) ∧ ω,

where ei ∈ Z
c denotes the i-th standard basis vector.

By composing it with the natural surjection K 0
p = ∧p

(G) → �
p
U , we get a

complex

0 → K−p
p → · · · → K 0

p → �
p
U → 0.

Note for p = 1, this is Sequence (5.1). By dualizing the exact sequence (5.1) of locally
free sheaves, we get an exact sequence

0 → �1
U

π∗−→ G∗ =
n⊕

i=0

OU · δi
φ∗
−→ F∗ =

c⊕

j=1

OU · y∗
j → 0,
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where the elements δ0, . . . , δn are the dual basis for dx0, . . . , dxn and the ele-
ments y∗

1 , . . . , y
∗
c are the dual basis for y1, . . . , yc. The differential φ∗ maps δi to∑c

j=1 ∂xi ( f j ) · y∗
j . Again, we set deg(δi ) = −wi and deg(y∗

i ) = −di , so that the
maps become homogeneous of degree 0 on global sections. We define the complex
(K •−1, d

•
K−1

) with components K 0−1 = G∗, K 1−1 = F∗ and Kq
−1 = 0 if q /∈ {0, 1} and

differential φ∗. These complexes give the desired resolutions.

Theorem 5.1 In the situation above, for every p ∈ {1, . . . , n − c}, the complex of
OU -modules

0 → K−p
p → · · · → K 0

p → �
p
U → 0

is exact. Furthermore the complex of OU -modules

0 → �1
U → K 0−1 → K 1−1 → 0

is exact.

Proof We have already proven the second statement and the first statement for p = 1.
Let p > 1 and let V = Spec B ⊆ U be any affine open subset such that the the
B-module M = �(V ,�1

U ) is free. Then M is m-torsion-free (see (Lebelt, 1977,
Introduction) for definition) for any positive integer m ∈ Z>0. Hence by applying
(Lebelt 1977, Satz 3.1) (note, since char(k) = 0, the ring B is a Q-algebra and hence
the divided powers used in that reference are isomorphic to symmetric powers) to M
with the free resolution

0 → �(V , K−1
1 ) → �(V , K 0

1 ) → M → 0,

we see that the complex

0 → �(V , K−p
p ) → · · · → �(V , K 0

p) → �(V ,�
p
U ) → 0

is exact. Since �1
U is locally free, we can cover U with affine opens V such that the

restriction is free. So we are done.

The pairing of resolutions

There are OU -bilinear contraction maps

γ̃G :
q∧

(G) × G∗ →
q−1∧

(G)

(dxi1 ∧ · · · ∧ dxiq , θ) �→
q∑

j=1

(−1) jθ(dxi j )dxi1 ∧ . . . ˆdxi j . . . ∧ dxiq
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and

γ̃F : Sq(F) × F∗ → Sq−1(F)

(yλ, μ) �→
r∑

i=1

yλ−ei μ(yi ).

These contraction maps induce morphisms

idF ⊗γ̃G : Kq
p ⊗ K 0−1 → Kq

p−1

and

idG ⊗γ̃F : Kq
p ⊗ K 1−1 → Kq+1

p−1.

We define

γ̃ q : Totq
(
K •

p ⊗ K •−1

)
= Kq−1

p ⊗ K 1−1 ⊕ Kq
p ⊗ K 0−1 → Kq

p−1

as

γ̃ q = idG ⊗γ̃F ⊕ (−1)q idF ⊗γ̃G .

Lemma 5.2 The maps above define a pairing of complexes

γ̃ : Tot•
(
K •

p ⊗ K •−1

)
→ K •

p−1

and induce the contraction pairing, i.e., given sections θ of �1
U and ω′ of

∧p G with
ω := (∧p

π
)
(ω′), we have

γ (ω, θ) =
⎛

⎝
p−1∧

π

⎞

⎠ ◦ γ̃ (ω′, π∗(θ))

where γ : �
p
U ⊗ �1

U → �
p−1
U is the contraction pairing.

For a proof, see (Licht 2022, Lemma 3.1.2).

The pairing of the total Cech complexes

Let U be an open affine covering ofU . For p ∈ {−1, 1, . . . , n − c}, let Č•(U , K •
p) be

the Čech double complex (as defined in [The Stacks Project Authors 2022,Tag 01FP])
and let

L•
p = Tot•

(
Č•(U , K •

p)
)
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be the associated total complex. We consider the cup product map of complexes

∪: Tot•(L•
p ⊗ L•−1) → Tot•(Č•(U ,Tot•(K •

p ⊗ K •−1)))

as defined in [The Stacks Project Authors 2022, Tag 07MB] and compose it with the
map

Tot•(Č•(U ,Tot•(K •
p ⊗ K •−1))) → Tot•(Č•(U , K •

p−1))

induced by the pairing of complexes fromLemma 5.2 to obtain a pairing of complexes

γ̄ : Tot•(L•
p ⊗ L•−1) → L•

p−1.

6 Cohomology for weighted complete intersections

In this section,we explain how to calculate the cohomology of certain coherent sheaves
on weighted complete intersections. We give an overview of results on that matter
found in Dolgachev (1982) and (Flenner, 1981, Sect. 8). We start with weighted pro-
jective space, where a similar statement can be found in Dolgachev (1982). The proof
for the case of usual projective space, found in (Hartshorne, 1977, Theorem III.5.1),
also works in the general case.

Lemma 6.1 Let k be a field, let W ∈ N
n+1 be weights, let SW = k[x0, . . . , xn] be the

weighted polynomial algebra and let P = Pk(W ) = Proj SW be weighted projective
space. Then the following statements hold.

1. The natural map SW → ⊕
l∈Z H0(P,OP(l)) is an isomorphism of graded SW -

modules.
2. We have Hq(P,OP(l)) = 0 for q �= 0, n and l ∈ Z.
3. In Čech cohomologywith respect to the coveringU = {D+(xi )}, the gradedmodule⊕

l∈Z Ȟn(U ,P,OP(l)) is the cokernel

coker
(
k〈xα0

0 . . . xαn
n | there exists i with αi ≥ 0〉 → SW [1/x0, . . . , 1/xn]

)
.

To better handle the top cohomology, we introduce the k-dual module.

Definition 6.2 Let k be a field, let A be a k-algebra and let M be a graded A-module.
We define the k-dual module of M to be the graded A-module D(M) = ⊕

l∈ZD(M)l
with D(M)l = Homk(M−l , k).

For example, if A = SW is a weighted polynomial algebra, then D(SW )l =
Homk((SW )−l , k). Here (SW )−l is spanned by the monomials xα0

0 . . . xαn
n with∑

αiWi = −l. We denote the corresponding dual basis elements by φα0,...,αn ∈
D(SW )l .

Note that D defines a contravariant additive self-functor. If we assume A to be
finitely generated over k (hence noetherian) and restrict D to the category of finitely

123



Beitr Algebra Geom (2024) 65:97–127 113

generated graded A-modules, then it is exact. This is because in that case, the homoge-
neous components Ml are finite-dimensional k-vector spaces. In particular, under the
application of D, injections become surjections, kernels become cokernels and vice
versa.

Remark 6.3 Let |W | = ∑
Wi . The k-vector space Ȟn(U ,P(W ),OP(W )(l)) vanishes

if l > −|W |. If l ≤ −|W |, then the vector space is spanned by the elements
x−1−α0
0 . . . x−1−αn

n where α ∈ (Z≥0)
n+1 and −|W | − ∑

αiwi = l. The k linear
map

⊕

l∈Z
Ȟn(U ,P(W ),OP(W )(l)) → D(S)(|W |)

thatmaps x−1−α0
0 . . . x−1−αn

n toφα0,...,αn defines an isomorphismof graded S-modules.

Consider a complete intersection X = V ( f1, . . . , fc) ⊆ P(W ) of codimension
c and degree d1, . . . , dc in P(W ). The surjection of coordinate rings SW → A =
SW /( f1, . . . , fc) naturally induces an embedding D(A) ⊆ D(S). For r ∈ {1, . . . , c}
the scheme

Xr = Proj Ar , Ar = SW /( f1, . . . , fr )

is a weighted complete intersection of codimension r . We have a chain of closed
immersions

X = Xc ⊆ . . . ⊆ X0 := P(W ).

For every l ∈ Z and 1 ≤ r ≤ c − 1, the ideal sheaf sequence

0 → OXr (l − dr+1)
· fr+1−−−→ OXr (l) → OXr+1(l) → 0

is exact, as f1, . . . , fr+1 is a regular sequence in SW . Considering the associated
long exact cohomology sequence and arguing inductively, we can prove the following
lemma. (The induction starts with Lemma 6.1 and Remark 6.3.) For more details on
the proof, we refer to Licht (2022).

Lemma 6.4 Let l ∈ Z and let X be a weighted complete intersection of codimension
c as above. Let ν = |W | − ∑c

i=1 di . Suppose dim(X) = n − c ≥ 1. Then

1. the natural map A → ⊕
l∈Z H0(X ,OX (l)) is an isomorphism of graded A-

modules,
2. Hq(X ,OX (l)) = 0 for q �= 0, n − c and l ∈ Z, and
3.

⊕
l∈Z Hn−c(X ,OX (l)) ∼= D(A) (ν).

Remark 6.5 If A is the coordinate ring of a weighted complete intersection X with
affine coneU = Y \ {0}, where Y = Spec A, and M is a graded A-module, then there
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is a natural isomorphism of graded A-modules

Hq(U , M∼|U ) ∼=
⊕

l∈Z
Hq(X , (M(l))∼),

where M(l) denotes the module M with grading shifted by l, and (_)∼ denotes the
functor that associates to an A-module its associated OY -module (respectively its
associated graded OX -module). This isomorphism can be established by compairing
the Čech cohomology with respect to the coverings {D(xi )} forU and {D+(xi )} for X
(see Licht 2022) or with methods of local cohomology (see (Flenner, 1981, Sect. 8)).
We can use this identification to bring the results above in a more compact form. In
particular, we have

Hq(U ,OU ) ∼=
⊕

l∈Z
Hq(X ,OX (l)).

7 The Jacobi ring of a weighted complete intersection

In this section, we will introduce the Jacobi ring of a weighted complete intersection
and explain how cohomology can be expressed in terms of it. Our methods build
on Flenner’s calculation in (Flenner, 1981, Sect. 8). We continue with notations and
conventions from Sect. 5. All components of the complexes K •

p are free and hence
quasi-coherent. So by Serre’s Criterion of affineness the higher cohomology groups
vanish on any affine open subset. Hence, the homology of the associated total complex
of the Čech double complexes with respect to the affine covering U calculates the
hypercohomology of these complexes, i.e.,

H
q(U , K •

p) = Hq(Tot•(Č•(U , K •
p))) = Hq(L•

p);

see [The Stacks Project Authors 2022, Tag 0FLH]. The total complex associated to a
double complex comes with two filtrations F1 and F2 given by

Fr
1 (Lq

p) =
⊕

i+ j=q,i≥r

Č i (U , K j
p)

and

Fr
2 (Lq

p) =
⊕

i+ j=q, j≥r

Č i (U , K j
p);

see [The Stacks Project Authors 2022, Tag 012X]. The pairing γ̄ is compatible with
these filtrations. Hence, by Theorem 4.3, we get pairings of the associated spectral
sequences, one for each filtration. We denote the spectral sequences associated to
the filtered complex (L•

p, Fi ) by (E•,•
i,p,r )r∈Z≥0 . See Sect. 4 or [The Stacks Project

Authors 2022, Tag 0130] for formulas for the computation of the pages of these
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spectral sequences. We first compute the pairing of spectral sequences associated to
the filtration F1. By Theorem 5.1, on the first page, we see

Es,t
1,p,1 = Ht (Čs(U , K •

p)) =
{
Čs(U ,�

p
U ) if t = 0

0 otherwise

if p > 0 and

Es,t
1,−1,1 = Ht (Čs(U , K •−1)) =

{
Čs(U ,�1

U ) if t = 0

0 otherwise.

Therefore, all spectral sequences converge on the second page with

Es,t
1,p,∞ = Es,t

1,p,2 =
{
Hs(U ,�

p
U )) if t = 0

0 otherwise

and

Es,t
1,−1,∞ = Es,t

1,−1,2 =
{
Hs(U ,�1

U ) if t = 0

0 otherwise

By Theorem 4.3, there is a pairing induced by γ̄

Tot•(E•,•
1,p,∞ ⊗ E•,•

1,−1,∞) → E•,•
1,p−1,∞.

In particular, we obtain a pairing

Hs1(U ,�
p
U ) ⊗ Hs2(U ,�1

U ) → Hs1+s2(U ,�
p−1
U ).

We note that it is the pairing induced by the contraction map γ : �
p
U ⊗ �1

U → �
p−1
U

on cohomology, see Lemma 5.2. Now, we compute the pairing of spectral sequences
associated to the filtration F2. On the first page, we see

Es,t
2,p,1 = Ht (Č•(U , Ks

p)) = Ht (U , Ks
p).

All modules involved in the complex K •
p are free. So by Lemma 6.4 and Remark 6.5,

we see that the spectral sequence satisfies Es,t
2,p,1 = 0 if t �= 0, n − c. Recall that the

complex K •
p is concentrated in degrees −p, . . . , 0, and we made the assumption that

p < n − c. Hence, we see that the spectral sequences converge on page 2 since the
differential never connects non-vanishing parts on later pages. We have

Es,t
2,p,∞ = Es,t

2,p,2 =
{
Hs(Ht (U , K •

p)) if t ∈ {0, n − c}
0 otherwise

.
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The pairing

Tot•(E•,•
2,p,∞ ⊗ E•,•

2,−1,∞) → E•,•
2,p−1,∞

is the one induced by the pairing

Tot•(K •
p ⊗ K •−1) → K •

p−1

on cohomology. Note that for both filtrations, all spectral sequences converge in such
a way that for each integer m there is only one combination of (s, t) depending on m
such that s + t = m and

grs Hm(L•
p) = Es,t

i,p,∞ �= 0;

see Eq. (4.1). That means

FqHm(L•
p) =

{
0 if q > s

Hm(L•
p) if q ≤ s

and therefore in the diagram

Hm(L•
p)

αm,s←−− FsHm(L•
p)

βm,s

−−→ grs Hm(L•
p),

themapsαm,s andβm,s are both isomorphisms.We combineDiagram (3.2) for suitable
choices of i and j with the diagram from Theorem 4.3 to get a commutative diagram

En−c−p,0
1,p,∞ ⊗ E1,0

1,−1,∞ Hn−c−p(L•
p) ⊗ H1(L•−1) E−p,n−c

2,p,∞ ⊗ E1,0
2,−1,∞

En−c−p+1,0
1,p−1,∞ Hn−c−p+1(L•

p−1) E1−p,n−c
2,p−1,∞

where the horizontal morphisms are isomorphisms. Thus, we have identified the pair-
ings of spectral sequences for the filtrations F1 and F2 with each other. As shown
above, the pairing

En−c−p,0
1,p,∞ ⊗ E1,0

1,−1,∞ → En−c−p+1,0
1,p−1,∞

is identified with the contraction map

Hn−c−p(U ,�
p
U ) ⊗ H1(U ,�1

U ) → Hn−c−p+1(U ,�
p−1
U ).

On the other hand, the pairing

E−p,n−c
2,p,∞ ⊗ E1,0

2,−1,∞ → E1−p,n−c
1,p−1,∞
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is the pairing

H−p(Hn−c(U , K •
p)) ⊗ H1(H0(U , K •−1)) → H1−p(Hn−c(U , K •

p−1))

induced by γ̃ . We now explicitly calculate all the cohomology groups involved in this
pairing. The group H−p(Hn−c(U , K •

p)) is the kernel of the map

Hn−c(U , K−p
p ) → Hn−c(U , K 1−p

p ).

We compute:

Hn−c(U , K−p
p ) = Hn−c(U , S p(F)) =

⊕
∑

β j=p

Hn−c(U ,OU ) · yβ,

Hn−c(U , K 1−p
p ) = Hn−c(U , S p−1(F) ⊗ G) =

⊕

0≤i≤n,∑
β j=p−1

Hn−c(U ,OU ) · yβdxi .

We note that deg(yβ) = ∑
β j d j , and deg(dxi ) = Wi . Hence, by Lemma 6.4 and

Remark 6.5, we see that

Hn−c(U , K−p
p ) =

⊕
∑

β j=p

D
(
A

(
−ν +

∑
β j d j

))
· yβ,

and that

Hn−c(U , K−p
p ) =

⊕

0≤i≤n,∑
β j=p−1

D
(
A

(
−ν + Wi +

∑
β j d j

))
· yβdxi .

The kernel of themapHn−c(U , K−p
p ) → Hn−c(U , K 1−p

p ) is the k-dual of the cokernel
of the map

α :
⊕

0≤i≤n,∑
β j=p−1

A
(
−ν + Wi +

∑
β j d j

)
· yβdxi →

⊕
∑

β j=p

A
(
−ν +

∑
β j d j

)
· yβ

that maps yβdxi to
∑

j ∂xi ( f j )y
β+e j . To describe the cokernel of this map, we intro-

duce the Jacobi ring.

Definition 7.1 Let X = V ( f1, . . . , fc) ⊆ P(W ) be a weighted complete intersection
ofmultidegree (d1, . . . , dc). Let k[x0, . . . , xn, y1, . . . , yn] be the polynomial ringwith
bigrading deg(xi ) = (0, wi ), deg(y j ) = (1,−d j ). The polynomial F = y1 f1 + · · ·+
yc fc is bihomogeneous of degree (1, 0). We define the Jacobi ring of Y to be the
bigraded ring

R = k[x0, . . . , xn, y1, . . . , yc]/(∂x0(F), . . . , ∂xn (F), ∂y0(F), . . . , ∂yc (F)).
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We see that coker(α) is the part of R in which we fix the first degree to be p. In
fact, if we view this part Rp,∗ as a graded module via deg2, we get an isomorphism

coker(α) ∼= Rp,∗(−ν)

of graded modules. This shows

H−p(Hn−c(U , K •
p)) = ker(Hn−c(U , K−p

p ) → Hn−c(U , K 1−p
p ))

= D(coker(α))

= D(Rp,∗)(ν).

Next we calculate H1(H0(U , K •−1)). It is the cokernel of the map

H0(U ,G∗) =
n⊕

i=0

A(Wi ) · δi
φ∗
−→ H0(U , F∗) =

c⊕

j=1

A(d j ) · y∗
j ,

where the differentialmaps δi to
∑c

j=1 ∂xi ( f j )·y∗
j . Hence, the cokernel is the deg1 = 1

part of the Jacobi ring, namely

H1(H0(U , K •−1)) = R1,∗.

For x ∈ R1,∗, let mx : Rp−1,∗ → Rp,∗ be the multiplication by x . Now under these
identifications, the pairing is explicitly given as

D(Rp,∗)(ν) ⊗ R1,∗ → D(Rp−1,∗)(ν) : ϕ ⊗ x �→ ϕ ◦ mx .

We have proven the following.

Lemma 7.2 Let A be the coordinate ring of a quasi-smooth weighted projective com-
plete intersection X = V ( f1, . . . , fc) ⊆ P(W0, . . . ,Wn) of degree (d1, . . . , dc) with
affine cone U. Let ν = ∑

Wi − ∑
d j . There are isomorphisms Hn−c−p(U ,�

p
U ) ∼=

D(Rp,∗)(ν) and H1(U ,�1
U ) ∼= R1,∗. Under theses isomorphisms the contraction

pairing

Hn−c−p(U ,�
p
U ) ⊗ H1(U ,�1

U ) → Hn−c−p+1(U ,�
p−1
U )

is the pairing

D(Rp,∗)(ν) ⊗ R1,∗ → D(Rp−1,∗)(ν) : ϕ ⊗ x �→ ϕ ◦ mx

Remark 7.3 Giving the pairing

Hn−c−p(U ,�
p
U ) ⊗ H1(U ,�1

U ) → Hn−c−p+1(U ,�
p−1
U ).
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is equivalent to giving a map

H1(U ,�1
U ) → Hom(Hn−c−p(U ,�

p
U ),Hn−c−p+1(U ,�

p−1
U )).

Under the identifications given in Lemma 7.2, this is the map

R1,∗ → Hom(D(Rp,∗)(ν),D(Rp−1,∗)(ν)) = Hom(Rp−1,∗(−ν), Rp,∗(−ν))

that sends a homogeneous element x ∈ R1,∗ to mx .

8 Hodge structure on V-varieties

Following (Peters and Steenbrink 2008, Sect. 2.5), we recall some facts about almost
Kähler V-varieties (e.g., quasi-smooth weighted complete intersections).

Definition 8.1 A complex analytic space X is an n-dimensional V-manifold if there
is an open cover X = ⋃

Xi such that Xi = Ui/Gi is the quotient of an open subset
Ui ⊆ C

n by a finite group Gi acting holomorphically on Xi . A V-manifold X is
almost Kähler if there exists a manifold Y that is bimeromorphic to a Kähler manifold
and a proper modification f : Y → X , i.e., a proper holomorphic map which is
biholomorphic over the complement of a nowhere dense analytic subset.

There are generalized sheaves of differentials on almost Kähler V -manifolds.

Definition 8.2 Let X be a V -manifold. Let i : Xsm → X be the inclusion map of the
smooth locus. Define

�̃
p
X = i∗�p

Xsm
.

The cohomology of these sheaves determines a Hodge structure, which coincides
with the usual Hodge decomposition in the compact Kähler case; see (Peters and
Steenbrink 2008 Theorem 2.43) and its proof.

Theorem 8.3 Let X be an almost Kähler V -manifold. Then, the complex �̃•
X is a

resolution of the constant sheaf CX . Furthermore the spectral sequence in hyperco-
homology

E p,q
1 = Hq(X , �̃

q
X ) ⇒ Hp+q(X ,C)

degenerates on page 1, and Hl(X ,Q) admits a Hodge structure of weight l given by

Hl(X ,Q) ⊗ C = Hl(X ,C) =
⊕

p+q=l

Hq(X , �̃
q
X ).

As remarked in (Flenner 1981 Sect. 7) there are multiple equivalent ways of defin-
ing the �̃

p
X . For us, the identification with the reflexive hull of the usual sheaf of

differentials is relevant.
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Lemma 8.4 Let k be an algebraically closed field, let X be a normal integral scheme
of finite type over k, and let i : Xsm → X denote the inclusion of the smooth locus.
Then there is a canonical isomorphism

(�
p
X )∗∗ → i∗�p

Xsm
.

Proof The restrictionmap�
p
X → i∗�p

Xsm
induces amapof the corresponding reflexive

hulls (�
p
X )∗∗ → (i∗�p

Xsm
)∗∗. As �

p
Xsm

is reflexive, there is a canonical isomorphism

(i∗�p
Xsm

)∗∗ ∼= i∗�p
Xsm

. The induced map

(�
p
X )∗∗ → i∗�p

Xsm

is a map of reflexive sheaves that restricted to Xsm is an isomorphism. Note since X
is normal, the complement of the smooth locus X \ Xsm has a codimension of at least
2. Hence it is an isomorphism by (Hartshorne 1980, Proposition 1.6).

Remark 8.5 If X ⊆ PC(W ) is a quasi-smooth weighted projective variety, then X
is normal; see (Dolgachev 1982 Proposition 1.3.3) for the case X = PC(W ), the
argument given there, namely that X is the quotient of its smooth (and hence normal)
affine cone by a finite group, also applies in the general case. Hence by Lemma 8.4 the
generalized sheaf of differentials �̃

p
X is canonically isomorphic to the reflexive hull

(�
p
X )∗∗. In particular, the tangent sheaf �1

X is therefore canonically isomorphic to the
dual �̃1

X := (�̃1
X )∗ of �̃1

X .

9 Infinitesimal Torelli for weighted complete intersections

In this section, we proof Theorem 1.2. We continue with notations from Sect. 7. From
now on we choose the base field k = C.

Let X = V ( f1, . . . , fc) ⊆ PC(W0, . . . ,Wn) be a weighted complete intersection
of degree (d1, . . . , dc)with affine coneU . Let A = SW /( f1, . . . , fc) be its coordinate
ring. Let Y = Spec A, and let U = Y \ {0} be the affine cone. Let �1

A be the sheaf of
C-differentials on A, and let �p

A = ∧p
�1

A.

Definition 9.1 We define the Euler map as the A-linear morphism

ξ : �
p
A → �

p−1
A

that sends dxi1 ∧ . . . ∧ dxi p to
∑p

j=1(−1) jW j x j · dxi1 ∧ . . . ˆdxi j . . . ∧ dxi p .

The associated OY -module (�
p
A)∼ is the sheaf of p-Forms on Y . Hence, we see

that

(�
p
A)∼|U = �

p
Y |U = �

p
U .
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Therefore by Remark 6.5, there is a natural isomorphism

Hq(U ,�
p
U ) ∼=

⊕

l∈Z
Hq(X , (�

p
A(l)∼). (9.1)

In the following, we write (�
p
A(0))∼ for the associated for theOX -module associated

to the graded A-module�
p
A to avoid confusionwith the associatedOY -module (�

p
A)∼.

Lemma 9.2 (Flenner 1981, Lemma 8.9) For all integers l ∈ Z, the complex
((�•

A(l))∼, ξ) of sheaves on X is exact and the kernel of

(�
p
A(0))∼ ξ−→ (�

p−1
A (0))∼

is canonically isomorphic to �̃
p
X .

Lemma 9.2 gives us short exact sequences

0 → �̃
p
X → (�

p
A(0))∼ ξ−→ �̃

p−1
X → 0. (9.2)

There is the following vanishing result.

Lemma 9.3 (Flenner 1981, Lemma 8.10) In the situation above, the following state-
ments hold.

1. We have Hq(U , ((�
p
A(l))∼) = 0, if p + q �= n − c, n − c + 1 and 0 < q < n − c.

2. The map H0(X , (�
p
A(0))∼)

ξ−→ H0(X , �̃
p−1
X ) is surjective if p ≥ 2 and has coker-

nel isomorphic to C if p = 1.

These results allow us to calculate the relevant cohomology groups.

Lemma 9.4 Let X be a weighted complete intersection as above of dimension n−c >

2. Then, the following identities hold.

1. For 0 < p < n − c:

Hq(X , �̃
p
X ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if 0 < q < n − c − p, q �= p

C if 0 < q < n − c − p, q = p

HomC(Rp,−ν,C) if q = n − c − p, q �= p

C ⊕ HomC(Rp,−ν,C) if q = p = n − c − p.

2.

H1(X ,�1
X ) = R1,0.

Proof We first prove (1). We argue by induction on p. In each step we consider the
long exact cohomology sequences associated to the short exact Sequence (9.2) and use
Lemmata 6.4, 7.2, 9.3 and Isomorphism 9.1 to compute certain cohomology groups.
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Let p = 1. We know �̃0
X = A∼. Hence, it follows Lemma 6.4 that Hq(X , �̃0

X ) = 0
for 0 < q < n − c. The long exact sequence is

0 H0(X , �̃1
X ) H0(X , (�1

A(0))∼) H0(X , �̃0
X )

H1(X , �̃1
X ) 0 0

Hn−c−2(X , �̃1
X ) 0 0

Hn−c−1(X , �̃1
X ) HomC(R1,−ν,C) 0.

The assertion for p = 1 immediately follows. Now assume that 2 ≤ p < n − c − p
and that the result holds for p−1.We see the assertion is also true for p by considering
the long exact sequence

0 H0(X , �̃
p
X ) H0(X , (�

p
A(0))∼) H0(X , �̃

p−1
X )

H1(X , �̃
p
X ) 0 0

Hp−1(X , �̃
p
X ) 0 C

Hp(X , �̃
p
X ) 0 0

Hn−c−p−1(X , �̃
p
X ) 0 0

Hn−c−p(X , �̃
p
X ) HomC(Rp,−ν,C) 0.

Similarly the result is verified in case p ≥ n − c − p.
Now we prove (2). If we dualize Sequence (9.2) for p = 1 and consider the

associated long exact sequence, we get

H1(X ,�0
X ) → H1(X ,�1

U )0 → H1(X ,�1
X ) → H2(X ,�0

X );

see Remark 8.5. Under the assumption that 2 < n − c, we have H1(X ,�0
X ) =

H2(X ,�0
X ) = 0 and therefore

H1(X ,�1
X ) = H1(X ,�1

U ))0 = R1,0.

This proves the lemma.

Proof of Theorem 1.2 The statement is a combination of Lemma 9.4, Lemma 7.2, and
Remark 7.3.
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10 Infinitesimal Torelli for hyperelliptic Fano threefolds of type
(1,1,4)

In this section, we will prove Theorem 1.3 and Theorem 1.4. Any hyperelliptic Fano
threefold of Picard rank 1, index 1, and degree 4 over C is a weighted complete
intersection

X = V+(z2 − f , g) ⊂ PC(1, 1, 1, 1, 1, 2) = ProjC[x0, . . . , x4, z]

with f , g ∈ C[x0, . . . , x4], deg(g) = 2, deg( f ) = 4; see (Iskovskih, 1979, Theo-
rem II.2.2.ii). It is a double cover of the smooth quadric V (g) ⊆ P

4 with ramification
along the smooth surface V ( f , g) ⊆ P

4. Since V (g) is a smooth quadric, after a
change of coordinates, we may assume g = x20 +· · ·+ x24 . Write hi = ∂xi ( f )/2. Then
the Jacobi ring of X is given by

R = C[x0, . . . , x4, z, y2, y4]/( f − z2, g, y2x0 − y4h0, . . . , y2x4 − y4h4, y4 · z).

We apply Theorem 1.2 to a complete intersection of this type. We calculate ν =
7 − 6 = 1 and therefore

H1(X ,�X ) ∼= R1,0,

H1(X , �̃2
X ) ∼= HomC(R2,−1,C),

H2(X , �̃1
X ) ∼= HomC(R1,−1,C).

There are surjections

y2 · C[x0, . . . , x4, z]2 ⊕ y4 · C[x0, . . . , x4, z]4 → R1,0,

y2 · C[x0, . . . , x4, z]1 ⊕ y4 · C[x0, . . . , x4, z]3 → R1,−1,

y22 · C[x0, . . . , x4, z]3 ⊕ y2y4 · C[x0, . . . , x4, z]5 ⊕ y24 · C[x0, . . . , x4, z]7 → R2,−1.

Let B = C[x0, . . . , x4]/( f , g). Using the relations y2xi = y4hi and y4z = 0, we see

R1,0 ∼= C · y2z ⊕ y4B4,

R1,−1 ∼= y4B3,

R2,−1 ∼= y24 B7.

Note that there are injections

T1 := y2B2 ⊕ C · y2z → R1,0

and

T2 := y2B1 → R1,−1.
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We will need the following Lemma to prove Theorem 1.4.

Lemma 10.1 If ϕ ∈ Aut(X), then there are linear polynomials λi ∈ k[x0, . . . , x4]1
and b ∈ C

∗ such that, for all (x0 : · · · : x4 : z) ∈ X(C), we have

ϕ(x0 : · · · : x4 : z) = (λ0 : · · · : λ4 : bz).

Proof The anticanonical bundle of X is isomorphic to OX (1); see (Dolgachev, 1982,
Theorem 3.3.4). The cohomology group H0(X ,OX (1)) is a 5-dimensional vector
space generated by x0, . . . , x4, and H0(X ,OX (2)) is a 15-dimensional vector space
generated by x20 , x0x1, . . . , x

2
4 , z. Any automorphism ϕ ∈ Aut(X) induces an auto-

morphism of these cohomology groups. Hence ϕ is of the form

ϕ(x0, . . . , x4, z) = (λ0, . . . , λ4, bz + q),

where λi ∈ k[x0, . . . , x4]1, b ∈ C
∗ and q ∈ C[x0, . . . , x4]2. Note if g(x0, . . . , x4) =

0, then there is a z ∈ C such that (x0, . . . , x4, z) ∈ X . This shows that g(λ0, . . . , λ4)
vanishes on V+(g) ⊆ P

4. By Hilbert’s Nullstellensatz, g(λ0, . . . , λ4) = νg for some
ν ∈ C

∗. Furthermore, again by Hilbert’s Nullstellensatz, we see

(bz + q)2 − f (λ0, . . . , λ4) ∈ (z2 − f , g).

Hence, there are a1, a2 ∈ C and p ∈ C[x0, . . . , x4]2 such that

b2z2 + 2bqz + q2 − f (λ0, . . . , λ4) = a1(z
2 − f ) + a2gz + pg.

Comparing the z-terms, we see that g and q are the same up to a scalar multiple. As
q vanishes on V+(g), we can put q = 0.

Note that the involution coming from the double cover is given by

ι : X → X : (x0, . . . , x4, z) �→ (x0, . . . , x4,−z).

Proof of Theorem 1.4 (1): Consider an automorphism ϕ ∈ Aut(X) as in Lemma 10.1.
If ϕ operates trivially on H1(X ,�1

X ), then it operates trivially on T1. Therefore, we
have b = 1 and ϕ(xi x j ) = xi x j for all i, j . This shows that either λi = xi for all i
or λi = −xi for all i . Note in PC(1, 1, 1, 1, 1, 2), the coordinates (x0 : . . . : x4, z)
and (−x0 : . . . : −x4, z) define the same point. Hence ϕ = id. (2): As mentioned
in the introduction, this is already proven; see (Javanpeykar and Loughran, 2017,
Proposition 2.12).

(3): If ϕ acts trivially on H3(X ,C), then it acts trivially on H2,1. In particular, such
a ϕ then operates trivially on T2. Hence, we have λi = xi for i ∈ {0, . . . , 4}. As ϕ has
to preserve the equation z2 − f , we see b ∈ {1,−1}. This implies ϕ ∈ {id, ι}.
Proof of Theorem 1.3 From the explicit descriptions above, we calculate that

H1(X ,�X ) ∼= (R1,0) ∼= y4B4 ⊕ C · y2z.
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Themap R1,−1 → R2,−1 thatmultiplies by y2z is the zeromap. Hence by Theorem1.2
the infinitesimal Torelli map is not injective.

We also see that the involution invariant part H1(X ,�X )ι is

(R1,0)
ι ∼= y4B4.

Hence by Theorem 1.2, the involution invariant infinitesimal Torelli map can be iden-
tified with the map

B4 → Hom (B3, B7) .

The sequence f , g is regular as these polynomials define a complete intersection in
P
4. We can find polynomials h1, h2, h3 such that f , g, h1, h2, h3 is regular. Note that

we can choose these polynomials of arbitrarily large degrees. Now, by Macaulay’s
theorem (Voisin 2007, Corollary 6.20), the map

(
C[x0, . . . , x4]

( f , g, h1, h2, h3)

)

4
→ Hom

((
C[x0, . . . , x4]

( f , g, h1, h2, h3)

)

3
,

(
C[x0, . . . , x4]

( f , g, h1, h2, h3)

)

7

)

is injective.
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