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Abstract. Current literature shows a gap for
methods which can identify yeast sub-species
(strains or serovars) in samples where there are
no viable cells remaining. Presented here is a
technique for the analysis of yeast supernatant,
including solid phase extraction, data-dependent
acquisition liquid chromatography/mass spec-
trometry (LC-MS), and two chemometric methods
to identify and classify yeast strains. Five strains
of Saccharomyces cerevisiae were successfully

identified in various stages of growth. In addition, peptide/protein identification was performed, without the need
for additional data acquisition.
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Introduction

Microbial sub-species identification (strains or serovars)
has recently gained attention across many fields, thanks

to the development of new analytical and biochemical tech-
niques. In the field of medicine, knowledge of the species of a
clinical infectious agent is typically enough to determine the
course of treatment. However, in some cases, certain infectious
strains may require specific treatments. Also, tracking the
spread of infectious strains is important for epidemiological
studies [1]. In the field of food science, knowledge of the yeast
strain used in the production of fermented beverages may be
useful for quality control and raw material sourcing [2–11].

Yeast has been historically identified using morphological
and biochemical methods. Characterization of the cell and
colony traits, utilization of specific nutrients, and survival in
the presence of specific antibiotics are used to classify species
[3]. These experiments typically require 24 h or more, and the
microbiological techniques may not distinguish between

closely related species, and rarely between strains. Genomic
sequencing techniques are specific enough for strain identifi-
cation, but are also time consuming and generally not amenable
to routine testing [12]. Additionally, these techniques require
viable cells or DNA.

In some cases, viable cells may be no longer present in
samples, but identification of the previously present microbio-
logical strain is desired. Applications include the beer/wine
industry, where yeast cells are often not present in the final
product. These include authenticity/fraud detection, reverse-
engineering, and yeast contamination during fermentation [4,
8–10]. Other applications include environmental forensics,
such as the investigation of drinking water contamination. In
such a case, the contaminating microorganism may be non-
viable, but determination of the strain could aid in the identifi-
cation of the source of contamination. For such samples, strain
identification using biomarkers in the extracellular environ-
ment would be required. Peptides could potentially serve as
biomarkers, as there is a wide variety of potential peptide
structures, especially when considering sequence variants or
differences in relative abundances.

Matrix-assisted laser desorption ionization time-of-flight
mass spectrometry (MALDI-TOFMS) is routinely used for
identification of microorganism species via fingerprint
matching with spectral libraries of highly conserved and highly
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abundant proteins [13]. Currently available MALDI-TOFMS
libraries may not be applicable for strain identification because
the highly abundant biomarkers (e.g., ribosomal proteins) are
often conserved across species. Even libraries assembled for
the purpose of differentiating strains have been largely unsuc-
cessful [14–16]. MALDI-TOFMS has been shown to differen-
tiate strains of bacteria and yeast in several studies [17–21];
however, these studies required the presence of viable cells.

Initial work on this project utilized MALDI-TOFMS anal-
ysis of samples prepared from the yeast strain samples [22].
However, limitations of MALDI-TOFMS analysis include in-
terference and ion suppression. MALDI matrix clusters can
interfere with analytes below 1000 m/z. Most importantly,
ion suppression can be problematic for analytes at low levels,
or with low ionization efficiency, since all compounds are
ionized simultaneously. These limitations can be mitigated by
using LC-MS. The addition of the chromatographic separation
greatly reduces the number of analytes entering the mass spec-
trometer at any given retention time, resulting in decreased ion
suppression and interference. LC-based approaches are often
also more quantitative than MALDI, due to the inherent homo-
geneity of samples in solution. Two recent studies showed
bacterial strains could be identified using intact protein LC-
MS fingerprinting, but both required viable cells [23, 24].

Current literature shows a gap for identification of yeast
strains in samples where there are no viable cells remaining.
The study presented here describes a potentially cell-free tech-
nique to identify five Saccharomyces cerevisiae strains using
LC-MS by analysis of the yeast supernatant. Solid phase ex-
traction (SPE) was used to concentrate analytes, while remov-
ing sugars, salts, and polar small molecule metabolites, thus
improving peptide detection and reducing potential ion sup-
pression. Non-targeted analysis was performed using data-
dependent acquisition (DDA), and the data was simplified into
Bpseudo-spectra^ for classification. Two classification
methods were evaluated: spectral pattern matching (k-nearest
neighbors), and biomarker matching. Yeast in various stages of
growth were tested to examine the robustness of the technique.

Experimental
Yeast Growth and Supernatant Preparation

Five strains of dried S. cerevisiae beer brewer’s yeast were
obtained from Fermentis (Lille, France): K97, S33, T58, US05,
WB06. Each strain was prepared separately six times (3 bio-
logical replicates for the 4-day incubation samples, and addi-
tional preparations for 1-day, 2-day, and 7-day incubation
samples). For each preparation, 150 mg of yeast was
rehydrated in 20 mL of 25 mg/mL glucose solution, in sealed
vented vials, to maintain anaerobic conditions. After the incu-
bation time, the suspension was centrifuged at 4696×g for
5 min, and the supernatant was purified and concentrated using
solid phase extraction. Waters (Milford, MA) C18 Sep-Pak
Light SPE cartridges were conditioned using 2 mL strong
eluent (60:40 acetonitrile/0.1% formic acid) followed by

2 mL weak eluent (0.1% formic acid). Ten milliliters of yeast
supernatant was loaded onto the cartridge, followed by a 2 mL
wash of weak eluent. The analytes of interest were eluted from
the cartridge using 1 mL of strong eluent. The solution was
dried off by vacuum in a Speed-Vac (Thermo Scientific, Wal-
thamMA) and reconstituted with 200 μL 0.1% formic acid. All
chemicals were purchased from Fisher Scientific (Waltham,
MA). Blanks were concurrently analyzed, which consisted of
glucose solution subject to the same incubation times and solid
phase extraction procedure. A set of yeast samples was also
prepared using water instead of glucose solution, with an
incubation time of 1 h, to evaluate whether compounds in the
supernatant were components of the residual growth media in
the dehydrated yeast samples rather than products of yeast
metabolism.

Solid Phase Extraction Optimization

A single sample of 4-day K97 supernatant was prepared as
above using different solid phase extraction (SPE) loading
volumes (1–20 mL) to evaluate the impact on the number of
identified peptides/proteins. In addition, the SPE effluent dur-
ing sample loading was collected in 1-mL fractions to evaluate
SPE cartridge saturation. The approximate concentration of
peptides in the effluent was determined in duplicate by UV at
280 nm, using an Unchained Labs (Pleasanton, CA) Lunatic
DropSense spectrophotometer.

LC-MS Parameters

LC-MS was performed on a Thermo Scientific Vanquish
UHPLC and Q-Exactive Plus MS, using a Waters Acquity
CSH C18 column (150 mm× 2.1 μm, 1.7 μm particle size) at
30 °C with a 5 μL injection volume. A gradient of 0.1% formic
acid in water (A) and 0.1% formic acid in acetonitrile (B) was
used from 0 to 40% B over 60 min, at 0.2 mL/min, followed by
a wash of 95% B. Data-dependent acquisition (DDA) param-
eters include a 1-microscan full MS (resolving power 70,000,
400–2000 m/z) followed by MS/MS for the top three most
abundant ions using a normalized collision energy of 35 (re-
solving power 17,500, 200–2000 m/z), with exclusion of iso-
topes, unassigned/+ 1 charges, and a dynamic exclusion of 4 s.
The exclusion of precursors with low m/z or + 1 charge state
was included to limit chemical noise and to preferentially select
larger peptides, which are more likely to be unique. Mass
calibration was performed prior to analysis, as per manufac-
turer’s recommendations, using Pierce LTQ Velos ESI positive
ion calibration solution (no lock-mass).

Data Pre-processing

Analyte lists were generated using Thermo Scientific
BioPharma Finder software for all peaks above the software-
defined signal-to-noise. Average and monoisotopic masses
were calculated for each isotopic distribution, and peak area
was determined by integrating the extracted ion chromatogram
(XIC) of the most abundant isotopic peak. Only one analyte
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entry is generated for each isotopic distribution within a single-
charge state, but the presence ofmultiple charge states results in
multiple entries. This is not problematic as the multiple entries
are recombined in the next data processing step (Mass-Up
inter-sample peak matching). Separate entries are generated
for analytes with the same mass but different retention times.
The following filters were applied prior to data export: + 2 or
higher charge state, assignable monoisotopic mass, and XIC
peak area > 10,000.

The analyte lists were exported as csv files, and reduced to
include only monoisotopic mass and peak area for the most
abundant 3000 analytes (by XIC area of the selected m/z peak).
For PCA, only the top 1000 peaks were included, to account for
long computation times. For k-NN classification, peak area
normalization was performed by translating peak area into peak
rank, from 3000 to 1.

Mass-Up Processing

The csv files were input into Mass-Up [25] (http://sing.ei.
uvigo.es/mass-up, SI4 Next-Generation Computer Systems
Group, Vigo, Spain) as analyte lists. Inter-sample peak
matching was performed using 10 ppm mass error. PCA was
performed using 0.95 variance. Biomarkers were identified
using the 4-day samples, and matched against each 1-day, 2-
day, and 7-day sample. The matched biomarker lists were
exported for biomarker percent matching calculations per-
formed in Excel. k-NN classification (weka.classifiers.lazy.
IBk) was performed using 10-fold cross validation.

Protein Identification

Peptide sequencing and protein identification were performed
using Protein Metrics Inc. (San Carlos, CA, v2.16.11) Byonic
software against all S. cerevisiae proteins in the UniProt data-
base (www.uniprot.org, 80,097 proteins). Parameters include
non-specific cleavage, mass tolerance 4/10 ppm (precursor/
fragment) with no modifications, and 1% false discovery rate.
Peptide identification required MS/MS score ≥ 200.0. No pro-
teins were identified which had a probability rank less than the
top 20 reverse-sequence decoys.

Results and Discussion
Sample Preparation Optimization

The use of SPE for concentration of yeast supernatant analytes
was essential for the identification of high numbers of peptides.
Preliminary injections of neat supernatant yielded chromato-
grams with few discernable peaks in the MS total ion chro-
matograms (TIC). Subsequent optimization of the SPE proce-
dure evaluated various sample loadings of a single K97 4-day
yeast supernatant sample from 1 to 20 mL. The number of
identified peptides, and number of proteins from which they
originated, increased with increasing sample loading as shown
in Table 1. Separately, by measuring the peptide content of the
SPE effluent during sample loading, it was determined that the

SPE cartridge nears saturation after approximately 10 mL load-
ing (see Fig. 1). This sample loading volume was selected for
the method. An additional effect of employing SPE during
sample preparation is the reduction of polar small molecules
and salts, which are not retained on the cartridge. This may also
aid in increasing peptide identifications through improving
ionization efficiency, reduction of salt adducts, and reduction
of analytes competing for DDA peak selection.

Data Pre-Processing

The yeast supernatant LC-MS chromatograms are too complex
to use for direct strain classification (see Fig. 2). There is
extensive peak co-elution, and each analyte results in many
m/z peaks due to multiple charge states and isotopic distribu-
tions. Therefore, BioPharma Finder was used to simplify each
raw data file into an analyte list by deconvoluting the isotopic
distributions, and integrating the respective XICs. These
deconvoluted analyte lists were entered into Mass-Up software
as pseudo-spectra containingmonoisotopic M+Hmass (x-axis)
vs. XIC peak area (y-axis), as shown in Fig. 3. Mass-Up is a
software designed for the analysis ofMALDI-MS spectral data,
so each pseudo-spectrum is analogous to a MALDI-MS spec-
trum (peak intensity vs. m/z).

The optimal number of analytes in the sample analyte lists
for subsequent classification experiments was considered. Each
of the 4-day biological replicates, which collectively were used
as the Blibrary^ for classification, contained 5000–12,000

Table 1. Number of identified peptides, and originating proteins, as a function
of SPE sample loading volume

SPE sample loading (mL) Identified peptides Originating proteins

1 179 49
2 573 132
5 1394 251
10 2168 308
20 3002 377
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Figure 1. Approximate concentration of peptides in the SPE
effluent during sample loading, as measured by UV
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analytes. However, inclusion of all analytes was not found to
be beneficial to classification. Each yeast strain had a different
optimal number of analytes to maximize the number of bio-
markers identified (see Fig. 4). Criteria for being a biomarker is
that the analyte must be present in all three biological replicates
of a single yeast strain, and absent in all preparations of all other
yeast strains (using 10 ppm mass tolerance). The number of
biomarkers initially increases as more low-intensity analytes
are considered, but at some point the number of biomarkers
begins to decrease when more analytes with the same/similar
mass are observed in other strains. This includes both (1)
analytes which are identical to biomarkers, but at much lower
levels, and (2) analytes which have the same/similar mass as
biomarkers in other strains, but are different as shown by
retention time. The strain with the fewest biomarkers (T58)
had a maximum number of biomarkers when 3000 analytes
were used; therefore, this value was selected for the subsequent
classification work.

There are notable visible differences in the pseudo-spectrum
profiles between the strains, as shown in Supplemental Fig. S1.
There are also minor differences in the profiles of each strain
over time, which stabilize by day 2. This may be explained by
the slowing of metabolic activity after 2 days, as evidenced by
reduced visual carbon dioxide bubble formation.

PCA

Principal component analysis (PCA) was used to visualize the
differentiation of the yeast strains in Mass-Up with incubation
times from 2 to 7 days. As shown in Fig. 5, the five strains were
well separated from each other and tightly grouped. This indi-
cates that there are distinct and reproducible differences in the
compositions of the strain supernatants. Inclusion of the 1-day
samples resulted in poorer differentiation, suggesting that a
minimum amount of time and metabolism is needed for repro-
ducible profiles of analytes to accumulate in the extracellular
environment.

Biomarker Classification

The first classification approach was based on identification of
biomarkers unique to each strain. A list of biomarkers was
generated in Mass-Up using the 4-day sample analyte library.
Each strain was found to contain between 166 and 457 bio-
markers which were present in all three biological replicates,
and absent in all other biological replicates of the other strains.
Refer to Supplemental Table S2 for the list of biomarkers
identified for each yeast strain. The 1, 2, and 7-day sample
analyte lists were screened as unknowns against the biomarkers
from the 4-day samples. A percent match was calculated for
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Figure 2. Example LC/MS base peak chromatogram for the K97 4-day sample

Figure 3. Example pseudo-spectrum for the K97 4-day sample

C. Muste, K. Owens: Cell-Free ID of S. cerevisiae Strains by Supernatant LC/MS 2263



each sample against each strain’s biomarker list using the
equation below.

%Match ¼ #Peaks in Unknown matching Strain X Biomarkers

#Biomarkers in Strain X

� 100%

Samples were then classified into the strain with the highest
biomarker percent match. This classification technique correct-
ly identified the yeast strains for all 1-day, 2-day, and 7-day
samples, as shown in Fig. 6.

It was important to determine whether the biomarkers
were truly products of yeast growth and metabolism, and
not simply components of the cell culture media prior to
dehydration and packaging. This was established by
rehydrating a set of yeast samples using water instead of
glucose solution, and a very short incubation time of 1 h.
Without glucose as a source of energy, reduced metabo-
lism occurs, and the resulting supernatant chromatograms
were visually less complex (similar to SPE blank samples).
These samples show low percent matching to their strain’s
respective biomarkers, and have very low numbers of
identified peptides as compared to the 4-day samples
rehydrated with glucose solution (refer to Table 2). This
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Figure 5. PCA plot (including the first three principle components) demonstrating clear differentiation of the strains with 2- to 7-day
incubation times
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indicates that the majority of biomarkers are therefore
products of the cells.

LC-MS XICs were inspected to evaluate whether several
randomly selected biomarkers are truly unique to one strain of
yeast. It was observed in some cases that the biomarkers are
often present in other strains, but at lower relative abundances,
and therefore a lower likelihood of being in the 3000 most
abundant peaks. These types of biomarkers can be used for
classification as long as they are consistently at relatively high
abundance in one strain and not in others.

k-NN Classification

An alternative classification analysis was performed on the
pseudo-spectra using a k-nearest neighbors (k-NN) algorithm,
which is a non-parametric pattern recognition method. Peak
area normalization was performed prior to classification by
translating peak area into peak rank, from 3000 to 1. This
prevents the algorithm from over-weighting the largest peaks,
since it was observed that relative peak areas vary based on
incubation time.

Using 10-fold cross-validation, as shown in Table 3, the
analysis correctly classified all 4-day yeast samples (3

biological replicates of each strain), and these were used as
the Blibrary^. The 1-day, 2-day, and 7-day samples (one sepa-
rate preparation of each strain) were then added as separate
unknown classes, and the cross-validation was repeated. There
was one misclassification in the 1-day samples. This classifi-
cation technique may require sufficient time and metabolic
activity to achieve sufficient analyte concentrations and stable
peak profiles. The use of alternative statistical models (other
than k-NN) may also improve the accuracy of the classification
of samples in earlier stages of growth. In total, the k-NN
algorithm correctly classified 93% of the samples (14 of 15).

Figure 6. Classification by biomarker percent match was correct for all 1-day, 2-day, and 7-day samples of (a) K97, (b) S33, (c) T58,
(d) US05, and (e) WB06

Table 2. Biomarker percent match to their respective strain for samples
reconstituted without glucose, and comparison of identified peptides with and
without glucose

Sample biomarker%
match

Identified peptides–no
glucose

Identified peptides–with
glucose

K97 8 48 3179
S33 4 32 3697
T58 16 56 4140
US05 7 88 4948
WB06 8 25 2527
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Protein Identification

Peptides originating from 288 to 446 proteins were identified in
each strain supernatant after 4 days, when screened against
S. cerevisiae proteins in the UniProt database. No additional
data acquisition was needed for protein identification, since the
original LC-MS data contain DDA fragmentation, and those
MS/MS spectra were used for peptide sequencing and protein
mapping. Refer to Fig. 7 for an example spectrum. Complete
lists of peptides identified in each strain supernatant, and their
respective protein sources, are located in Supplemental
Table S2.

Interestingly, one of the proteins which was identified in 4
of the 5 strains is glyceraldehyde-3-phosphate dehydrogenase 2
(GADPH, UniProt P00358), whose peptides have been shown
to have antimicrobial properties against other species of yeast
and bacteria during wine fermentation [26]. The results from
similar future studies may provide further insight on peptides or
proteins which may be secreted by the yeast for competitive
advantage or quorum-sensing, in addition to normal metabolic
processes [27, 28].

Conclusion
A technique for identification of S. cerevisiae strains using LC-
MS by analysis of the yeast supernatant was developed involv-
ing solid phase extraction, non-targeted analysis, and data

simplification into pseudo-spectra. Two chemometric classifi-
cation techniques (k-NN and biomarker matching) were shown
here to successfully differentiate yeast strains in various stages
of growth. Since this technique can identify yeast strains with-
out disruption of the yeast cell membrane, it has potential for
use in applications where there are no remaining cells. This
technique may be valuable even if viable cells are present, due
to the fast turnaround time (since cell culturing is not required).
This technique may be more powerful than MALDI-TOFMS
to identify closely related strains due to the increased number of
detected analytes due to reduced interference and reduced ion
suppression. This technique also allows for peptide and protein
identification, without additional testing, as DDA MS/MS is
included in the initial data acquisition.

The classification method based on biomarker percent
match was shown to be slightly more accurate for the five
strains tested here (100% accuracy, versus 93% accuracy for
k-NN). However, as more yeast strains are added to databases,
it will become less likely that there will be biomarkers associ-
ated with only one strain. To deal with this, biomarkers may be
identified which are reproducibly detected in multiple strains,
rather than in just one strain. An ongoing effort would be
required to maintain an up-to-date list of biomarkers. There-
fore, a spectral-pattern method of classification, such as k-NN,
may prove to be more useful as databases grow.

It may be interesting to identify the peptide sequences of
identified biomarkers, to better understand the proteomic dif-
ferences between strains. This was not performed in this study,
as many true biomarkers are likely to contain sequence vari-
ants. The PMI software, used for peptide and protein identifi-
cation against a protein database, has a limited capacity to
identify sequence variants in large databases such as the yeast
proteome. However, de novo sequencing could be performed
using the same dataset.

The technique could potentially be adapted for mixtures of
strains. Presumably, if one strain is much more abundant than
the other, it will be classified, since only the top 3000 peaks are
considered. For equal mixtures, the biomarker classification

Table 3. k-NN classification results against 4-day library

Sample Classification (correct = Y)

1-Day 2-Day 7-Day

K97 Y Y Y
S33 Y Y Y
T58 Y Y Y
US05 N (K97) Y Y
WB06 Y Y Y

Figure 7. ExampleMS/MS spectrum used for identification of the 526.02m/z peak (+ 4 charge state, 20.4 min) observed in the K97
4-day sample
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may effectively classify the two strains with high percent match
scores for each strain. The k-NN classification would only
classify as one strain. This will be evaluated in future studies.

Additional planned studies include evaluation of this tech-
nique to classify yeast strains in more complex environments
with varied carbon and nitrogen sources, and ultimately beer
and wine. It would also be beneficial to utilize or develop a
classification tool which can incorporate the use of peak reten-
tion times. The current classification techniques described here
only utilize two variables to define the analyte profile (mono-
isotopic mass and XIC peak area). Additional utilization of
retention times would allow distinction of different peptides
with the same mass, potentially increasing the number of
biomarkers identified. It is also feasible that this technique
could be transitioned from LC-MS/MS to LC-MS for simpli-
fied analysis after libraries are established, as was previously
demonstrated for yeast extracts [29].
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