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Abstract. Mass spectrometry imaging datasets are mostly analyzed in terms of
average intensity in regions of interest. However, biological tissues have different
morphologies with several sizes, shapes, and structures. The important biological
information, contained in this highly heterogeneous cellular organization, could be
hidden by analyzing the average intensities. Finding an analytical process of mor-
phology would help to find such information, describe tissue model, and support
identification of biomarkers. This study describes an informatics approach for the
extraction and identification of mass spectrometry image features and its application
to sample analysis and modeling. For the proof of concept, two different tissue types
(healthy kidney and CT-26 xenograft tumor tissues) were imaged and analyzed. A

mouse kidneymodel and tumormodel were generated usingmorphometric – number of objects and total surface
– information. The morphometric information was used to identify m/z that have a heterogeneous distribution. It
seems to be a worthwhile pursuit as clonal heterogeneity in a tumor is of clinical relevance. This study provides a
new approach to find biomarker or support tissue classification with more information.
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Introduction

Mass spectrometry imaging (MSI) is the analysis of a
sample by mass spectrometry in order to get a molecular

mapping. This can be done using a variety of techniques [1].
Here we are interested in matrix-assisted laser desorption/
ionization MSI (MALDI MSI) in which a rasterized sampling
scheme for mass spectrum acquisition is used. For every set of
coordinates (e.g., x, y), one gets a mass spectrum. In the MSI
dataset, the coordinates and mass spectrum define a pixel if in
2D or a voxel if in 3D. Then, for each m/z value, generally
using a binning, one gets an image specific to that m/z by

considering all coordinates [2]. MSI and especially MALDI
MS imaging has improved in recent years, mainly regarding
the better spatial and spectral resolutions [3]. This makes it
attractive in a number of fields, such as Bomics^ (mainly
proteomics, metabolomics, and lipidomics) [4]. This technique
may be used to understand biological pathways involved in
different diseases and potentially support diagnostic or prog-
nostic tests. Prior to data interpretation, MSI dataset analysis
encompasses a number of analyses, including segmentation
[5], classification [6], colocalization [7], quantitation [8], dif-
ferential analysis [9], distribution in regions [10], heterogeneity
[11], and molecular presence [12]. One of the strength of MSI
is its potential for virtual microdissection [13], which allows
the local analysis of biomolecules. However, users generally
fall back to the average intensity for sample characterization
and biomarker discovery. Thus, some low abundance or highly
local molecules may depict the disease state, but could be hard
to detect and identify as a marker of a specific state.
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Morphological analyses have been used in histopathology
[14], which is crucial for diagnostic and therapeutic decisions
in many disease states. Semi-automated or fully automated
methods can be used for morphometric analyses. Some staining
implementations, such as immunostainings, allow the detailed
morphometric analysis based on spatial relations [15].

To illustrate the point about localized molecules and learn
from histopathology, the differential analysis of sample groups
(e.g., disease versus control samples) has been considered for
identifying biomarkers of interest. Theoretical cases where
sample discrimination or markers of interest identification for
a m/z image cannot be done by only evaluating the average
intensity in a region have been recognized. The average inten-
sity was held to be the same in both regions so another criterion
to differentiate the two groups is needed. In Figure 1a, the case
where a sample presents the same concentration of a targeted
molecule with either a hotspot versus the case where multiple
lower intensity hotspots are present is considered. In Figure 1b,
the case where a sample presents a hotspot versus a bigger but
lower intensity hotspot is present is considered. Three different
cases were then considered where the intensity had the same
dispersion in addition to the same central tendency. In
Figure 1c, a small number of hotspots are distributed either
throughout the tissue or preferentially in part of it. In Figure 1d,

there is only one hotspot but it is either isotropic or not. In
Figure 1e, the same number of isotropic hotspots with the same
total and average surface are present but the hotspots have
different individual surface.

The proposal of this study is to compute morphometric
parameters using morphological image processing. The analy-
sis of a binarized (segmented into background and foreground
pixels, corresponding to black and white) molecular image
would be able to discriminate the two groups. Measurements
such as the number of objects (non-background connected
groups of pixels) or those objects’ average or total surface
would differ. To consider that two non-background pixels are
connected, we can use 4-connexity: a pixel can be connected
either vertically or horizontally to another one but not diago-
nally. To compute the surface of a binarized image in pixels,
the number of foreground pixels was used. To compute the
number of objects, one moved across all pixels in the image,
then if the current position is a foreground pixel, it has been set
and all the foreground pixels connected to it (with 4-connexity)
to the background value. The number of objects is equal to the
number of times objects were set to the background value. In
order to obtain binarized imaged, a global threshold can be
applied using Otsu’s method. Otsu’s method automatically
determines the best threshold as the one that minimizes the

Figure 1. Theoretical cases within which sample discrimination or markers identification cannot be done by only evaluating the
regional average intensities. (a) Case where a sample presents the same concentration of a targeted molecule with either a hotspot
versus the case where multiple lower intensity hotspots are present and suggestion using the number of objects or the total number
of objects to discriminate the two samples. (b) Case where a sample presents a hotspot versus a bigger but lower intensity hotspot
and suggestion to use the average surface of objects or the maximum radius of opening of a granulometry, a virtual sieve to
discriminate the two samples. (c)Casewhere a small number of hotspots are distributed either throughout the tissue or preferentially
in part of it and suggestion to use the dispersion of object’s geometrical center. (d) Case where there is only one hotspot but it is
either isotropic or not and suggestion to use a graphmatching approach or the aspect ratio to discriminate the two samples. (e)Case
where the number of hotspots is the same as the total and average surface but with different individual surface and suggestion to use
the surface IQR to distinguish the two samples
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intra-class variance, which is the same as maximizing inter-
class variance – the idea being that there are two kinds of
pixels, foreground and background pixels, following different
unimodal distributions. In more details, Otsu’s method for
image thresholding is an exhaustive search for the threshold
valueminimizing the sum of weighted intraclass variability; the
weight being the probability of being in that class and the
intraclass variability being the variance of the values assigned
to that class. It is known to give imperfect results when an
image does not have a bimodal histogram yet has been found
effective in binarizing real world images [16].

For Figure 1a, the number of object or the total surface
would separate the two cases. For Figure 1b, the average
surface of an object would work but it would also be possible
to calculate a granulometry [17] on each non-binarized image
to distinguish them. A granulometry determines the size distri-
bution of objects using a series of morphological opening
operations, a kind of virtual sieving. As such, a granulometry
does not require defining the segmentation prior processing. In
the case of Figure 1c, the mean and standard deviation of the
objects’ geometrical center can be used. This allows expressing
the positions in real world units. For Figure 1d, a graph
matching between the object’s skeleton and standard patterns
(e.g., if one has a set of shapes to recognize) or more simply the
aspect ratio (e.g., if one is measuring a deformation) would
separate the two cases. Finally, for Figure 1e, the interquartile
range (IQR) measures the dispersion of the object surfaces.

While intensities can solve some problems, for instance by
considering their standard deviations, the same situation can
arise with dispersion. Another class of features that might have
helped to solve the situation is textural features. Textural fea-
tures are features containing information about the spatial
distribution of tones (e.g., coarseness, contrast). For instance,
grey level co-occurrence matrices describe the co-occurrence
of values over the image for some offset and are useful for the
computation of textural features, for example by computing a
global contrast. However, in spite of interesting results, and at
least since Robert M. Haralick defined a set of features that are
eponymously named [18], the pathophysiologic interpretation
of textural features is still unclear [19].

For these reasons, we propose to include image analysis in
the workflow of MSI datasets investigation. In this study, an
additional analysis of MSI datasets using m/z images is per-
formed. That step uses the MSI for further treatment and/or
measurement. Figure 2 summarizes the evolution suggested. It
shows how this step happens after having chosen the regions of
interest. However, this is a simplification as the region selection
can be refined during the image processing and analysis (e.g.,
using active contours [20]). Moreover, processing the image
without extracting new parameters may help improve the final
model (e.g., by applying a median filter to reduce the salt-and-
pepper noise that could bias a mean).

First, this workflow is applied to generate models on a
healthy kidney and CT-26 xenograft tumor model. The murine
CT-26 model is a mouse colon carcinoma line [21], resulting in
a rapidly growing grade IV carcinoma that is easily implanted

and readily metastasizes. The CT-26 colon carcinoma is one of
the most commonly used cell lines in drug development for
developing and testing immunotherapeutic concepts, for in-
stance when investigating biomarkers in colon malignancy.
Second, the intelligibility of the measures is used for the
selection of m/z presenting a heterogeneous distribution in the
tumor tissue.

Experimental
Chemicals and Reagents

All chemicals, including 1,5-diaminonaphtalene (1,5-DAN), 9-
aminoacridine (9-AA), acetonitrile (ACN), methanol, LC-MS
water, and trifluoroacetic acid (TFA) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Indium-tin-oxide
(ITO) coated glass slides were purchased from Bruker
Daltonics (Bremen, Germany).

Sample Collection and Tissue Preparation

BALB/c mice were inoculated subcutaneously with 1000 CT-
26 cells. CT-26 is an N-nitroso-N-methylurethane-(NNMU)
induced, undifferentiated colon carcinoma cell line. After tu-
mor growth, mice were sacrificed by cervical dislocation and
organs (kidney) and transplanted tumor were dissected, extract-
ed, and snap frozen in liquid nitrogen for 15 s. The samples

Figure 2. Comparison of the proposed MSI workflow with the
standard one. (a) Displays the addition of an MSI image pro-
cessing and analysis step that is not present in (b) the standard
one. The dataset spectrum treatment step potentially includes
spatial information (e.g., PCA) and region of interest determina-
tion (e.g., entire slide, visually, using segmentation or multivar-
iate techniques). The MSI image processing and analysis is
placed after spectrum treatment step because they generally
are higher-order treatment (e.g., median filter) but some of them
might be done before or between dataset spectrum treatments
(e.g., region selection)
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were kept at –80 °C until use. Sagittal tissue sections of 10 μm
were obtained using a cryostat microtome (CM-3050S; Leica
Biosystems, Weitzlar, Germany) with a microtome chamber
and a specimen holder chilled at –17 °C. The slices were thaw
mounted onto ITO coated slides for downstream MALDI
imaging.

All animal experiments were compliant with the 2010/63/
UE European Directive on Laboratory Animal Welfare and
were approved by an Ethical Committee (Animal Welfare
Body from the BUC CMMI Animal Facility in Gosselies,
Belgium. Animal Welfare Body Agreement number: LA
15005-18, Research Project Agreement number: BUC 2016-
02, and BUC 2015-05).

For MALDI MSI of lipids and metabolites on kidney and
tumor sections, a uniform layer of 1,5-DANmatrix (10 mg/mL
with 50/50 ACN/H2O 0.1% TFA) and 9-AA matrix (10 mg/
mL prepared in 70% MeOH) were deposited using the subli-
mation procedure and the SunCollect device (SunChrom
GmbH, Friedrichsdorf, Germany, one layer at 10 μL/min, one
layer at 20 μL/min, and three layers at 35 μL/min),
respectively.

MALDI-FTICR Imaging

MALDIMSI of lipids and metabolites was performed using a 7
T MALDI FT-ICR (SolariX, Bruker Daltonics, Bremen, Ger-
many) with a SmartBeam II laser. MSI data were recorded in
positive ion mode (kidney sagittal tissue section, 1,5-DAN,m/z
range 100–1000 at 20 μm of spatial resolution with an on-line
calibration) and negative ion mode (tumor tissue, 9-AAmatrix,
m/z range 50–1000 at 70 μm pixel size with an on-line calibra-
tion). The online calibration was a shift automatically applied
by the instrument to the m/z axis to align the main matrix peak
(y2 = y1 + s, 1,5-DAN: 159.091675, 9-AA: 193.07712, min-
imum intensity: 1 × 105, maximum distance: 30 ppm).

Data acquisition, processing, and data visualization were
performed using the Flex software suite (ftmsControl 2.1.0,
FlexImaging 4.1, and DataAnalysis 4.2) fromBruker Daltonics
and Multimaging 1.1 (ImaBiotech SAS, France). MSI data
were acquired from each tissue section as well as matrix control
areas adjacent to the tissue sections to check for analyte dis-
persion during sample preparation.

Histological Staining and Digital Scan Image

Adjacent slices were obtained at the same time and stained with
hematoxylin and eosin (H&E) solution. High-resolution histo-
logical images were then recorded using a digital slide scanner
(3D Histech Pannoramic).

Data Processing Workflow

Analyseswere done using custompython scripts. Plotsweremade
with matplotlib [22]/seaborn (DOI:10.5281/zenodo.54844). For
marker identification, the METLIN [23] database has been used
with the following parameters: 3 ppm of mass accuracy, negative
mode, and with the adducts [M–H]-, [M–H2O–H]

–, and [M+Cl]–.

Kidney The 1000 most intense apexes of the mean spectrum of
the acquisition were used to generate peaks with a tolerance of 10
ppm. The 10 ppm binning was done because peaks at higher m/z
are wider. The choice of 1000 peaks was motivated by the length
of the list of proposed peaks in DataAnalysis (962 m/z intervals)
rounded to the nearest hundred. The simpler apex method was
used to ensure some peaks that were visually identified were
taken. As a visual inspection of the spectrum showed peaks had
a close to Gaussian shape, the apex was considered sufficiently
accurate (the centroid or an interpolating cubic spline’s maximum
were considered). For each peak, a linear greyscale gradient with
256 levels after application of a threshold of 1 × 106 arb.unit was
created. This allowed the generation of images from the spot’s
values for visualization and validation of the processing. Masks
(bit patterns arranged in the form of two level images that are used
to extract information from specific zones in the original set of
molecular images) for the pelvis, medulla, and cortex were gen-
erated on the basis of contrast ions (m/z having a discrete distri-
bution that highlight an underlying histological region). The re-
gions were confirmed by co-registration to the H&E stained slice.

After binarization by Otsu’s method (determination of the
threshold separating the dataset in two while minimizing the
intra-class variance), objects having a surface less than 4 pixels
(1600 square micrometers) were deleted. The masks were then
used to isolate each region before measure. Finally, the regions’
measurements were compared after normalization by their total
surface.

Tumor The 200 most intense apexes of the mean spectrum of
the acquisition were used to generate peaks with a tolerance of
10 ppm. As noise images were present with the first 1000
apexes, the number of apexes considered were reduced to
200. This reduction limits the amount of noise used as input
during model construction. The value of each position was
exported. Then a low threshold of 1 × 106 arb. unit was applied.
Masks for the necrosis and proliferation regions were generated
on the basis of contrast ions. These masks were used to isolate
each region before binarization by Otsu’s method. After bina-
rization, objects having a surface less than 4 pixels (19 600
square μm) were deleted prior to measurements.

Results and Discussion
Kidney

As a proof of concept, a description of the molecular morpho-
metric information of a control kidney section was performed
and the obtained information was analyzed. In order to extract
image features of each m/z value of the kidney, MSI was
performed followed by data processing. First, the peak picking
method was applied. The mean spectrum’s slope was used to
list maxima and their values. The 1000 highest ones with a
tolerance of 10 ppm were then kept.
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MS image treatment started with a low threshold at 1 × 106

arb. unit to eliminate most noise (visually determined by mean
spectrum inspection). It was followed by a projection to a
displayable format (256 grey level images) for ease of visual
validation and to decrease the number of noise images.

The entire image was then binarized using Otsu’s method. A
first treatment of those binarized images consisted in deleting the
objects having a surface less than 4 pixels (1600 μm2). This was
done because even after the 1 × 106 arb. unit threshold, some noise
was still present. The imaging technique is known to cause
hotspots [24]; the 4 pixels threshold was used to delete those
artefactual objects that would have biased the analysis. Visual
inspection of a random sample of binarized images showed that
this high intensity noise was unlikely to occur in more than three
sequentially connected positions and, due to the image spatial
resolution, objects were not made of less than 4 pixels. Based
on contrast ions/histology, masks were then applied to the pelvis,
medulla, and cortical regions, Figure 3a. As the tissue was hetero-
geneous, the m/z behavior in these substructures was expected to
differ somewhat, which was seen as of interest.

Out of the 1000 initial images, 782 were kept as they held
variability (pixels in both foreground and background) at the
chosen thresholds (intensity, minimal surface). The number of
objects and the total surface were computed for the three
regions associated with each molecular image. As shown in
Figure 3a, a sagittal section was used where the pelvis had the
smallest surface followed by the cortex. The number of objects
was compiled with the total surface for each m/z image that
held information in Figure 3b. Pelvis, medulla, and cortex
images had an average surface of 167.34 pixels (SD: 394.55),
1148.45 pixels (SD: 2 513.92), and 440.91 pixels (SD: 1
139.48), and an average number of objects of 4.21 (SD: 9.1),
35.82 (SD: 62.45), and 21.93 (SD: 40.51) in their respective
regions.

The image surfaces normalized by the total area in
pixels (respectively 1905, 16 278 and 11 126 for the
pelvis, medulla, and cortex) were used to check our initial
assumption that the regions had different values. The
normalization was done to make the measurements of
regions of different sizes comparable. The 2-tailed
Welch’s t-test with Bonferroni correction were used for
multiple comparisons. We failed to find evidence for
differences in the mean number of objects between the
three regions or in mean surface between medulla and
pelvis. However, significant differences in surfaces were
found between the medulla and the cortex (n = 782, t =
4.66, p < 1 × 10–3) and between the pelvis and the cortex
(n = 782, t = 5.83, p < 1 × 10–3).

In order to check that the workflow produced the expected
kind of results, it was verified that a positive correlation be-
tween the maximum number of objects and the maximum
surface does exist in the three regions (r > 0.999, p < 0.05). A
high region surface is easily split in a high number of objects. In
Figure 3b, at the lower left end, there were very few objects and
those objects were small. Such images corresponded to a single
hotspot. Then as the number of objects increased, even if they

had the same individual surface, the cumulated surface in-
creased. Finally, as the objects merged, the number of objects
diminished again while the surface increased until there was
only one spot covering almost the entire image. Supplementary
Figure SI1 zooms in the pelvis points and four m/z images are
shown to help understand how the axes interact.

Of course, the number of objects and the objects’ surface
only give a high-level view of each m/z image and not the
whole morphology. But even with these simple measurements,
it is possible to go further such as by estimating the probability
density function (pdf) of the objects’ surface. Figure 4a shows
the violin plots of the objects’ surface in the medulla region for
two images having a close surface value but a different number
of objects in this region. The two object surface distributions
seem to differ. Visual inspection of the distributions in
Figure 4b confirms it. The pdf can be the basis of other studies
using, for instance, the two sample Kolmogorov-Smirnov test
to check the hypothesis that two images have the same under-
lying distribution of object size.

Overall, this method enables the creation of the basis for a
model: using a kidney, it allows one to describe peaks in terms
of intensity, surface and number of objects in three sub-regions
of sagittal kidney sections. Next would be the analysis of more
slices representing the same part of the kidney in different
samples to assess variability.

Tumor

The tumor was a xenograft initially composed of a few colon
carcinoma CT-26 cells, which were allowed to grow, then
harvested. Potential markers of heterogeneity have been inves-
tigated in necrosis and proliferative regions.

A morphological workflow was applied for a tumor section
similar to the one used for the kidney section. This was done
because heterogeneously distributed molecules in the tumor
microenvironment are of high interest to clinicians [25]. The
morphological analysis of each m/z value may help identify
those heterogeneously distributed molecules by their m/z
images.

In the tumor sample case, the kidney procedure was follow-
ed albeit with a few differences. The number of peaks consid-
ered was reduced in order to input less noise during model
generation. The masks mainly represented the proliferative and
necrosis regions. The masks were applied before Otsu’s meth-
od. These masks allowed the analysis of each region to give a
more robust description of the distribution for both, as each was
based on the region’s intensities/features with less influence
from the other. In other words, a noise threshold that could be
different between the regions was determined. The intensity set
was not reduced to 256 values but kept as it is (thousands of
unique values). Not grouping values allows a better calculation
of the variances. Otsu’s method was applied to the non-null
values in order to only use the acquired values we deem not to
be noise. Only true heterogeneity, not the random noise’s
heterogeneity, was of interest. We computed the surface and
the number of objects for both regions as they were tumor. This

G. P. de Muller et al.: Morphological Analysis of Molecular Images 2639



led to obtaining the basis of a model combining the number of
object and surface information in the two regions.

As a starting point, measures of the central tendencies and
dispersions of the surface and the number of objects for this
tumor were computed. The 200m/z ions had an average surface
of 339.685 pixels out of 3941 or 8.62% of coverage (SD:
457.87 pixels, 11.6%) and 816.125 pixels out of 6426 or
12.7% of coverage (SD: 924.08 pixels, 14.38%) in the necrosis
and proliferative region, respectively. They had an average
number of objects of 14.88 (SD: 16.51) and 22.845 (SD:
19.41) in the necrosis and proliferative region, respectively.
In other words, the average image has around 10% coverage in
each region with 15 objects in the necrosis region and 23
objects in the proliferative region. As the surface and the
number of objects are natural numbers, we can say that the
variability mostly came from images having higher than

average values for these parameters. Beyond the general de-
scription of the pattern, working on individual m/z ions is also
possible and classes could be determined on the basis of
morphometric parameters (e.g., heterogeneousm/z). Moreover,
this approach could be used to identify which molecules
change between conditions.

Looking for heterogeneous m/z, the sum of the standard
score from each region was analyzed. This allowed taking
into account both regions of the tumor equally. Peaks tended
to have a surface proportional to the number of objects, and
values were almost evenly distributed along the m/z axis.
This gave an opportunity to discover a lower number of
detected peaks between m/z 500 and 600 compared with
the rest of the axis. The m/z axis did not appear to be relevant
for heterogeneity analysis as any molecule may be of inter-
est. Both those that had a small or a high surface were

(a)

(b)

Figure 3. Overview of the kidney dataset with the three histological regions and the m/z associated to regions number of objects
and surfacemeasurements. (a)Adjacent H&E stained kidney section used for the creation ofmaskswith the pelvis region in blue, the
medulla region in red, and the cortex region in black, and (b) scatterplot of them/z images along the total surface and the number of
objects in the associated region. The region’sm/z occupy roughly a negative parabola. The lower left parts are images having a few
small hotspots. The middle part with varying number of object exemplifies how a surface measurement can be reached with few
objects of relatively high surface or more objects of a smaller surface. The lower right parts are images having few but large objects
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excluded. Both empty (black) and full (white) images are homo-
geneous. Furthermore, the objective was to have a number of
objects not too far from the mean. Otherwise we might have taken
either single hotspots or cases where the number of objects was so
high that their distribution over the image was homogeneous. We
formalized this description as saying that points having a sum of
standard score for the two regions between 1 and 3 for the surface

and –1 and 1 for the number of objects were potentially heteroge-
neous m/z. With these criteria, five heterogeneous m/z in the
scatterplot of the sum of the standard scores for both regions were
selected (m/z 186.0456, m/z 268.8005, m/z 295.0264, m/z
391.2259, m/z 417.2419).

After interrogation of an open-source metabolomics data-
base with a 3 ppm tolerance (METLIN, https://metlin.scripps.

0 %

100 % 100 %

0 %

(a)

(b)

Figure 4. Example of distribution differences between two m/z of similar surfaces but different number of objects for the medulla
region. (a)Violin plots estimating the probability density function of object’s surface (Gaussian kernel, extrema indicated by bars) and
indications about the number of objects and total surfacemeasured (fold change close to 1 for the surface, fold change ofmore than
5 for the number of objects) for m/z 760.596 and m/z 258.1096, and (b) the molecular images associated to the same m/z 760.596
andm/z 258.1096 having very different distributions
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edu/), m/z 186.0456, m/z 268.8005 and m/z 295.0264 did not
give relevant hits while m/z 391.2259 and m/z 417.2419 were
putatively identified as 3-oxochola-1,4,6-trien-24-oic acid and
arachidonoyl-1-thio-glycerol lipids, respectively, (multiple
possible identification at the specified measure error).

The m/z 186.0496 had the highest surface for the lowest
number of objects of the five, which would facilitate visual
validation [intensity: 1688 772 (SD: 734,593), intensity in the
proliferative region: 1,378,544 (SD: 645,402), intensity in the
necrosis area: 1,926,854 (SD: 675,343)]. It was validated as

Figure 5. Visual of the key steps leading to the selection of heterogeneously distributedm/z. (a) H&E staining of a slice adjacent to
the one used for imaging with the two regions of interest identified, (b) 3D scatterplot of the sum of the standardized surface and
number of objects for each m/z, the points (m/z) appear regularly spaced on the m/z axis, a point of interest for its low number of
objects but high surface (heterogeneousm/z) is shown in red, (c) 2D scatterplot of the sum of the standardized surface and number
of objects for each m/z, a point of interest for its low number of objects but high surface (heterogeneous m/z) is shown in red, (d)
molecular image of the previously selected point of interest (heterogeneous)m/z 186.0496 showing a high surface with few objects

Figure 6. Images associated with the heterogeneously distributed m/z. Molecular images that show the heterogeneity are
presented (top) along with the two associated binarized images (bottom) highlighting both necrosis and proliferative areas

2642 G. P. de Muller et al.: Morphological Analysis of Molecular Images

https://metlin.scripps.edu


peak by opening the mean image spectrum in DataAnalysis
(SNR: 8215.2, automatically detected). Figure 5a shows an
H&E stained section adjacent to the imaged one and.
Figure 5b shows the distribution of the data points in the 3D
space based on the scores for surface and number of objects and
m/z. Figure 5c is the projection of the 3D data points along the
surface score and number of objects score axes. Figure 5d is the
image associated with them/z 186.0486. It can be observed that
it is heterogeneously distributed in both regions, mostly present
in the upper part of the necrosis region and in the upper right
part of the proliferation region. So, using this approach, a
potentially interesting m/z that may help to characterize an
intra-tumor heterogeneity pattern inside the necrosis and pro-
liferative regions rather than between them was found.

The five MS images fulfilling the criteria are presented
along with the two associated binarized images in Figure 6. It
can be observed that for the necrosis area, m/z 186.0456 and
m/z 268.8005 were similarly anti-localized compared with m/z
295.0264, m/z 391.2259, and m/z 417.2419. The proliferation
region of m/z 186.0456 is highlighted in the top right corner as
the most intense part of the image. The proliferation region of
m/z 268.8005 seemed to indicate a region close to the necrosis
area. The proliferation region of m/z 295.0264 was very wide-
spread but with separated parts and lacked the rightmost part
that was visible in the image ofm/z 417.2419. The proliferation
regions of m/z 391.2259 and m/z 417.2419 were very similar.

It can be imagined that the histological localization of this
ion of interest and even others could translate one of the
tumoral heterogeneity features. This intra-tumoral modeling
of proliferation and necrosis extent would certainly be impor-
tant to understand both the natural history of neoplasms and the
selection of test samples for reliable analysis during diagnosis,
prognosis, and monitoring treatment response. A concrete ex-
ample of application of morphological analysis would be mon-
itoring the evolution of the presence of marker compounds in
cancerous tissues from patients before and after therapy. The
action of an anticancer treatment might influence the repartition
of compounds in tumors, depending on the variety of different
cancer cell clones within the tumor. Some morphometric pa-
rameters could then stand as markers of drug action.

Workflow Considerations

In the kidney and tumor cases, the principal limitation identi-
fied was the use of the global Otsu’s method for pixel assigna-
tion to background or foreground. Its assumption of a bimodal
histogram over the entire image was not always met. Other
segmentation methods may be of interest as they generate
labeled images that can be analyzed as objects of different
natures rather than groupings of positions per similarity. Alter-
natives to the global Otsu’s method for object detection deserve
consideration for future applications. For instance, applying the
local (that will identify local in addition to global hotspots) and/
or multilevel (that may identify the distribution of interest if
there are more than two underlying object classes) version of
Otsu’s method or balanced histogram thresholding might be

useful. A completely different method such as those based on
watersheds or active contours may be of interest when thresh-
olds need more adaptation to local conditions than is provided
by the local versions of Otsu’s method or balanced histogram
thresholding. Even with these limitations, tissue classification
and biomarker detection could benefit from this approach.

The peak picking method was very simple but prone to false
positives (particularly in the case of peaks with shoulders), and
some peaks might overlap. Less than 2.5% of the peak over-
lapped and around 1% of the peak’s overlap included another
apex.

The threshold of 1 × 106 arb. unit was chosen on the
basis of a visual examination of the datasets. It was used
to quickly denoise images. However, not all images were
affected the same way. Image peaking techniques with a
local binarization method seem to be a good alternative
to this thresholding. Histograms and binarized images
were examined with or without this threshold. This
thresholding had a limited impact on the threshold deter-
mined by Otsu’s method. This is because the threshold
only suppressed the lower end of the noise. As there was
still noise and signal, Otsu’s method gives a similar
result.

The minimum surface was chosen primarily because
of the observed noise. Some MS processing could have
helped reduce or eliminate the need for this surface
threshold by reducing the amount and the intensity of
the noise. First among them, normalization could have
reduced some of the analytical variability. However, in
the kidney case, spectrum normalization was not feasible
as supposedly some measurements will stay the same in
different anatomical structures, which was considered a
priori wrong. For instance, the TIC normalization relies
on the total ion count (approximately the chemical infor-
mation) being similar and the RMS normalization relies
on the signals of high intensity being similar. In the
tumor case, the surface threshold developed for the kid-
ney case was considered to be a good enough alternative
to normalization for this application. As we were inter-
ested in many molecules, an internal standard approach
was not feasible.

The simple descriptive models generated were meant to
give a summary of the sample across multiple molecules.
Minute changes in only one molecule may not be detected with
such summaries. However, limited changes along many mole-
cules may be detected that way.

As the goal is to make a model, reproducibility must be
mentioned. Reproducibility issues arise due to bioanalytical
variability. The bioanalytical variability is expected to create
some variability in the morphological MSI analysis. The bio-
logical variability is expected to be the main source of variabil-
ity. The analytical variability is expected to change only a few
pixels in the binarized image as its impact relates more to single
pixel hotspots and intensities than to separatability. However,
the bioanalytical variability has not been assayed and needs to
be investigated in the near future.
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Conclusion
In this study, an additional analysis for the investigation
of MSI datasets with a focus on the molecular images’
features was presented. Interestingly, the morphological
analysis has the advantage of being quantitative. The
extracted information can be used in many contexts,
including image peaking, classification, or differential
analysis. This was applied to two proof-of-concept stud-
ies: kidney and tumor description and intratumoral het-
erogeneity detection. The former showed that one could
differentiate regions on the basis of the ion distributions.
The latter is of particular interest as tumor heterogeneity
is linked to survival and thus some prognosis tool might
be created with the described workflow. Moreover, de-
scribing intratumoral heterogeneity has been difficult
using histopathology, and this approach could comple-
ment it.

An approach based on the molecular image’s features was
used to generate a model that integrates intensity, number of
objects, and average surface per object for eachm/z value. This
workflow was implemented in a semi-automatic manner. This
was used to describe a mouse kidney and tumor and to identify
some m/z of interest. The extension of this approach to the
comparison of individual m/z images was demonstrated in this
study.

The focus of this study was on the first two cases presented
in Figure 1. However, the proposed approach can be applied to
all cases presented in Figure 1. Some particularly interesting
parameters would be those allowing the automatic determina-
tion of whether a m/z follows a central or a peripheral distribu-
tion (e.g., for drug penetration in tumor), the average distance
between objects (e.g., for glomerulonephritis diagnosis), and
looking for specific shapes (e.g., astrocyte counting). The
shape of the image could also be described to detect, for
instance, epithelium presence in tissues.

Currently, no publicly available dedicated MSI software
offers this kind of analysis out of the box. Some MSI software
having segmentation workflows that give the classes’ cardinal-
ities (the number of spots in a class, i.e., disjointed region of
interest) and more allow the export of a region of interest’s
spectra. Both would relate to the total surface of that region/
class. It would benefit the community to validate this method
by comparing its results to those of some targeted molecular
staining.

The current workflow allows a higher extraction level of
information from MSI datasets than what is currently done.
This workflow can be used to complement most analyses. This
information is quantitative and can be used to define pathology
profiles with multiple parameters in order to, for example,
define models of different tumor grades or tumor progression
for diagnostics or prognostics purposes. Moreover, this
workflow should be usable in processing and be applicable to
other MSI techniques such as secondary ion mass spectrometry
or inductively coupled plasma mass spectrometry, and in 3D
(with an adjusted connexity) as well as 2D.
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