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Abstract. In the present work we present an investigation of the negative ion-
molecule chemistry of the anaesthetics isoflurane, ISOF, and enflurane, ENF, in an
ion mobility spectrometry/mass spectrometry (IMS/MS), in both air and nitrogen.
Hexachloroethane (HCE) was introduced in both air and nitrogen to produce CI™ as
a reactant ion. This study was undertaken owing to uncertainties in the chemical
processes, which lead to the cluster ions reported in other work (Eiceman et al. Anal.
Chem. 61, 1093-1099, 1). In particular for ISOF the product ion observed was
ISOF.CI", and it was suggested that the CI” was formed by dissociative electron
attachment (DEA) although there was mention of a chlorine containing contaminant.

We show in this study that ISOF and ENF do not produce CI” in an IMS system either
by capture of free electrons or reaction with O,™. This demonstrates that the CI™ containing ions, reported in the
earlier study, must have been the result of a chlorine containing contaminant as suggested. The failure of ISOF
and ENF to undergo DEA was initially surprising given the high calculated electron affinities, but further
calculations showed that this was a result of the large positive vertical attachment energies (VAEs). This
experimental work has been supported by electronic structure calculations at the B3LYP level, and is consistent
with those obtained in a crossed electron-molecular beam two sector field mass spectrometer. An unusual
observation is that the monomer complexes of ISOF and ENF with O, are relatively unstable compared with the

dimer complexes.
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Introduction

Isoﬂurane (ISOF) and enflurane (ENF) are volatile haloge-
nated ethers that are used as anaesthetics in human medicine,
although their use is starting to decline and being replaced with
sevoflurane. The use of ion mobility spectrometry/mass spec-
trometry (IMS/MS) to detect and monitor ISOF,
CF;CHCIOCHF,, and ENF, CHF,OCF,CHFCI has been re-
ported previously [1], and a device designed for that purpose
has been patented [2]. ISOF has also been proposed as a
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chemical standard for calibrating IMS systems [3]. Cluster ions
such as ISOF.CI" and ENF.O, were reported and it was
suggested that the CI” was formed by dissociative electron
attachment (DEA), although there was mention of a chlorine
containing contaminant [1]. In this paper, we report a reinves-
tigation of this earlier work to clarify the ion chemistry in-
volved in an IMS system. As will be seen, no CI™ containing
ions were observed in either air or nitrogen with ISOF and
ENF. Hexachloroethane (HCE) was therefore introduced to
produce CI ions in an attempt to replicate the earlier work.
HCE has been used as a dopant in IMS for the detection of
explosives [4-8]; its chemistry, however, has not been studied
in depth, so a secondary aim of this present paper is a report of

the results of our study of HCE.
The experimental work presented here has been supported

by electronic structure calculations using the B3LYP functional
and the 6-31 + G(d,p) basis set.
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Experimental

lon Mobility Spectrometry-Mass Spectrometry
(IMS/MS)

IMS is a gas-phase analytical instrument used to temporally
separate reactant and product ions in a drift tube according to their
mobility [9]. The IMS/MS system used in this study has been
described elsewhere [10—14]. In brief, the instrument consists of
two drift tube regions, each 10 cm in length. The first, the reaction
region containing a cylindrical radioactive ion source (nominal
10 mCi ®Ni foil), is physically separated from the second region,
the drift region, by a Bradbury-Nielson (B-N) gate. A forward
flow of the buffer gas flows through the radioactive source and
into the glass jacket towards the B-N grid, and in this forward flow
the analyte to be investigated is introduced. A contraflow of the
same buffer gas is introduced through apertures near to a Faraday
plate (FP). Typical forward and contraflows are 0.4 L min ' and
0.8 L min' (at slightly above the ambient atmospheric pressure
and room temperature), respectively. These flows are controlled
by mass flow controllers (Alicat, £1% accuracy). The two flows
are vented out of the drift tube through holes in the B-N ring. The
drift tube’s pressure is measured with a strain gauge absolute
pressure sensor (Edwards, model ASG 2000). A thermocouple
is used to monitor the temperature of the buffer gas near to the
exhaust region. The temperature of the drift tube is electronically
controlled at a constant temperature of 30 £ 1 °C to avoid the need
to compensate for changes in ambient temperature. An electric
field along the axis of the drift tube is set at 200 V-cm ' by
applying a suitable voltage gradient across the whole of the drift
tube.

The FP is protected by a screen grid to shield it from the
electric field produced by the oncoming ion swarm. At the center
of the FP there is a 0.07 mm pinhole, separating the IMS from the
lower pressure quadrupole mass spectrometer region. The product
ions are separated according to their m/z values using quadrupole
mass filter and detected using a secondary electron multiplier. For
this identification of the m/z values, the B-N grid in the drift tube
is kept open in order to maximize ion signal intensity.

To obtain ion mobility spectra, the B-N gate is used to pulse
reactant and product ions generated in the reaction region into the
drift region at a frequency of 25 Hz and a pulse width of 600 s
(600 ps was necessary because at shorter pulse widths the ion
signals associated with isoflurane and enflurane were significantly
weaker, presumably owing to the transit times of the product ions

Table 1. Dependence of EA and VAE in kJ'mol ' upon Basis Set Using the
B3LYP Functional at 298 K. In the VAE Column the Figures in Parentheses are
the Number of Imaginary Frequencies Observed

Basis set EA kJ'mol ! VAE kJmol !
6-31+G(d,p) 170 +60 (4)
6-31++G(d,p) 170 +39 (3)
6-31+G(3df,2p) 154 +60 (3)
6-31++G(3df,2p) 154 +45 (1)

6-31 +G(2d,2p) 161 +62 (3)
6-311++G(3df,2p) 156 +45 (1)
6-31G(d,p) 109 +182 (3)

ENF (a)
Figure 1. Structure of two possible negative ENF ions obtain-
ed from DFT calculations

ENF(b)

through the B-N grid). Mobility spectra were acquired by means
of intentionaly written software using Labview [14]. Total ion
mobility spectra were acquired using the FP. Tuned ion mobility
spectra were obtained by sampling ions through the FP and then
allowing a specific m/z through the mass filter. The tuned ion
mobility spectra were used to verify contributions of product ions
to the individual peaks in the total ion mobility spectra.

Procedures and Chemicals

Isoflurane and hexachloroethane were purchased from Sigma
Aldrich (UK), both with stated purities of 99%. Enflurane was
purchased from Fluorchem Ltd. (UK) with a stated purity of 97%.
All chemicals were used without further purification. At room
temperature isoflurane and enflurane are liquids and hexachloro-
ethane is a white granulated solid. For the liquid samples, typically
50 pL were spotted onto cotton placed inside a glass syringe
(Weber Scientific, UK), which was inserted through a septum into
the forward flow. A syringe driver (Cole Palmer 74900 series; IL,
USA) was used to introduce the compound into the forward flow
at a constant rate. For hexachloroethane, a few mg were deposited
into a glass vial sealed with a PTFE septum (Thames Restek,
Bellefonte, PA, USA) through which the forward gas flowed.
Zero air grade and pure nitrogen (oxygen free and 99.998%
minimum nitrogen) carrier gases used for this experiment were
purchased from BOC Gases (UK). Prior to entering the reaction
region, all carrier gases were passed through moisture and hydro-
carbon traps (Supelco 23991 and Agilent BHT-4, respectively).

DFT Calculations

These were conducted using Gaussian09W and GaussView05
for Windows [15]. All calculations used the B3LYP hybrid
functional and (unless stated otherwise) the 6-31 + G(d,p) basis

Table 2. AHs and AGs for the Possible Reactions of ISOF in Air. DFT
Calculations Were Performed Using the B3LYP Functional and the 6-31+G
(d,p) Basis Set

Reactants Tonic products AHaog kJ'mol™"  AGoeg kI'mol™
ISOF +e ISOF -170 —-183
CHF,OCHCF;+CI”  -65 -106
ISOF + O, ISOF +0, -110 —124
ISOF .0, —146 111
ISOF .0, +ISOF ISOF, .0, -92 =51
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Figure 2.
ISOF concentrations (b) lower and (c) higher

set. We have found this combination to give fair agreement
with published values of the adiabatic electron affinities of
species such as Cl and O, and 1,3,5-trinitrobenzene and reac-
tions such as OH™ with H" and CI” with H' [16]. Stable species
were characterized by the absence of an imaginary frequency.
Adiabatic electron affinities (AEAs) were determined by cal-
culating the total energy of an anion at its optimized geometry
and subtracting from this the total energy of the neutral at its
optimized geometry. Vertical attachment energies (VAE) cor-
respond to the change in energy on attachment of an electron to
the ground state of a molecule without any change of nuclear
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IMS spectra showing (a) the air RIP and air doped with ISOF showing the air RIP, ISOF.O,™ and (ISOF),.0,™ peaks for two

geometry. These were determined by doing a frequency calcu-
lation after placing a negative charge on the ground state
geometry of the neutral and then subtracting the computed total
energy of the neutral from that of the anion.

Results and Discussion
Electron Attachment

ISOF Despite both electron attachment (EA) and dissociative
electron attachment (DEA) being calculated thermodynamical-
ly favorable, adiabatic EA 1.76 eV (170 kJ mol ') and DEA to
yield CI” AH,0=—65 kJ mol™' and AGos=—106 kJ mol ',
neither was observed with near-thermal electrons in nitrogen.

Table 3. AHs and AGs for the Reaction of ENF in air. DFT Calculations Were

J
4 J Performed Using the B3LYP Functional and the 6-31 + G (d,p) Basis Set
'j Reactants Products AHaos kImol™' AGaog kImol™
ENF +e ENF (a) ~104 -115
ENF (b) —-146 —-154
CHF,OCF,CHF +CI'  -52 -93
ENF+0, ENF—(a) + O, 44 55
ENF—(b) + O, -86 -94
ENF.O,—(a) -87 —45
ENF.O,—(b) -96 —62
ENF.O,—(c) -138 -101
. _ ENF.O, (c)+ ENF ENF,.0,—(a) -83 —41
Figure 3. Structure for the stable monomer ISOF.O,™ from ENF,.0,—(b) 56 220

DFT calculations
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Figure 4. IMS spectrum after adding sufficient ENF to de-
crease the air RIP by about 50%

This suggests that the VAE is positive. As calculated VAEs,
given in Table 1, and adiabatic EAs are basis set-dependent, the
influence of basis set was briefly investigated using the B3LYP
functional [17-19]. A representation of the structure of the
anion ISOF" derived from DFT calculations is shown in Sup-
plementary Figure S1.

The influence of the basis set shows a different pattern for
the EA and VAE. The most important feature of the basis set is
to have a diffuse function — increasing this from + to ++ has no
effect upon the EA but causes a decrease in the VAE. Increas-
ing the polarization functions from (d,p) to (3df,2p) has a small
effect upon the EA but not upon the VAE. Going from 6-31 to
6-311 has no effect upon either, at least with the diffuse and
polarization functions used. Overall, so long as both polariza-
tion and diffuse functions are included, the calculated EA and
VAE are of sufficient accuracy to allow the identification of
trends and to arrive at an understanding of the experimental
observations.

Inspection of the imaginary frequencies in the VAE
calculations showed that even when there were multiple
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Table 4. AHs and AGs for the DEA of HCE. DFT Calculations Were Per-
formed Using the B3LYP Functional and the 6-31 + G (d,p) Basis Set

Reactants Tonic products AHaog kJ'mol™ AGhog kI'mol ™!
HCE+e Cl -122 -170

Cl,~ -215 275
HCE+0O," ClI —62 -110

Cly” —152 216

imaginary frequencies, one was always dominant (i.e., was
considerably more intense than other imaginary frequencies),
and was associated with stretching of the C—Cl bond. IRC
Intrinsic reaction coordinate (IRC) calculations were used to
follow the C—Cl stretch and showed that the initial structure
associated with the VAE relaxed to the structure found in the
calculation of the adiabatic EA. It is suggested that the non-
observation of attachment of thermal electrons is the result of a
VAE of ca. +60 kJ'mol" (0.62 eV). This is in excellent
agreement with a resonance of 0.6 eV leading to CI” observed
in a recent study of DEA of ENF, ISOF, and HCE in a crossed
electron-molecular beam two sector field mass spectrometer
[20].

ENF ENF is a little more complicated than ISOF as calcu-
lations show that there are two stable negative ions denoted
ENF (a) and ENF (b) in the structures (Figure 1). ENF has an
effective EA of 104 kJ-mol ' (1.08 eV) when forming ENF (a)
and an effective EA of 146 kJ'-mol™ (1.51 V) when forming
ENF (b). DEA is thermodynamically favorable with AHygg =—
65 kJ'mol™! and AGyos=—106 kJ-mol™'. However, as seen
earlier for ISOF, neither EA nor DEA is observed. The VAE
is calculated (using 6-31+ G(d,p)) to be +74 kJ-mol™" (0.77
eV) with four imaginary frequencies. An IRC calculation on
this species shows it relaxing to give ENF (a).

Attempts were made to find a transition state between
ENF (a) and ENF (b) but these were unsuccessful. Various
relaxed scans of bond lengths and dihedral angles were inves-
tigated on the structure of ENF (a) and numerous stable con-
figurations differing by only a few kJ-mol™" were found, and
when one approached close to ENF (D) it just flicked over with
no discernible transition state.

b Reduced mobilities (cm? V's™)
225 158152 1.23 0
H [

Intensity (nAmps)

10 15 20 25 30 35 40 45
Time (miliseconds)

IMS spectra of (a) air doped with HCE and (b) after introducing a small amount of ISOF
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Table 5. AHs and AGs for the Possible Reactions of ISOF and HCE in Air.
DFT Calculations were Performed Using the B3LYP Functional and the 6-31 +
G (d,p) Basis Set

Reactants Ionic products AHaog kI'mol™ AGaog kI'mol™
ISOF + CI” ISOF.CI —-108 =79

ISOF.CI' +ISOF ISOF,.CI ~74 —40

ISOF +Cl,~ ISOF.Cl,~ -75 44

ISOF.Cl, +ISOF ISOF,.Cl, 58 -2

Reactions in Air

ISOF Although thermodynamically feasible (see Table 2), nei-
ther electron transfer nor dissociative electron transfer from O,
is observed. Neither is proton abstraction; only complexation
with O, occurs.

The air reactant ion peak (RIP) is initially sharp and reason-
ably symmetrical (see Figure 2a). It is appreciated that the air
RIP is a complex with the O, ions being complexed to varying
degrees with O,, H,O, and CO,, and that the degree of com-
plexation varies during the migration of the ions down the
reaction region (for a detailed description of the air RIP see
Hayhurst et al. [21] and Watts [22]). But as only complexation
with O, is observed, discussion of the potential complexation
with other negative RIP ions will not be considered further.

Addition of sufficient ISOF to decrease the RIP by 50%
shows a good dimer peak ((ISOF),.0, ), and a small monomer
(ISOF.O,") [Neither structural information nor charge distribu-
tion is implied when identifying an ion in this form]. (see
Figure 2b and c). Broadening of the RIP on the low mobility
side is observed. This is consistent with an unstable monomer
complex being formed, which can either rearrange to give a
stable monomer or which can decompose to give O, related
ions to broaden the RIP. The monomer can react with more
ISOF to give a stable dimer (ISOF),.0, . DFT calculations
show that there is only one stable monomer, the structure of
which is shown below (Figure 3) and the energetics provided in
Table 2.

A search for less stable complex(es) of ISOF and O, was
made. No minima were found, suggesting that the potential
energy surface is relatively flat.

2\ 1 A
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Figure 7. IMS spectrum of air doped with HCE with the addi-
tion of ENF

The number of possible structures of the dimer anion is
greater than the two shown in Supplementary Figure S2 as
both ISOF and ENF are chiral and are sold as racemic mixtures
and, thus, for any possible dimer structure there are two sub-
structures either both molecules having the same configuration
(i.e., R+R or S +8) or different configurations (i.e., R+S). A
selection has been investigated, but as each ISOF is acting as a
bidentate ligand (to give slightly puckered 7-membered rings)
in the dimer they all have similar energies.

ENF As with ISOF, although thermodynamically feasible,
neither electron transfer nor dissociative electron transfer from
O, is observed, see Table 3.

Addition of sufficient ENF to reduce the air RIP by ca. 50%
gave a good dimer peak bridging (i.e., with an elevated baseline
indicating decomposition of the dimer to the monomer, to a
small monomer). Unlike with ISOF, no broadening of the RIP
is observed (see Figure 4).

In contrast to ISOF, three stable structures for the monomer
ENF.O, have been found and are shown in Supplementary
Figure S3. Whilst transition states (TS) between these three
ENF.O, monomer structures have yet to be found, it is likely

b Reduced mobilities (cm” V's™)
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IMS spectra of air doped with enough HCE to (a) have similar intensities of air RIP and HCE RIP, (b) to have similar

amounts of air RIP and HCE RIP with the addition of sufficient ISOF to decrease the HCE RIP by about 50%
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Table 6. AHs and AGs for the Reaction of ENF with the HCE RIP. DFT
Calculations Were Performed Using the B3LYP Functional and the 6-31 +G
(d,p) Basis Set

Reactants Products AHaog kI'mol™ AGaog kI'mol™
ENF +CI” ENF.CI” -104 =70
ENF +Cl,~ ENF.Cl,~ —68 =25
ENF.CI” + ENF ENF,.CI” —66 -33

that the TS energies will be small and that the energies for the
formation of the complexes ENF.O, [(a) and (b)] will be
sufficient to overcome them, leading to ENF.O, (c) being the
only stable monomer observed—this has a similar structure to
that shown for ISOF.O, " in Figure 3. As the monomer peak is
small and the RIP has not broadened, this suggests that initial
complexes of ENF.O, are so unstable that they decompose
sufficiently rapidly that the reformed O, ions are encompassed
in the RIP.

The formation and structures of the dimer (ENF),.0, is
more complex than was found for the case with ISOF. Several
structures (many if the formation of a dimer from ENF.O, [(a)
and (b)] are considered) of a dimer from ENF.O, (c) are
possible, but only two have negative AGs of formation. These
are shown in Supplementary Figure S4.

The sharp dimer peak at K,=1.25 cm®>V "s! shown in
Figure 4 is assigned to (ENF),.0, (a). The unstable dimer anion
causing the bridging between the monomer and dimer anions
and the broadening of the monomer is therefore assigned as
(ENF),.0, (b). The lower stability of the cyclic complexes
containing O, compared with the corresponding complexes of
ISOF is to be expected as the former forms an 8-membered ring
whereas ISOF only requires a 7-membered ring.

Reactions in Air Doped with Hexachloroethane
(HCE)

On addition of HCE to an air system, a more mobile RIP is
produced consisting of a sharp peak (CI” related ions) with a trace
of a shoulder on the less mobile side (Cl, ) — see Figure 5a. A

a Reduced mobilities (cm” V's™)
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similar RIP is also seen on introduction of HCE into a nitrogen
system. This is to be expected as the calculated VAE is —33 kJ
mol ™' and the overall thermodynamics are favorable — see
Table 4.

ISOF Addition of ISOF to an air system doped with HCE
(similar to the one shown in Figure 5a), shows two peaks,
ISOF.CI" and ISOF.Cl, together with a suggestion of an
unstable dimer (ISOF),.Cl, (Figure 5b. ISOF.Cl, does not
form a dimer. These observations are in agreement with the
thermodynamics given in Table 5. The structures of the Cl” and
Cl, complexes with ISOF are similar to those with O, when
the O, is acting as a bidentate ligand (i.e., forms a ring).

It was observed that the air system was much less sensitive to
ISOF than was the HCE system. In order to verify this, sufficient
HCE was introduced into an air system to give an approximately
50/50 mix of air and HCE RIPs, as seen in Figure 6a.

What is immediately apparent is that the Cl, contribution to
the HCE RIP appears to be much greater than in Figure 2b and c.
Addition of ISOF gives three product peaks ISOF.CI,
ISOF.Cl, , and (ISOF),.0, (see Figure 6b), thus confirming
the observation of the high sensitivity to ISOF in a doped system
compared with an undoped system.

The suggestion that more Cl,  is formed in a partially doped
system is confirmed by the changing ratio of ISOF.CI™ to
ISOF.Cl, in Figure 5b and Figure 6b. Why should this be?
On full doping, HCE dominates the electron capture but on
partial doping oxygen competes successfully for electrons. The
reaction of O, with HCE favors the production of Cl, over
CI .Mass spectra data show that in the 50/50 system the ratio of
CI/Cl, is ca. 3.5, whereas in a normally doped system (suffi-
cient HCE to remove the air RIP) the ratio is ca. 5.2. Increasing
the HCE concentration much higher leads to a ratio of ca. 19,
similar to that in nitrogen. The ratio in nitrogen is insensitive to
the HCE concentration.

As the DEA to yield Cl, is energetically more favorable
than that yielding CI, it might be expected that it would be the
dominant pathway. However, since DEA to yield CI is ener-
getically favorable and can occur with any conformation of
HCE, it may be that the Cl, can only be formed when the

b Reduced mobilities (cm’ V's™)
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Figure 8. IMS spectra of air doped with enough HCE to have similar amounts of air RIP and HCE RIP after introducing a small

amount of ENF (a) and a higher amount of ENF (b)
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chlorines in the HCE are in the unstable eclipsed conformation,
thus accounting for its low abundance. It is suggested that as
well as direct dissociative electron transfer (DET from O, to
HCE to give a similar CI /Cl,™ as in DEA, a transient complex
of HCE and O, is formed in which the chlorines are in a more
eclipsed conformation, thus leading to more Cl,  being formed.

ENF Only ENF.CI" is observed — see Figure 7. This is
consistent with the energetics given in Table 6. Again, the
strain of an 8-membered ring compared with a 7-membered
ring accounts for the instability of the complex with CI, .

Again, it was subjectively observed that the air system was
much less responsive to ENF than was the HCE system. Using
the approach outlined for ISOF, the relative sensitivity to ENF
in an air and HCE system was investigated — see Figure 8.
When sufficient ENF to deplete the HCE peak by 50% was
added, no appreciable diminution of the air RIP occurred.
Increasing the ENF concentration to virtually remove the CI™
RIP leaving just the Cl, peak caused a small diminution of the
air RIP with a corresponding trace of the dimer. A serendipi-
tous experiment occurred when at the end of an air/ENF
experiment the system was allowed to diminish the ENF con-
centration and return to a good air RIP. On addition of HCE, a
strong ENF.CI™ peak appeared.

Conclusions

ENF and ISOF do not produce CI" in an IMS system by capture
of free electrons or reaction with O,". This demonstrates that
the CI” containing ions reported in the earlier study were the
result of a chlorine containing contaminant as suggested [1].
The failure of ENF and ISOF to undergo DEA was initially
surprising given the high calculated electron affinities, but
further calculations showed that this was a result of the large
positive VAEs. The present data are consistent with those of
Matias et al. in their crossed electron-molecular beam two
sector field mass spectrometer [20]. An unusual observation
is that the observed monomer complexes of ISOF and ENF
with O, are relatively unstable compared with the dimer
complexes. This is in contrast to the more usual observation
that monomer complexes are more stable than dimer com-
plexes as shown, for example, with the CI” complexes of ISOF
and ENF. DFT calculations do show that stable complexes of
ISOF and ENF with O, are possible and are the likely precur-
sors of the dimer complexes. That they are not seen is a
consequence of the initial complexes being unstable, and con-
formational changes leading to ring formation (7 and 8, respec-
tively, for ISOF and ENF) are required to form the stable
monomer. The instability of the initial complexes require a
high concentration of ISOF and ENF for them to be formed
in appreciable amounts and thus the stable monomers, once
formed, immediately react to form the dimers. This is consis-
tent with the observed low sensitivity of an oxygen-based
system to ISOF and ENF. Dissociative electron attachment to
HCE produces primarily CI” with a small amount of Cl,
whereas electron transfer from O,  gives much more Cl,. It

is suggested that Cl™ can be produced from any conformation
of HCE, whereas Cl, can only be produced from at least a
partially eclipsed conformation and that reaction with O,
promotes this through a transient complex with HCE.

Acknowledgements

R.G.M. is an Early Stage Researcher who acknowledges the
support of the PIMMS Initial Training Network which in turn
is supported by the European Commission’s 7th Framework
Programme under Grant Agreement Number 287382. The
authors wish to thank Dr. A Simperler of the NSCCS, Imperial
College, London and Prof. J.M. Dyke of the Chemistry Dept.,
University of Southampton, for valuable discussion of the
calculations of the Vertical Attachment Energies.

Open Access

This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

References

1. Eiceman, G.A., Shoff, D.B., Harden, C.S., Snyder, A.P., Martinez, P.M.,
Fleischer, M.E., Watkins, M.L.: lon mobility spectrometry of halothane,
enflurane, and isoflurane anesthetics in air and respired gases. Anal.
Chem. 61(10), 1093—-1099 (1989)

2. Sacristan, E.: Ion mobility method and device for gas analysis. U.S. Patent
No. 5,455,417. 3 Oct. (1995)

3. McIntyre, H., Thathapudi, N., Arnold, P.: Chemical calibration process,
system, and device. WO 2015173579 A1, Nov. 19 (2015)

4. Puton, J., Nousiainen, M., Sillanpas, M.: Ion mobility spectrometers with
doped gases. Talanta 76(5), 978-987 (2008)

5. Ewing, R.G., Atkinson, D.A., Eiceman, G.A., Ewing, G.J.: A critical
review of ion mobility spectrometry for the detection of explosives and
explosive related compounds. Talanta 54(3), 515-529 (2001)

6. Spangler, G.E., Carrico, J.P., Campbell, D.N.: Recent advances in ion
mobility spectrometry for explosives vapor detection. J. Test Eval. 13(3),
234-240 (1985)

7. Kozole, J., Levine, L.A., Tomlinson-Phillips, J., Stairs, J.R.: Gas phase
ion chemistry of an ion mobility spectrometry based explosive trace
detector elucidated by tandem mass spectrometry. Talanta 140, 10-19
(2015)

8. Li, G., Zhang, Z., Huang, Q., Guo, T., Zhang, X.: A novel pulsed doping
method for enhancing the sensitivity of ion mobility spectrum (iMS) for
detecting explosives and a mechanism study. Sensor Lett. 13(9), 778-784
(2015)

9. Eiceman, G.A., Karpas, Z., Hill, HH. Jr.: Ion mobility spectrometry.
CRC Press: Boca Raton, Florida (2013)

10. Liu, Y., Mayhew, C.A., Peverall, R.: A new experimental approach to
investigate the kinetics of low energy electron attachment reactions. Int. J.
Mass Spectrom. Ion Process 152(2), 225-242 (1996)

11.  Jarvis, G.K,, Peverall, R., Mayhew, C.A.: A novel use of an ion-mobility
mass spectrometer for the investigation of electron attachment to mole-
cules. J. Phys. B Atomic Mol. Opt Phys. 29(19), L713 (1996)

12.  Jarvis, G.K., Mayhew, C.A., Singleton, L., Spyrou, S.M.: An investiga-
tion of electron attachment to CHCI 2 F, CHCIF 2, and CHF 3 using an
electron-swarm mass spectrometric technique. Int. J. Mass Spectrom. Ion
Process 164(3), 207-223 (1997)

13.  Bell, A., Giles, K., Moody, S., Watts, P.: Studies on gas-phase positive
ion-molecule reactions of relevance to ion mobility spectrometry. The



946

R. Gonzalez-Méndez et al.: Negative lon-Molecule Chemistry of Isoflurane and Enflurane

reactions of 2-methyl-2-propanol (t-butyl alcohol) with protonated water
clusters in an ion mobility system. Int. J. Mass Spectrom. Ion Processes
17(1), 65-70 (1998)

Howse, D.C.: Development and application of an ion mobility
spectometer-quadrupole mass spectometer instrument. PhD, University
of Birmingham (2015)

Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman,
J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.: Gaussian 09,
rev. A. 1. Gaussian Inc., Wallingford (2009)

Linstrom, P.J., W. G. M., (eds.) NIST Chemistry WebBook, NIST
Standard Reference Database Number 69. National Institute of Standards
and Technology, Gaithersburg. http://webbook.nist.gov. (2015)
Falcetta, M.F., Jordan, K.D.: Assignments of the temporary anion
states of the chloromethanes. J. Phys. Chem. 94(15), 5666-5669
(1990)

Aflatooni, K., Gallup, G.A., Burrow, P.D.: Temporary anion states of
dichloroalkanes and selected polychloroalkanes. J. Phys. Chem. A
104(31), 7359-7369 (2000)

20.

21.

22.

Rienstra-Kiracofe, J.C., Tschumper, G.S., Schaefer, H.F., Nandji, S., Ellison,
G.B.: Atomic and molecular electron affinities: photoelectron experiments
and theoretical computations. Chem. Rev. 102(1), 231-282 (2002)
Matias, C., Mauracher, A., Huber, S.E., Denifl, S., Limao-Vieira, P.,
Scheier, P., Mérk, T.D., Gonzalez-Méndez, R., Mayhew, C.A.: Dissocia-
tive electron attachment to the volatile anaesthetics enflurane and
isoflurane and the chlorinated ethanes pentachloroethane and hexachlo-
roethane. Int. J. Mass Spectrom. 379, 179-186 (2015)

Hayhurst, C.J., Watts, P., Wilders, A.: Studies on gas-phase negative ion/
molecule reactions of relevance to ion mobility spectrometry: mass anal-
ysis and ion identification of the negative reactant ion peak in “clean” air.
Int. J. Mass Spectrom. Ion Process 121(1/2), 127-139 (1992)

Watts, P.: Studies on gas-phase negative ion/molecule reactions of rele-
vance to ion mobility spectrometry: kinetic modeling of the reactions
occuring in “clean” air. Int. J. Mass Spectrom. Ion Process 121(1/2), 141—
158 (1992)


http://webbook.nist.gov

	 Chemistry of Isoflurane and Enflurane
	Abstract
	Section12
	Section13
	Section24
	Section25
	Section26

	Section17
	Section28
	Section29
	Section210

	Section111
	Acknowledgements
	References


