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Ω = 417 Å2 
Abstract. Collision cross-section (CCS) measurements with a linear drift tube have
been utilized to study the gas-phase conformers of a model peptide (acetyl-
PAAAAKAAAAKAAAAKAAAAK). Extensive molecular dynamics (MD) simulations
have been conducted to derive an advanced protocol for the generation of a com-
prehensive pool of in-silico structures; both higher energy and more thermodynam-
ically stable structures are included to provide an unbiased sampling of conforma-
tional space. MD simulations at 300 K are applied to the in-silico structures to more
accurately describe the gas-phase transport properties of the ion conformers includ-
ing their dynamics. Different methods used previously for trajectory method (TM)
CCS calculation employing the Mobcal software [1] are evaluated. A newmethod for

accurate CCS calculation is proposed based on clustering and data mining techniques. CCS values are
calculated for all in-silico structures, and those with matching CCS values are chosen as candidate structures.
With this approach, more than 300 candidate structures with significant structural variation are produced;
although no final gas-phase structure is proposed here, in a second installment of this work, gas-phase hydrogen
deuterium exchange data will be utilized as a second criterion to select among these structures as well as to
propose relative populations for these ion conformers. Here the need to increase conformer diversity and
accurate CCS calculation is demonstrated and the advanced methods are discussed.
Keywords: Conformational space sampling, Collision cross-section calculation, Ion mobility spectrometry,
Cluster analysis
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Introduction

The study of peptide and protein ion structure in the gas
phase offers the opportunity of characterizing these sys-

tems in the absence of a complicated, explicitly defined envi-

ronment where the dynamic nature of hydrogen bonding [2, 3]
and the relatively large number of discreet interacting species
make these studies challenging [4, 5]. Gas-phase studies, there-
fore, provide a means to examine intrinsic (intramolecular)
interactions in protein and peptide ion conformers [6–10].
The tools and methods used for these purposes have been
categorized as physical and chemical probes [6]. As their
names imply, a physical probe provides data related to a
physical property of an ion (e.g., ion size), whereas a chemical
probe provides information about ion reactivity leading to
structural inference [6].

Collision cross-sections (CCS) obtained from ion mobility
spectrometry (IMS) measurements can be used as a physical
probe of gas-phase ion size [11]. Molecular dynamics (MD)
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simulations can be coupled with CCSmeasurements to provide
a powerful tool for structure studies [12–14]. In this approach,
CCS calculations for in-silico structures are compared with
experimental values to infer structural information. In early
work, in-silico structures were largely used for relative size
comparisons with protein ions [15]. In these studies, CCS
calculations were performed for protein ion structures such as
a native, a partially folded, an α-helix (unfolded), and a fully
extended structure to effectively ascertain the relative degree of
compactness for cytochrome c ions. More recently, NMR
structures were used as inputs in MD simulations to optimize
and produce a nominal structure for native-like, gas-phase ions
of ubiquitin [16, 17]. Another approach associated with this
method included the production of numerous, random in-silico
structures to sample conformational space where the structures
with matching CCS values could be selected as candidate
structures [7, 8, 18]. Traditionally, the most stable structure of
these was accepted as the most representative of the gas-phase
structures. Such an approach is valid insofar as the structure
produced from electrospray ionization (ESI) and subsequent
gas-phase ion transfer steps represents a more thermodynami-
cally stable ion conformer rather than a higher-energy,
kinetically-trapped state.

Several studies demonstrate the effect of solution conditions
(and their solution structure) on the resulting gas-phase con-
formers [16, 19–26]. One issue is the degree to which such
species resemble solution structures and their relative stability
in the gas phase. In studies of peptide ions, collisional activa-
tion of ion conformer populations suggest a large portion are
kinetically trapped species [19]. Separate studies have sug-
gested that low charge state protein ions can persist as
solution-like structures for extended periods of time in the gas
phase [16]. Therefore, gas-phase studies may provide informa-
tion about antecedent solution states. However, because CCS
measurements provide limited structural information related to
the shape of the ions and the fact that the computational
techniques mentioned above are often directed toward
obtaining the most stable gas-phase structures, difficulties arise
with regard to structural assessments.

Recently we have proposed the application of gas-phase
hydrogen deuterium exchange (HDX) with IMS and tandem
mass spectrometry (MS/MS) to begin to address shortcomings
associated with ion conformer selection [27–29]. In this ap-
proach, gas-phase ions undergo reactions with D2O reagent gas
during the mobility separation. Subsequently, using electron
transfer dissociation (ETD) fragmentation data, the number of
deuteriums incorporated within each residue can be deter-
mined. Using a hydrogen accessibility scoring (HAS) algo-
rithm and an effective collision model, a hypothetical deuteri-
um uptake pattern for each in-silico structure can be generated
to serve as an additional criterion for structure elucidation. In
the second installment of this work, the HDX mechanism and
gas-phase ion structure dynamics are utilized to improve the
accuracy of the HAS algorithm. A goal of the work reported
here is to develop a method to produce accurate structures as
well as a means to assess their relative populations. To improve

the accuracy of structural determinations, the study first focuses
on enhanced conformational space sampling techniques and
then CCS calculation methods are examined. It is confirmed
that truly comprehensive sampling of conformational space for
these types of studies is essential. Here, extensive MD simula-
tions have been performed to produce combined pools of more
thermodynamically stable and higher energy structures.

The trajectory method [13, 30] implemented in the Mobcal
software suite [1] is widely used to calculate theoretical CCS
values for in-silico ion structures. Although the procedure
appears to be relatively straightforward, it can actually be quite
complicated. This is especially true for peptide ions where the
conformational energy barriers along the energy landscape are
significantly smaller than for proteins. That is, peptide ions are
highly flexible and can adopt a number of diverse energetically
available structures [31]. Because of this, no single in-silico
structure is representative of the experimentally observed ion
population. For this reason, such structures are often referred to
as Bconformer type^ [27]. Therefore, to obtain an accurate
structural representation, the dynamic nature of a conformer
type should be considered. The CCS exhibited by conformer
types can be calculated along aMD trajectory run by averaging
values for all structure frames. That said, such a process is
prohibitively intensive computationally, and approximation
methods are highly desirable. To address this challenge, differ-
ent data mining approaches have been tested and benchmarked
to extract the most representative structures from a MD trajec-
tory in order to propose an efficient protocol to calculate
accurate CCS values exhibited by a conformer type.

Because the degree of similarity between solution- and gas-
phase structures may be answered by studying gas-phase con-
former establishment [9, 16, 17, 23, 32–36], the work presented
in the discussion below is preliminary yet foundational in
nature. That said, recent CCS measurements of partially
dehydrated, electrosprayed ions reveal that the gas-phase struc-
ture adaptation can depend on intrinsic factors such as the
nature of basic residues and the interaction of other residues
in the stabilization of structure [7, 23]. Therefore, although
these studies provide valuable insight regarding gas-phase
structure establishment, a statistical comparison of solution-
and gas-phase structural types can provide additional insight
into the actual resemblance of such species for a variety of
biomolecular ions. In a series of manuscripts, the application of
IMS-HDX-MS/MS coupled with MD simulations for the ac-
curate elucidation of structures (and their populations) in the
gas phase will be presented and, subsequently, the gas-phase
structures and solution structures (from extensive MD simula-
tions guided by CD spectroscopy data) will be compared
statistically.

Experimental
Sample Preparation

The model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK
(>90% purity) was synthesized by Genscript (Piscataway, NJ,
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USA). Peptide stock solutions were prepared by dissolving 1 mg
of the model peptide (without further purification) in 1.0 mLMili-
Q water. ESI solutions were prepared by 1:10 dilution of stock
solution with 100 mM solution of ammonium acetate in water.
ESI solutions were infused (300 nL min–1) into the hybrid IMS-
MS instrument [29, 37] through a pulled-tip capillary biased at
2200 V relative to the instrument entrance orifice.

IMS-MS Measurements

The instrument used for these experiments has previously been
described in detail [29, 37]. Briefly, a home-built drift tube
coupled to a linear ion trap (LIT) mass spectrometer (LTQ
Velos; ThermoScientifc, San Jose, CA, USA) was employed.
A dual ion gating system was utilized to provide the time delay
between the release of ions from the ion trap and the selection
of ions of a given mobility. The delay time between the first
and second ion gates was adjusted to mobility select the ions.
Delay times between the two gates were scanned to obtain drift
time distributions (0.1ms increments). For each time increment
mass spectra were collected for 0.5 min. The LIT m/z scan
range of 400–1000 was utilized. ForMS/MSmeasurements, an
ETD reaction time of 200 ms was employed.

Molecular Dynamics (MD) Simulations

To perform the in-vacuo MD simulations, an initial extended
structure of a [M+3H]3+ ion was generated using the AM-
BER12 [38] molecular dynamics package. The non-
polarizable all-atom Amber ff12SB force field was employed
for structural parameterization. To derive the undefined force
field parameters for the COOH-terminal lysine residue carrying
a distinct formal charge in the gas phase, two structures of this
single amino acid with ψ and φ dihedral angle values matching
those in α-helical and extended structures were generated.
Quantum mechanics geometry optimizations for both confor-
mations were carried out at HF/6-31G(d) theory level using the
GAMESS software package [39, 40]. The optimized structures
were subjected to multi-orientation molecular electrostatic po-
tential (MEP) computations and charge fittings using the
R.E.D. server development [39–44] to obtain the empirical
force field parameters for this specific residue.

The extended initial structure of the triply charged peptide
ions with charge arrangements of K(6)-K(11)-K(21) and K(6)-
K(16)-K(21) were energy-minimized using 2500 steps of
steepest descent algorithm followed by 2500 steps of conjugate
gradient algorithm. Cyclic simulated annealing (SA) was
employed for conformational space sampling of the energy-
minimized structure [18, 29, 45]. During SA runs (1-fs time
step), the Berendsen temperature coupling algorithm [46] was
used. No long-range cutoffs for non-bonded interactions were
considered. The temperature of the in-vacuo system was dra-
matically increased to 1000 K over 8 ps with a heat bath
coupling time constant of 0.2 ps, trans-omega dihedral re-
straints on the entire peptide backbone, and chirality restraints
on all chiral centers. The heated structure was subjected to
dynamics at constant temperature and gradually cooled to

lower temperatures (10 K) over various designated total SA
timescales (10, 20, 40, 100, 400, and 1200 ps) using the
coupling time constant of 4.0 ps and was subsequently energy
minimized to generate structures at 0 K (the annealed struc-
tures). This annealed structure served as the starting point for
the next heating-cooling cycle. Of these timescales, 40 and
1200 ps SA runs were used to generate a more diverse pool
of higher energy and more thermodynamically stable structures
as candidate conformers. The increased conformer diversity is
described in the BResults and Discussion^ section.

After 1000 cycles of simulation, all resulting annealed
structures (end of each SA run) were gradually heated to
300 K over a 100 ps timescale using the Berendsen tem-
perature coupling algorithm with a coupling time constant
of 1.0 ps, and equilibrated. The final heated-equilibrated
structures were subjected to 5 ns production MD in vacuo
with a 2-fs time step. The simulations were carried out
without the non-bonded cutoffs for long-range interactions.
The temperature of the system was maintained at 300 K
using Langevin dynamics with a collision frequency of
1 ps–1 [47, 48]. Five thousand structures were sampled
from each MD trajectory. The structures with the lowest
potential energy in each MD trajectory were extracted to
serve as the reference Cartesian coordinate set in mass-
weighted, root-mean-square deviation (RMSD) calculations.
Backbone-only RMSD values for all structures within a
single trajectory were obtained using the ptraj [49] module
implemented in the AMBER12 software package [38].
RMSD-oriented structures were subjected to a fixed-radius
k-means clustering algorithm using the MMTSB tool set
[50]. By applying an in-house script to this algorithm, the
selected radius values for each trajectory were altered in a
fashion such that the number of generated clusters was 50
(±10). Using the Mobcal software and trajectory method
(TM) [1], collision cross-section calculations were per-
formed on the structures with the lowest RMSD relative
to the mathematically generated centroids for each resulting
cluster.

The high annealing temperature of 1000 K enhances the
sampling process by overcoming high energy barriers along the
potential energy surface (PES), thus increasing the accessible
conformational space for the sampling process [51, 52]. How-
ever, such a process facilitates unwanted cis-trans transitions
and chirality inversions along the peptide backbone [51–53].
Therefore, chirality and trans-omega dihedral restraints are
normally applied to prevent such transitions. Notably, the
presence of structural restraints may limit the sampled config-
urations to a narrower portion of conformational space [52].
Although restraints were employed for this study, careful ex-
amination showed that such an action did not affect the con-
formational space sampling capabilities of SA. For further
discussion of the use of restraints and validating studies, see
the BElectronic supplementary material^ section. Method de-
velopment and benchmarking processes were only conducted
on K(6)-K(11)-K(21) peptide ions. The summery of the MD
simulations is presented in Supplementary Figure 1.
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Secondary Structure Analysis

To pinpoint the secondary structure elements, the STRIDE
algorithm was employed [54]. This algorithm considers the
position-dependent hydrogen bond energy as well as the
statistically derived amino acid propensity to predict the
secondary structure. The algorithm identified 310-helix, α-
helix, π-helix, turn, and random coil as the existing ele-
ments for the sampled structures. The helicity (HR) for a
structure was determined as the ratio of the overall number
of amino acid residues (without considering the acetyl cap)
existing in any of the three possible helices (R) to the total
number of amino acid residues (21). This generated a
range of values from 0 (where none of the amino acid
residues participates in a helix) to 1 (where all the back-
bone atoms exist in a helical structure). Normalized popu-
lation values (NP) for helicity of each SA run with 1000
annealed structures are presented for the range of 0 to 21
within-helix, R residues. Since the formation of a helix
requires at least i to i + 3 interactions, very low normalized
population values are observed for one and two amino acid
residues. Total helicity for 1000 annealed structures was
calculated according to Equation 1:

TotalHelicity ¼
X

R¼0

21 HR � NP ð1Þ

Selection of an Appropriate Temperature

MD simulations at constant temperature can provide an ap-
proximation of protein ion structural fluctuations that can affect
their gas-phase transport properties [31, 55] and hydrogen-
deuterium exchange reactivity [56]. The degree of the dynam-
ics with regard to peptide structure highly depends on the
energy of the ion and the accessible energy barriers. Therefore,
it is necessary to perform production simulations at a temper-
ature matching the ion energy levels in the drift tube. Ion
collisions with the neutral gas transform a portion of the drift
velocity into a random velocity component. As a result, the
internal energy of the ions increases, and thus their effective
temperature is higher than the ambient temperature. The tem-
perature of ions in the low-field limit regime can be estimated
as [57]:

3

2
k B Te f f ¼ 3

2
k B Ta þ 1

2
mBvd

2 ð2Þ

in which kB is Boltzmann’s constant, mB, vd, Ta, and Teff are
neutral buffer gas mass, ion drift velocity, ambient temper-
ature, and the effective temperature of the ions, respective-
ly. Using a drift velocity of 100 m·s–1 and ambient temper-
ature of 293 K, the effective temperature can be estimated to
be 300 K. Therefore, for the simulations to better match the
experimental conditions, all the annealed structures have
been heated to the higher temperature of 300 K and equil-
ibrated. To sample the peptide ion dynamics at 300 K, the

heated-equilibrated structures have been subjected to 5 ns
production MD simulations at this temperature. The
heating, equilibration, and production MD simulations are
performed for both charge arrangements of triply charged
protein ions and on structures sampled from the 40-ps and
1200-ps SA runs. Overall, two charge arrangements and
two simulated annealing procedures were utilized to pro-
duce a pool of 4000 annealed structures. The trajectories
have been sampled to generate 5000 frames for each initial
heated-equilibrated conformation leading to a significantly
large pool (5000 × 1000) of structures for a single charge
arrangement and a specific SA run.

Cluster Analysis

All 4000 trajectories obtained from MD simulations were
subjected to clustering using the cluster.pl utility implemented
in the MMTSB toolset [50]. This program applies hierarchical
(jclust script) as well as partitional k-means (kclust script)
clustering methods (see Electronic supplementary material
section); however, due to the significant number of structures,
the relatively faster k-means clustering algorithm has been used
to perform the analysis. One drawback in selecting the k-means
algorithm is that the kclust script requires a Bfixed-radius^
parameter as the cluster threshold value and the number of
generated clusters (k) cannot be determined by the user. Thus,
a script developed in-house has been employed to change the
radius values for the kclust script in order to obtain a desired
number of clusters.

To perform cluster analysis for a single trajectory, a series of
5000 backbone-only and all-atom RMSD-oriented structures
were subjected to the radius-modifying script. For a particular
radius value, the respective RMSD values are calculated and
the similarity between the structures is determined. The total
within-cluster sum of squares (TWSS) values are calculated
according to Equation 3:

TWSS ¼
X

i¼1

k X
j¼1
Ni RMSD2

i j; ð3Þ

where RMSDij is the RMSD of the jth member of cluster i
relative to the centroid of the corresponding cluster, Ni is the
number of members present in the ith cluster, and k is the
number of generated clusters for a particular radius value.
The TWSS value represents the distance of cluster members
from their corresponding centroid. As the script modifies the
radius values by increments of 0.2 Å, the new TWSS values are
calculated. A plot of TWSS values versus the different k values
becomes relatively constant at a value known as an elbow-
point, which provides the optimal value for the number of
generated clusters. The elbow-points have been calculated for
all trajectories, and the maximum value between all calculated
elbow-points results in the optimal k value of 50 clusters
(Supplementary Figure 2). Based on the behavior of the
TWSS function at the elbow-point, dividing the trajectories into
50 clusters should result in the greatest mutual similarity
among cluster members within the shortest computation time.
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Therefore, the k value of 50 (±10) and the corresponding
generated clusters is expected to provide the highest accuracy;
however, to examine the possibility for obtaining a desirable
accuracy at lower computation times, a k value of 10 (±4),
which corresponds to the area below the elbow-points for all
TWSS plots, has been utilized to generate a different class of
clusters. In the present manuscript, the terms 50-k and 10-kwill
be used to address k values of 50 (±10) and 10 (±4), respec-
tively. In addition to this, the accuracy of the results has been
investigated for a third class of analysis where the k value is
selected to be 1 (no clustering). For the 10 reference trajecto-
ries, the accuracy can be determined by comparison of CCS
values of weighted cluster-representative structures with the
accurate CCS values (Ω*) corresponding to the average CCS
value for all 5000 structures in a MD production run. There-
fore, the selection of the cluster-representative structure is a
priority.

Results and Discussion
Peptide Ion Collision Cross-Sections

Figure 1 shows the three-dimensional (3D), raised-relief plot
for model peptide ions indicating the abundances of ions at
specific tD and m/z values. Upon electrospraying the model
peptide, quadruply, triply, and doubly protonated peptide ions
are produced. Quadruply protonated ions are observed as a
small feature at m/z of ~453. These ions exhibit three different
conformer types with CCS values of 492, 506, and 534 Å2

(Supplementary Figure 3). Doubly charged ions produce a
wide, unresolved distribution with CCS values spanning a

range of 300–400 Å2. The most dominant feature in the spec-
trum corresponds to triply charged ions. The shape and width
of the peak associated with these ions is consistent with the
presence of at least three conformer types. The dominant con-
former type is the most compact conformer with a CCS value
of 417 Å2. The second most abundant conformer type is
slightly more diffuse (Ω = 438 Å2). The third conformer type
represents an unresolved shoulder in the ion’s drift time distri-
bution with a CCS value of 464 Å2. The most compact and
slightly more diffuse conformers of triply charged ions were
selected for further study because of their higher overall inten-
sity as well as increased conformer type purity upon mobility
selection.

Conformational Space Sampling

Several studies suggest that over the short timescale of the ESI
process, the protein ions do not resemble equilibrated confor-
mations in the gas phase; rather, they are higher energy, meta-
stable structures presenting similarities to the solution-phase
conformations [7, 24, 33]. In a single SA cycle, increasing the
time of the cooling process leads to the generation of structures
that are more thermodynamically stable [58]. Therefore,
lengthened cooling steps even in multiple cycles of SA simu-
lations will direct the resulting conformational space toward the
selection of lower energy configurations. The primary goal of a
cyclic SA approach in these studies is not to determine the
global minimum as in many classic SA simulations [53, 59] but
to sample a pool of structures from thermodynamically stable
conformers as well as higher energy configurations. Here, the
conformational sampling quality is evaluated by varying the
designated cooling timescale (see Experimental section) for

I
)stinu yrartibra( ytisnetn

[M+3H+]3+

[M+2H+]2+

Figure 1. Three-dimensional (tD,m/z, intensity) raised-relief plot produced by electrospraying a solution of the model peptide Actyl-
PAAAAKAAAAKAAAAKAAAAK. Dominant ions in the distribution are labeled
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multiple, 1000-cycle SA runs. Figure 2a shows examples of the
ion temperature as a function of the SA times for the [M+3H]3+

ion with charge arrangement of K(6)-K(11)-K(21). The
resulting annealed structures sampled at the end of each simu-
lation are subjected to additional cycles of heating-cooling
steps. The potential energy values of the 1000 resulting mini-
mized conformers (annealed structures) are averaged for each
run. The slower cooling algorithms generated more thermody-
namically stable structures as expected (Figure 2b).

A secondary structure analysis was performed for all 1000
annealed structures generated frommultiple SA runs in order to
determine the conformational space available to the protein
backbone. Overall, slow-cooling simulations focused the con-
formational space toward the formation of more helical struc-
tures compared with fast-cooling SA runs, which lead to the
formation of more random structures. Figure 2c and d show an

increase in the number of amino acid residues that are involved
in helical structure.

Considering the number of residues involved in a helix (R)
as presented in Figure 2c, the formation of a series of con-
formers having random structure encompassing at most 13
amino acid residues results from the 40-ps simulations (i.e.,
the NP is zero for R ≥ 13), whereas for the 1200-ps SA runs up
to 16 residues can exist in helical structures (i.e., the NP is zero
for R ≥ 16). This observation raises the issue of whether or not
the conformational space sampled at 40 ps is more limited than
that encountered by the peptide ion using cycles of 1200 ps. To
estimate the relative diversity of sampled structures, mass-
weighted RMSD calculations were performed pairwise for all
1000 annealed structures. The average minimum and maxi-
mum pairwise RMSD values (data not shown) reveal a slightly
larger (~10%) difference in RMSD values for the 40-ps runs
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Figure 2. The effect of cooling time variation on sampled structures at the end of simulated annealing (SA) runs. Each color
represent a specific simulation time ranging from 10 to 1200 ps. Panel (a) shows the change in system temperature as a function of
time for six different simulations having the same annealing time period (8 ps). The associated energies of 1000 structures obtained
at the end of the SA cycles are averaged for each run and illustrated in panel (b). Panel (c) shows the secondary structure analysis
resulting in a helicity number represented by the within-helix residue count for each sampled structure that has been normalized for
the population of 1000 structures for a single SA run. The total helicity values for the representative SA runs are shown in panel (d)
(see manuscript for more details)

952 S. G. Kondalaji et al.: An Optimal Protocol for MD Simulations and CCS Calculation



compared with the 1200-ps simulations. Because the ESI pro-
cess can produce a number of conformers existing as a wide
range of conformer types and energies [7, 24, 33] to produce an
in-silico pool of structures that could contain a subset of species
that are representative of the mixture, the 40-ps SA and the
1200-ps SA runs were utilized, which is expected to produce a
wider range of conformer type and energy than either run
alone.

For the purpose of data reduction and to decrease the com-
putation time, the annealed conformers could be clustered and
representative structures used for each cluster; for example, if
five annealed structures exist in each cluster, selection of a
single representative conformer decreases the computation
time by a factor of ~5. However, a cluster analysis for 1000
annealed structures obtained from 40-ps SA runs shows that
such data reduction techniques can lead to a biased selection of
sampled structures and eliminate a variety of conformation
types such as structures with 9, 12, and 14 amino acid residues
(of 21 total) existing in one of the three helical forms (Supple-
mentary Figure 4). Therefore, all 4000 annealed structures (two
SA run times, two protonation site arrangements, and 1000
sampled structures from each cyclic SA run) were subjected to
subsequent analysis without initial clustering following the SA
runs.

It can also be argued that terminating the cooling step
during the SA procedure at 300 K rather than 0 K and
subsequently sampling a minimized conformer is more
efficient by eliminating the further heating and equilibra-
tion steps. In order to benchmark a conformational space
sampling technique, it was necessary to continue the
cooling steps to lower temperatures. The limited energy
available at lower temperature (e.g., 10 K) leads to less
structural fluctuation, and the sampled conformations do
not deviate from energetically available structures at such
temperatures; therefore, a single structure can be used to
benchmark the conformational space sampling methods.
Notably, these structures would offer different starting
points along the PES and do not represent the entire
trajectory with regard to CCS calculations as discussed
below. Therefore, the goodness of conformation space
sampling can be qualitatively assessed by the diversity
of these structures.

Although the production MD was used to simulate con-
former fluctuations, it is noted that the time scale (5 ns) is
significantly smaller than that of the measurement (~9 ms).
Considering that the MD trajectory could sample a localized
area of the PES, the fact that some structural transformations
may not occur on the short simulation timescale is, to some
degree, mitigated by the SA approach, where multiple struc-
tures are submitted to production MD. That is, a goal of the
more extensive SA is to bypass energy barriers that may be
associated with such structural transformations. Additionally,
the method of filtering candidate structures (CCS and, in the
future, HDX matching) utilizes a linear combination of struc-
tures; thus, in a sense, the filtering has the potential to stitch
together the available conformational space. That said, even

with this extensive approach, incomplete representation of
structural fluctuations cannot be ruled out.

Collision Cross-Section Calculation

The trajectory method (TM) [30] calculation (using the Mobcal
[1] software) has been widely utilized to calculate hypothetical
CCS values for in-silico structures. For a single in-silico struc-
ture, this process is straightforward; however, thousands of
captured frames are associated with the production MD simu-
lations. A valid solution is to calculate the CCS values for all
structures within a single MD trajectory and average the ob-
tained results (Ω* above); however, this is computationally
extensive (if not impossible). For example, in the case of these
experiments, CCS values for 20 million in-silico structures
would have to be calculated with such an approach. Sampling
and calculating CCS values for representative structures can
provide a remedy for this problem. That is, the average of CCS
values for several sampled frames can be nearly identical to the
average of CCS values for the entire trajectory. Here, different
methods of sampling have been utilized to reduce the calcula-
tion cost. To evaluate these methods and obtain reference CCS
values for comparisons, the CCS calculations (trajectory meth-
od) were performed on the annealed structures. After plotting
the potential energy-CCS distribution for these structures [only
K(6),K(11),K(21) charge arrangements and 40-ps SA runs],
the entire resulting CCS range was divided equally into 10
regions and the most stable annealed structure in each region
was selected as a reference structure. To obtain the accurate
CCS values for the conformer types at 300 K originating from
these 10 reference structures, theMobcal [1] software was used
and the accurate CCS values (Ω*) were calculated by averaging
the CCS values of all the conformers obtained from the corre-
sponding production MD simulations (reference trajectories).
The accuracy of the sampling and data mining methods was
then evaluated by comparing the outcome of these methods to
Ω* values for the 10 reference trajectories.

To test the data mining, several techniques, including the
method of clustering, the number of generated clusters, and
selection of the centroid or the closest structure to the centroid
as the representative structure for each cluster, have been
employed and benchmarked to find the most efficient lemma.
For all of these approaches, CCS values for a conformer type
(the CCS representative of the entire trajectory) have been
calculated as:

Ωtotal ¼
X

1
k Ωi � Ni

Nt
: ð4Þ

In Equation 4, Ni, Nt are the number of frames in the ith

cluster (cluster members) and total number of MD frames
(5000 for these studies), respectively. The value Ωi is the
CCS of the representative structures for the corresponding
cluster, whereas Ωtotal is the calculated CCS value exhibited
by a conformer type. The value k represents the number of
generated clusters for each trajectory.
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The Centroid as a Representative Structure

Per-atom averaging over the Cartesian coordinates of multiple
structures in a trajectory, or a portion of it, leads to the forma-
tion of a geometry referred to as a centroid. This mathemati-
cally generated geometry can represent the structures that have
been utilized in its genesis; therefore, it can be implied that in
order to reduce the computation time in the CCS calculations,
the centroid can be used to describe the gas-phase transport of
the corresponding cluster components. Because increased clus-
tering of the frames in a MD trajectory positions increasingly
similar conformations in a particular cluster, it may be expected
to enhance the accuracy of this approach. Therefore, the effect
of the number of clusters (k value) on the geometry of the
centroid and its CCS value was investigated. Two structures
with the lowest mutual RMSD value were selected from a
series of random clusters generated after cluster analysis with
k values of 1 (no clustering), 10, and 50 using the same
production MD trajectory. The new centroids were created
for each pair of structures (first and second structures in Fig-
ure 3). The CCS calculation using the Mobcal [1] software was
performed. This procedure was repeated for various trajecto-
ries. Comparison between the calculated CCS values of the
structure pairs with the CCS of their corresponding centroid
illustrates that the selection of the centroid as the representative
structure provides CCS values that are smaller than that of the
initial pair (Figure 3). In addition, as the initial k value and the
mutual similarity between each pair increases, the deviation of

the CCS of the centroid from the CCS values of the first and
second structures decreases. The change in this deviation is
significantly higher between the 10 to 50 cluster sets (Figure 3b
and c) than the 1 to 10 sets, which is in agreement with the
cluster behavior at the elbow-point suggested by the TWSS
plot. It is worth mentioning that the Mobcal [1] software was
incapable of calculating the TM-CCS values for a majority of
the centroids resulting from the no clustering analysis, most
likely due to significant disruption in the geometry of the
generated centroids (Figure 3). That is, the centroid geometry
tends to improve as the number of clusters increases from 1 to
10 to 50.

Supplementary Figure 5 shows the average (over 5000
structures) potential energy associated with collision cross-
sections for structures corresponding to 1000 separate produc-
tion MD trajectories. The CCS values (Ωtotal) have been calcu-
lated using clustering of the 5000 frames of each trajectory
according to Equation 4. In general, no significant difference is
observed for different alignment methods (top versus bottom in
Supplementary Figure 5) performed before cluster analyses.
Although the majority of the resulting CCS values matches the
experimental results for the twomore compact conformer types
of [M+3H+]3+ ions, the overall distribution (Supplementary
Figure 5, all panels) is a relatively narrow CCS range and does
not correlate to the more elongated conformer type. This can be
indicative of inaccuracy in the CCS calculations. Notably, the
width of the distribution for 50-k clusters is slightly larger than
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Figure 3. Schematics showing challenges with the use of centroid geometries for CCS calculations. Each row compares the
calculated CCS values for the centroid and the original structures. The two structures on the left of each row are the conformers with
the maximum RMSD within a single cluster in a production MD run. Geometries on the right are the calculated centroid of the
conformers on the left. No cluster analysis is performed for the top row (RMSD= 12.57 Å), and for the middle and bottom rows, the
maximum number of clusters is confined to 10 (RMSD= 5.18 Å) and 50 (RMSD= 2.66 Å), respectively
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the 10-k centroid sets with an overall shift toward higher CCS
values. This suggests that increasing the number of clusters
results in increased accuracy in CCS determinations; however,
the accuracy gain with this approach is expected to be limited
as further increase in k value beyond 50 (the elbow-point)
would not significantly affect the cluster members in terms of
similarity. It would, however, increase the computation time.

Because the centroid is a mathematically generated 3D
arrangement of the atoms based on averaging the Cartesian
coordinates of the multiple structures in the corresponding
cluster, in a sense, it lacks any realistic physical meaning. This
is observed in the centroid geometries illustrated in Figure 3.
Also, as demonstrated in Figure 3 and Supplementary Figure 5,
this lack of physical meaning in centroid geometry is a source
of significant error in CCS calculation. To address this issue,
different strategies can be applied. Although these centroids
can be reconstructed to a more realistic conformation via a
variety of geometry optimization techniques, resulting struc-
tures merely follow the energy level criteria, which does not
guarantee the preservation of the memory of the trajectories
from which they have been sampled. It may be argued that this
loss in the trajectory information through geometry optimiza-
tion and structural reconstruction can lead to inaccuracy in the
intended trajectory representation. A remedy to these problems
is the use of the closest structures to the centroid as the cluster-
representative conformation.

Closest Structure to a Centroid
as the Representative Species

In a cluster, the structure with the lowest RMSD relative to the
centroid displays the highest degree of similarity to the centroid
among all cluster members without having the attendant struc-
tural disruption of the centroid. To investigate the behavior of
these more realistic structures and the accuracy of this ap-
proach, CCS calculations were performed for all the closest
structures to the centroids obtained from cluster analysis (k = 1,
10, and 50). Subsequently, the TM-CCS values of the corre-
sponding trajectories (Ωtotal) were calculated using Equation 4.
Since the pre-clustering method of structure alignment (all-
atom and backbone-only RMSD orientation) does not affect
the resulting CCS values (Supplementary Figure 5), the CCS
calculations were only performed for the backbone-only
RMSD-oriented trajectories.

To benchmark the accuracy of different CCS determination
approaches, the accurate CCS values (Ω*) for the 10 reference
structures are compared with Ωtotal values obtained with these
methods. Supplementary Figure 6 shows the Ωtotal values after
cluster analysis with k value of 1 and the accurate Ω* values. A
comparison between these two data sets illustrates that geometry
averaging over the trajectories without subsequent clustering
leads to inaccuracy in CCS determination; not a sufficient num-
ber of structures is sampled. The error associated with these
Ωtotal values is 5.9% on average with a maximum value of 15%.

The comparison of the no clustering method introduces the
question of how clustering affects the overall accuracy. The

Ωtotal values have also been determined using the centroids
generated after 10-k and 50-k cluster analysis. Plotting the
average potential energy of the trajectories versus their calcu-
lated Ωtotal values (Figure 4) reveals a high degree of similarity
in energy-CCS distributions obtained from the 10-k and 50-k
cluster analysis.

For direct comparisons among the accuracy achieved from
the various cluster analysis methods, the Ωtotal values obtained
from different clustering methods for 10 reference trajectories
were compared with their corresponding Ω* values. Figure 5
shows these comparisons as well as the CCS values for each of
these 10 reference structures. As mentioned above, these 0 K
(annealed) structures do not convey information about peptide
ion dynamics and therefore do not accurately capture the trans-
port properties of the conformers at 300 K as indicated by the
CCS value differences shown in Figure 5.

A useful comparison for this discussion is that of the Ωtotal

values calculated after cluster analysis with k values of 10 and
50 while using the centroids as the representative structures. In
comparison withΩ*, the Ωtotal values for the former clustering
method lead to a 9.5% error on average with a maximum value
of 23%. These values decrease to 6.3% and 10%, respectively,
for the latter cluster analysis (k = 50). Such large error values
support the claim of the inadequacy of centroids to represent
the clusters and, by extension, the overall trajectory CCS
values.

The Ωtotal values of the 10-k and 50-k cluster analyses
obtained while utilizing the closest structures to the centroids
as the cluster-representative members are also shown in Fig-
ure 5. Overall, the 10-k results exhibit a larger deviation from
Ω*. The average error associated with this analysis is 1.7%
with a maximum value of 5.6%. For the same dataset, as the
number of clusters generated increases to 50, the error de-
creases to 0.39% and 0.97% as the average and maximum
values, respectively.

Overall, the selection of the closest structure to the centroid
as the cluster-representative conformer rather than the centroid
itself not only improves the overall accuracy but also captures
the change in accuracy between the 10-k and 50-k cluster
analyses (Figure 5). Thus, the approach can improve the com-
putation time by utilizing a cluster analysis with lower k values
depending on an acceptable error threshold. Considering the
error threshold of 1% to 2% in our experimental analyses, the
results generated with the 50-k, closest-structure-to-the-
centroid clustering method will be employed in future studies
as described in subsequent manuscripts associated with this
work.

Candidate Structures

Experimental CCS values can be calculated from drift time
values for dataset features [11]. A time increment of 0.1 ms was
utilized to scan the drift time selection for these ions; therefore,
a maximum error of 0.05 ms can be associated with the arrival
time measurements. Here it is noted that this represents an
upper limit. The drift time measurements are checked daily
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for accuracy by comparison with [M+3H]3+ and [M+2H]2+

angiotensin I and bradykinin ions, respectively. Collision
cross-sections agree with reported values to < ±1%. Notably,
for triplicate analyses of these ions, scaled drift times (account-
ing for buffer gas pressure) were not observed to change (i.e.,
<0.1 ms). For the [M+3H]3+ peptide ions, three different con-
former types are observed. The conformer type having the

greatest intensity was chosen for the gas-phase HDX measure-
ments. Therefore, the focus here is on the compact conformer
type (Ω = 417 ± 3 Å2) and the slightly more diffuse conformer
type (Ω = 438 ± 3 Å2).

Ωtotal values have been determined for four distinct sets of
simulations including two different charge arrangements and
two different conformational space sampling methods of 40-ps
and 1200-ps SA runs (see Experimental section). These calcu-
lated values for the corresponding trajectories were compared
with experimental CCS values to obtain a match for the com-
pact and more elongated ion conformations (Figure 1). The
production MD trajectories resulting in matching CCS values
were selected as the candidate-structure-originating trajecto-
ries. For the compact conformer type, 63 (out of 4000) trajec-
tories fall within the CCS range for compact ions, and 261
trajectories result in Ωtotal values that match the CCS value of
the more diffuse conformer type. Figure 6 shows two structures
for each conformer type with different protonation sites. Nota-
bly, these conformations are the annealed structures at 0 K that
provided trajectories with matching CCS from dynamics at
300 K. Two candidate structures with matching CCS values
for the compact conformer contain protonation sites of K(6),
K(11), and K(21). The first structure exhibits α-helical second-
ary structure extending from the K(6) to the K(16) residue,
whereas the second structure exhibits primarily a random coil
conformer type. For the compact conformer type having the
protonation site of K(6), K(16), and K(21), differences in
structures are also observed (Figure 6). One displays a turn in
the center whereas the second has two turns at the N-terminus
and the C-terminus. For the more diffuse conformer types,
Figure 6 shows examples in which one structure exhibits more
helical nature whereas the second contains more random coil
characteristics for both charge configurations. Notably, all
other candidate structures exhibit a wide degree of structural
difference. Overall, structures with significant α-helical char-
acter exhibit greater stability for this model peptide. This may
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be expected based on the high α-helix propensity of a
polyalanine peptide and the ability to preserve such structures
into the gas phase [10, 60].

A major aim of this study was to find the best structure (or
structures) with significant similarity to the gas-phase conform-
er types. Figure 6 demonstrates that another criterion for filter-
ing candidate structures is necessary. It may be argued that
potential energy values can be utilized to find the most stable
gas-phase structure and thus be presented as the best match.
This argument would be correct if the ions presented equili-
brated gas-phase structures, and, as mentioned above, some
studies provide evidence contradicting this assumption [7, 19,
23]. In addition to this challenge, the reliability of the compar-
ison to CCS values alone cannot be evaluated. That is, the
method results with an in-silico structure with no further pro-
vision to check the accuracy of the match. It can also be argued
that the structures sampled by the MD procedure may not
contain species resembling the actual gas-phase conformer type
produced in the experiment; that is, there is no guarantee that
conformational space sampling produces all types of structures.

To begin addressing these issues, gas-phase HDX has been
introduced as a second criterion for structural characterization
[27–29, 61, 62]. In the second installment of this work, com-
parisons of the experimental deuterium uptake values and the
hypothetical values (obtained from a modified algorithm
assessing the accessibility of hydrogens on candidate struc-
tures) are used to improve conformer selection and to assign
relative population values along a MD trajectory.

Conclusions
CCS measurements coupled with MD simulations can serve as
a tool for biomolecule structure investigations. Using this ap-
proach, a model peptide is employed to develop an advanced
protocol for MD simulations. Extensive parameter optimiza-
tion and method validation are utilized to perform comprehen-
sive sampling of higher energy and more thermodynamically
stable structures, which exhibite an extended range of structural
variety. Therefore, the sampled structures accounted for a wide
range of structure types that may be produced by electrospray
ionization (Supplementary Figure 7).

MD simulations at 300 K were carried out to monitor gas-
phase ion dynamics. CCS calculations reveal that no single
structure is representative of the variety of conformers accessed
by structural fluctuations. However, careful clustering and data
mining can be used to obtain accurate CCS values. Although, as
shown here, the data mining with clustering that employs the
closest structure to the centroid as a representative structure
provides an answer to this problem, the number of clusters plays
an important role in the accuracy of the calculated CCS values.
Here, it is proposed to use cluster numbers associated with the
elbow-point criterion for improved accuracy. CCS values calcu-
lated using the optimized parameters exhibit < 0.1% error com-
pared with the accurate reference (Ω*) values.

Experimental CCS values are used to filter the sampled
structures and result in more than 300 nominal structures. A
wide variety of structures, many with completely different
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Figure 6. Several in-silico structures (annealed) with matching CCS values to experimentally determined CCS values for compact
(top panels) and diffuse [M+3H+]3+ ions (bottom panels) of the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. The left panels
show structures with protonation sites of K(6), K(11), K(21), and the right panels show those with protonation sites of K(6), K(16),
K(21). The structures were obtained from the higher-energy and thermodynamically-stable pool of in-silico data. The CCS
comparisons were performed between experimentally-obtained CCS values and the calculated Ωtotal values for trajectories at
300 K and originating from the annealed structures
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secondary structural aspects, meet the CCS filtering criterion.
From the experimental data, there is no preference for selection
among these structures or to assign relative population numbers
for these species. Gas-phase HDX is proposed to serve as a
second criterion to begin addressing this problem. Upcoming
work will show the application of HDX filtering for assigning
the populations of structures from different structural types.
Hydrogen accessibility modeling will be utilized to produce a
hypothetical deuterium uptake pattern for each in-silico struc-
ture from which a population number can be allotted to struc-
ture types.
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