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Abstract. Quadrupole mass filters using non-sinusoidal driving potentials present
exciting opportunities for new functionality. Predicting figures of merit like resolving
power and transmission efficiency helps characterize these emerging devices. To this
end, matrix methods of solving the Hill equation of ion motion are employed to
calculate stability diagrams and pseudopotential well depth maps in the a,q plane
for arbitrary waveforms. The theoretical resolving power and well depth of digital,
trapezoidal and sinusoidal mass filters are compared. Simplified expressions for
digital mass filter operation are presented.
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Introduction

Quadrupole mass filters and guides are integral com-
ponents in many mass spectrometers. These devices

are generally operated with sinusoidal waveforms applied
to the electrodes with opposing electrodes electrically connect-
ed and each pair receiving an rf potential 180° out of phase
from the other. Optionally, a DC potential may be applied
between the two rod sets to narrow the range of stable m/z
values and create a mass filter. For sinusoidal mass filters, the
width of the stable mass window is varied by altering the ratio
of the DC to rf potentials. The mass window is then scanned by
ramping both the DC and rf potentials simultaneously at a fixed
frequency.

Recently, a number of non-sinusoidal quadrupole mass filters
have appeared in the literature [1, 2]. These devices operate with
digitally producedwaveformswith the frequency varied and the rf
and DC potentials fixed. A mass filter can also be created by
imposing a DC potential between the rods and reducing the width
of the mass window by increasing the DC/rf potential ratio.
Digitally operated quadrupoles can also create mass windows of
variable width by changing the duty cycle, δ, (defined as the
fraction of the period when the high state is applied [3]) of one
or both electrode pairs without applying a static DC potential
between the rods. In either mode of operation, the stable mass
window of the digitally operated quadrupole mass filter can be
scanned by stepping the frequency of the applied waveforms.

Digital ion guides have shown improved ion handling
that enables ion collection and MSn in a single guide [4].
Trapezoidally-driven devices were originally examined by
Richards et al. in the 1970s when early digital waveform
generators exhibited very limited slew rates [5, 6]. More
recently, Shinholt et al. [2] produced a digitally driven
mass filter that employed trapezoidal waveforms to mass
analyze CsI clusters up to 20,000 Th. These nontraditional
waveforms present many exciting performance-enhancing
possibilities for quadrupole mass spectrometers, but dis-
covering and exploring their unique capabilities requires
the ability to accurately plot their stability diagrams. Ma-
trix methods developed by Pipes [7], Richards et al. [5],
and others [8–10] over the past 70 years provide the tools
that allow mass spectrometrists to analytically solve the
Hill equation at all points in the a,q plane and to precisely
map the stability diagram of ions confined in an oscillat-
ing quadrupolar field. Matrix methods also permit the
calculation of the pseudopotential well depth at each point
in the a,q plane [11]. These calculations provide the
framework for comparison of various mass filters that
can be created with sinusoidal and digital waveforms.

Matrix methods for calculating stability diagrams have been
applied to rectangular and sinusoidal waveforms [8–12] but
they are not limited to these well-studied driving waveforms;
these methods are applicable to any periodic quadrupolar po-
tential. In this paper, the performances of quadrupole mass
filters (QMF) driven by several different driving waveform
are evaluated.Correspondence to: Peter T. A. Reilly; e-mail: pete.reilly@wsu.edu
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Methods
The Mathieu equation defines ion motion in a sinusoidally
oscillating quadrupole field and allows precise prediction of
ion trajectories. It is a special case of the more general Hill
equation with only 1 harmonic mode. On the other hand, ion
motion in any periodically oscillating quadrupolar field can be
precisely calculated with the more general Hill equation. The
Mathieu and Hill equations are second order linear differential
equations that can be solved by standard methods.

One of the methods of solving the Hill and Mathieu equa-
tions is the matrix method first outlined by Pipes [7]. This
technique relies on creating a series of 2×2matrices describing
ion behavior during a series of constant potential steps that
comprise one period of the driving waveform [8–10]. If the
velocity and position of an ion is known at the beginning of
each constant potential interval, the velocity and position of the
ion at the end of each interval can be precisely calculated.
These matricesmay bemultiplied sequentially over any portion
of an rf period to define ion motion over that interval. Defining
the ion motion over one whole period of the waveform estab-
lishes whether ion motion is periodic and stable.

In the case of rectangular waveforms, ion stability may be
calculated precisely using only a handful of matrices because
the waveform can be exactly defined by a small number of
constant potential intervals. Continuous waveforms such as
sine waves cannot be exactly defined without using an infinite
number of constant potential steps, but satisfactory results may
be achieved with as few as 14 steps [9]. The accuracy of
waveforms approximated by discrete voltage intervals is deter-
mined by the number of time/voltage steps used, with addi-
tional time steps improving accuracy at the expense of compu-
tation time. As a compromise, non-rectangular waveforms
treated in this work were approximated with 128 voltage steps.
Figure 1 illustrates the stepped waveforms used in the calcula-
tions discussed throughout this paper. The duration of all steps
need not be equal if variable duration better approximates the

continuous waveform. All of the waveforms discussed in this
paper are idealized (without any noise or harmonics), but
matrix methods may also be used to treat noisy or distorted
driving potentials [13].

The accuracy of these calculations may be judged by com-
paring the boundaries of the generated stability diagrams with
those in the literature. Calculations using the 128 point sine
wave predict that the low mass cut-off will occur at q=0.908,
the same value returned by the Mathieu equation. Shinholt
et al. [2] report the apex of the stability diagram of one trape-
zoidal waveform at (0.670, 0.230) found by SIMION ion
trajectory simulations. Matrix calculations using a 128 step
approximation illustrated in Figure 1 (green trace) of the same
trapezoid places the apex at (0.6747, 0.2370).

It should be noted that trapezoidal waveforms represent a
series of intermediates between rectangular and triangular driv-
ing potentials. The stability diagram for trapezoidal waveforms
varies dramatically with the slew rate and duty cycle. In the
limit where rise time approaches zero, the stability diagram
converges on that of a rectangular wave. In the limit where rise
time approaches one-half of the period, the stability diagram
converges on that of a triangular wave. See Figure 2 for a
comparison of stability diagrams for these waveforms. The
variation of the trapezoidal stability diagram (green) with slew
rate is depicted by the green arrow that lets the apex range
between the square wave (blue) and the triangular wave (red)
stability diagrams.

Generating the stability diagram for a particular driving
waveform entails calculating the trace of the transfer matrix
for a large number of points in the a,q plane. The stable region
is bounded by curves where the stability parameter, β, has a
value of 0 or 1. At each point within the stable region, βmay be
calculated from the trace using the following expression for the
boundary condition: [3, 8, 10]

jTr Muð Þj ¼ m11 þ m22 ¼ 2cos βuπð Þ ð1Þ

Figure 1. Oneperiod ofmatrixmethod compatible representations of drivingwaveforms; 128 constant potential steps approximate
each non-rectangular wave
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β and various approximations thereof have long been used
to calculate the pseudopotential well depth. The canonical
relationship between well depth and β is [11]:

Du ¼ −
βu

2V

2qu
ð2Þ

Because the matrix method calculates β as a function of the
Mathieu parameters and waveform shape, it is possible to
calculate the pseudopotential well depth for a particular driving
wave at any point within the stability region. Solving Equation
(1) for β and substituting the result into Equation (2) yields an
exact expression for the relationship between a, q, and β for any
periodic driving waveform [11]:

Du ¼ −
V

π2qu
cos−1

jm11 þ m22j
2

� �� �2
ð3Þ

In this way, independent plots of well depth along the x- and
y-axes may be generated over the a,q plane for an arbitrary
driving waveform. Thewell depth plots in Figure 3 were created
by comparing the well depth along the guide’s two orthogonal
axes and plotting the smaller of the two values. These plots
reveal a notable relationship between digital and sinusoidal
QMFs. Each point in the digitally driven QMF well depth plot
in Figure 3c may be converted to the sinusoidally driven QMF
well depth plot (Figure 3a) by scaling the q axis and the value of
q in Equation (3) by a factor of 4/π [14]. As a consequence of
Equation (2), the well depth of a sinusoidal QMF is shallower
by the same factor when the two devices are operated at the
same voltage. This numerical relationship between the stability
diagrams is not surprising because 4/π is the coefficient of the
Fourier series representation of a square wave. There is no
substantive difference between a scaled square wave well depth
plot and one created by applying methods to an approximated
sine wave. Previous work by our group has used two-
dimensional well depth plots along the a=0 line to predict
improved performance in digital ion traps by manipulating duty

cycle [11]. The three-dimensional plots presented here permit
the comparison of quadrupole mass filters operating in different
modes and driven by arbitrary rf potentials.

Mass Filter Operation

Quadrupole mass filters may be operated in two modes as
illustrated in Figure 3. A DC potential may be superimposed
on the rf waveform or the duty cycle of the driving waveform
may be adjusted. Digital and trapezoidal QMFs may operate in
either mode whereas sinusoidal QMFs are limited to the first
mode. When a DC potential is used, the a/q scan line (cyan lines
in Figure 3) tilts toward the apex of the stability diagram to limit
the values ofm/z passing through the sinusoidal and 50/0/50 duty
cycle digital devices as illustrated in Figure 3a and c, respective-
ly. Figure 3b shows the apex of a sinusoidal mass filter and the
line a/q=0.33314 generating 100 resolving power (R=q/Δq).
The stability diagram of a digital mass filter operated with a
superimposed DC potential is presented in Figure 3c. The line
a/q=0.42746 intercepts the stability diagram near the apex and
generates 100 resolving power. Because the two stability dia-
grams of these two QMFs are related by a factor of 4/π, the a/q
ratio required to achieve the same resolving power is related by
the same factor. This relationship also results in a maximumwell
depth 4/π times greater in digital mass filter. Figure 3e illustrates
the second operational mode. Modulating the duty cycle to
61.124/0/38.876 shifts the stability diagram downward to place
the apex near the line a/q=0, which generates equal resolving
power 100. Because duty cycle-based ion isolation does not
required a DC potential, fewer power supplies are needed to
achieve the same results. The two operating modes have much
in common, but the comparison of the two modes below reveals
subtle differences with large impacts on experimental design.

Results and Discussion
The matrix method discussed above makes it possible to
predict the behavior of any quadrupole mass filter. The

Figure 2. Stability diagrams for a linear quadrupole using four different driving waveforms. From right: square, trapezoidal,
sinusoidal, and triangular. Each unique wave shape generates a unique stability diagram
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pseudopotential well depth was calculated for each point
in a 1000 × 850 grid covering the first stability region of
the a,q plane to create the stability diagrams in Figure 3.
The well depth along the indicated a/q lines was calcu-
lated at higher resolution (20,000 equally spaced points
spanning values of q from 0.5 to 1) and plotted in
Figure 4. For the purposes of comparison, appropriate
values of a/q or duty cycle were selected for each device
to achieve a resolving power, R, of 100. The deepest

point in the pseudopotential well was used to define q
and the full range of stable q values defined Δq.

This may be converted to the more familiar m/Δm
definition of resolving power using the definition of the
Mathieu parameter, q:

q ¼ 4zeV

mr20Ω
2 ð4Þ

Figure 3. Normalized well depth plots of (a) and (b) sinusoidal QMF; (c) and (d) digital QMFwith 50/0/50 duty cycle; (e) and (f) digital
QMF driven by 61.124/0/38.876 waveform. Ion motion is unstable outside of the red boundary. The figures at right are the enlarged
apices of the stability diagrams at left. For each diagram, the cyan line is the a/q ratio required for R=q/Δq=100
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The resulting relationship is:

q

Δq
¼ m

Δm
ð5Þ

Because Δq includes ions that pass through the mass filter
regardless of transmission efficiency, Δm obtained from Equa-
tion (5) will be larger than what might be observed experimen-
tally. Consequently, the resolving power calculated from q/Δq
provides a conservative estimate.

The pseudopotential well depth provides a first order ap-
proximation of transmission efficiency [15]. The quantitative
relationship between these values may be determined by ex-
periment or by more sophisticated modeling, which accounts
for device geometry and the fringe fields experienced by ions
entering and leaving the mass filter. For the purposes of com-
parison, this work assumes only that transmission efficiency
increases monotonically with well depth, regardless of q. The
calculations presented allow evaluation of the performance of
mass filters driven by novel waveforms. At the same rf voltage
and resolving power, digital guides outperform sinusoidal sys-
tems by a factor of 4/π in terms of sensitivity. However, the
differing operating modes of these systems warrants further
discussion.

Sinusoidally-driven QMFs operate at fixed-frequency and
pass ions through a mass window, the width of which is
defined by the ratio of a to q. The mass window is scanned
by simultaneously ramping the DC and rf voltages along a
constant a/q line to obtain a constant resolving power across
the mass range as follows from Equation (5) [16]. Because V is
increased to select a higher value of m/z, the maximum well
depth also increases as described by Equation (2), resulting in
improved sensitivity at constant resolving power. In practice,
the a/q ratio of sinusoidal instruments is often increased
nonlinearly to maintain a constant mass window (Δm) as the

rf voltage is increased. As the a/q line moves closer to the apex
of the stability diagram, the value of β approaches the boundary
condition. The combination of increasing rf voltage and de-
creasing the difference between β and its value at the boundary
maintains a constant maximum well depth via Equation (2)
even as the resolving power (m/Δm) increases.

In contrast, digital QMFs operate by varying the frequency
and duty cycle of a fixed-magnitude rf wave. As in sinusoidal
QMFs, the resolving power of digital quads is constant across a
wide range of masses. Because well depth at a given value of q
is not affected by frequency, it is mass independent in digital
devices. A constant mass window may be maintained with
increasing mass for digitally operated quadrupoles by either
applying a DC potential between the rod sets or increasing the
duty cycle of the driving waveform. However, because the
maximum rf voltage remains constant while β approaches the
boundary, maintaining a constant mass window with increas-
ing mass concurrently decreases the maximum well depth and
sensitivity. The relationship between duty cycle, resolving
power, and pseudopotential well depth in a digital QMF may
be seen in Figure 5. If there is no non-quadrupolar interval in
the driving waveform [3, 17], the well depth reaches 0 V and
the resolving power asymptotically increases until a duty cycle
of 0.612099. This seems to imply that infinite resolving power
is possible. In practice, the resolving power is limited by the
presence of buffer gas, imperfections in the electric field, and
the ions’ distribution of initial kinetic energies. The symmetry

Figure 4. Comparison of well depth for several mass filters
operated with 100 resolving power

Figure 5. Maximum pseudopotential well depth (circles) and
resolving power (triangles) along the a/q=0 line for digital QMF
as a function of duty cycle. Data from matrix calculations are
plotted as points. Equations (6) and (7) describe the fitted
curves
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of the ion guide and stability diagram creates another asymp-
tote at 0.387901 which exhibits the same behavior [6].

Generating a unique stability diagram for each change in
duty cycle may go beyond the needs of the typical digital QMF
user. It would be convenient to have an algebraic expression
approximating the relationship between duty cycle and resolv-
ing power depicted in Figure 5. An empirical fit of the resolv-
ing power data yields:

q

Δq
¼ δ

11:5⋅δo⋅ δo−δj j
� �

ð6Þ

where δ is the operating duty cycle and δo is the duty cycle at
the asymptote. This function tracks q/Δq to within 0.1% for
R<1000 and provides a conservative approximation of opera-
tional resolving power. Extremely precise control of duty cycle
is required to set a particular Δm because resolving power
increases very rapidly as the operating DC approaches δo [6].
This level of duty cycle precision is attainable provided the
clock frequency can be phase-coherently switched while the
arbitrary wave is being written [18].

Comparing the pseudopotential well depth of two mass
filters gives insight into their relative transmission efficiencies.
An empirical fit of the maximumwell depth obtained at a given
duty cycle along the a/q=0 line is depicted in Figure 5 and may
be expressed as:

Dmax ¼ Vp−p

2
1−

δ − 1
�
2

�� ��
δo − 1

�
2

 ! !
ð7Þ

The value of q corresponding to the deepest well depth
along the a/q=0 line must be known in order to select the
operational parameters for a particular mass. This q value is
related to duty cycle in a less straightforward manner than
resolving power and well depth, but Equation (8) approximates
this relationship with less than 0.2% error. For duty cycles
resulting in R>100, the error drops to less than 0.02%.

qDmax
¼ 0:1085

δ − 1
�
2

�� ��
δo − 1=2

 !2:3

ð8Þ

These three equations provide a starting point for designing
future experiments utilizing digital quadrupole mass filters.

Conclusion
The relative performances of current and emerging quadrupole
mass filter devices were considered. The application of matrix
methods to solve the Hill differential equation allows the
pseudopotential well depth to be mapped at any point in the
a,q plane for arbitrary periodic quadrupolar waveforms. This

map was used to examine the relationship between resolving
power and sensitivity in sinusoidal and digital quadrupole mass
filters. Equations approximating the performance of digital
QMF as a function of driving waveform duty cycle were
determined.
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