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Abstract. The Comet database search software was initially released as an open
source project in late 2012. Prior to that, Comet existed as the University of
Washington’s academic version of the SEQUEST database search tool. Despite its
availability andwidespread use over the years, some details about its implementation
have not been previously disseminated or are not well understood.We address a few
of these details in depth and highlight new features available in the latest release.
Comet is freely available for download at http://comet-ms.sourceforge.net or it can be
accessed as a component of a number of larger software projects into which it has
been incorporated.
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Introduction

In a seminal paper published in 1994, the ability to sequence
peptides by searching uninterpreted tandem mass spectra

(MS/MS) against protein sequence databases was disseminated
to the proteomics community [1]. Now over 20 years later, MS/
MS database searching has become arguably the most com-
monly applied computational proteomics analysis method in
practice. Not surprisingly, a number of novel MS/MS database
search tools have been developed over the years [2] but the
SEQUEST algorithm continues to be widely used.

SEQUEST was originally developed at the University of
Washington and commercially licensed to the Thermo Electron
Corporation. For a number of years through the 1990s,
SEQUEST existed in two forms: the academic version
developed at University of Washington and the commercial
version distributed by Thermo. Over the years, SEQUEST-
like tools have expanded to include a commercial version
from Sage-N Research (Sorcerer [3]), other academic ver-
sions developed at the University of Washington (Crux [4],
Tide [5]), Scripps Research (ProLuCID [6]), and Dartmouth
College (macroSEQUEST [7],Tempest [8]) among others. In
2012, the University of Washington’s version of SEQUEST

was released as an open source project and renamed Comet [9].
This article describes in detail some of the features and opti-
mizations in the latest version of the Comet software tool.

High resolution MS/MS data are more common these days
because of improvements in instrumentation with Orbitrap
(Fourier transform) and Time-of-Flight analyzers. With ad-
vances in instrumentation, the ability to generate high resolu-
tion MS/MS spectra at a fast acquisition rate makes such data
much more ubiquitous. While accurate MS/MS fragmentation
spectra allow for more stringent identifications due to the
significantly increased selectivity of matching fragmentation
peaks with tight mass tolerances, such data poses a challenge to
the Comet algorithm, and SEQUEST before it, with respect to
how the data is represented internally. With spectra stored as
discrete arrays of numbers, where the array index represents the
mass and the array value at that index representing the intensi-
ty, a high resolution spectrum requires a lot of memory to be
stored in this array data format because of the large number of
small mass buckets or bins. A detailed description of what such
mass bins represent, how optimal bin sizes were determined for
low and high resolution data, and two different mechanisms for
addressing memory use for high resolution data will be pre-
sented in this paper.

In 1995, the second paper to be published on the SEQUEST
algorithm described the ability to search for post-translational
modifications [10]. Being able to identify modified residues not
contained in the protein sequences stored in sequence databases
is a powerful method, with numerous applications for biolog-
ical insight. For example, Swaney et al. were able to identify
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over 2,000 phosphorylation sites co-occurring with over 2,000
ubiquitylation sites in S. cerevisiae, allowing the investigation
of how phosphorylation can be regulated by ubiquitylation
[11]. In a different application, the ability to search for post-
translational modifications enabled Chavez et al. to identify
cross-linked proteins in living human cells, demonstrating the
ability to make direct topological measurements and provide
evidence for novel protein–protein interactions [12]. In order to
provide researchers with more flexibility in how post-
translational modifications can be analyzed, the most recent
release of Comet incorporates additional new options for mod-
ification analysis, which will be described in detail below with
usage examples.

Materials and Methods
Comet is written in C++ and developed on both Linux and
Windows operating systems. Comet incorporates the
MSToolkit file parsing library [13] to read mass spectral data
in various formats. Multi-threading is implemented using
POSIX threads on Linux and Windows native threads on
Windows. The computer configuration used for all analyses
and benchmarks is a dual Intel Xeon E5-2470 2.4 GHz CPU
(eight total physical cores) with 64 GB RAM, running Red Hat
Enterprise Linux Server 6.5. False discovery rates and q-value
calculations are based on ordering results by Comet’s E-value
score and then computing, for a concatenated target-decoy
search, the ratio of the number of accepted decoy matches
divided by the number of accepted target matches at a given
score threshold. Mass spectral data files used in the analysis
presented here were downloaded from the PRoteomics IDEn-
tification (PRIDE) [14] repository or the Stem Cell Omics
Repository (SCOR) [15].

Results and Discussion
Sparse Matrix Representation of Spectra

The core scoring algorithm in SEQUEST is the cross-
correlation score or xcorr. In the 1994 manuscript, the cross-
correlation score was calculated by performing Fourier trans-
forms on both the experimental spectrum and the theoretical
spectrum, multiplying one transform by the complex conjugate
of the other transform, and performing an inverse Fourier
transform. This mathematical operation generated the full cor-
relation spectrum from which the cross-correlation score was
derived. In 2008, a method to calculate the cross-correlation
score in an efficient manner was published [16], where each
experimental spectrum was preprocessed in a way that allows
the cross-correlation score to be calculated by simply summing
up processed intensity values at each theoretical fragment ion
mass location. This optimization enabled the cross-correlation
score to be applied to scoring all peptides instead of just the 500
best candidate peptides in the original implementation, en-
abling E-value [9] and p-value [17, 18] calculations based on

the cross-correlation score distribution. Performance compari-
sons of Comet with other search engines can be found in [1]
and [2] and a comparison of Comet versus SEQUEST cross-
correlation scores is presented below.

Inherent in both forms of the cross-correlation calculation is
the representation of the experimental spectrum as a discrete
array where the array index represents the mass and the array
value at that index represents the intensity of a peak at that
mass. This data representation is depicted in Figure 1. In this
example, an integer array named spec stores a digital represen-
tation of the mass spectrum where each array index is 1 Da
wide and represents the corresponding integer mass-to-charge
(m/z). The peak intensity is stored as the array value at that
mass index. When more than one peak is present in a mass bin,
the largest peak intensity is stored. For the fast cross-correlation
calculation, this data representation is extremely efficient be-
cause the intensity lookup for each calculated fragment ion
mass can be accomplished by reading the intensity value stored
at the corresponding mass index using a direct lookup in the
spectral array.

The array index for a spectrum does not need to be exactly
1 Da wide. In fact, the optimum mass bin width is 1.0005 for
low resolution data such as that acquired on an ion trap detec-
tor, and we recommend a mass bin width of 0.02 for high
resolution spectra. In Comet, this bin size setting is controlled
by the parameter Bfragment_bin_tol.^ For any given mass m
and bin width w, the appropriate array index idx for any given
mass is determined by the equation Bidx=(int)(m/w)^, which
simply defines the array index as the integer value of the mass
divided by the bin width. This allows for the array representa-
tion of a spectrum at any arbitrary bin width value. For high
resolution data, much narrower bin widths are necessary to take
advantage of the high mass accuracy measurements on the
fragment ion masses. But as the bin width w is reduced
from say 1.0 to 0.01, the corresponding spectral array
grows 100-fold larger in size to accommodate the much
smaller mass bins. Accordingly, the memory requirements
to internally store the spectral data in this array format is
increased 100-fold, making this representation untenable for
the analysis of standard-sized LC-MS/MS runs on typical
desktop computers.

To address the memory issue when small mass bins are
used, a sparse matrix data representation was developed.
In Comet version 2015.01, a new sparse matrix format was
implemented that trades off some memory efficiency for
increased speed and stability compared with the original
sparse matrix implementation used in the previous releases.
The sparse matrix option is invoked by setting the parameter
Buse_sparse_matrix=1^. The motivation behind developing
the sparse matrix option is that high resolution spectral peaks
are sufficiently resolved such that hundreds of mass bins
between peaks contain no intensity values when using a
small mass bin size. These empty bins reserve large blocks
of memory without contributing to the analysis. Many of
the empty bins are removed using a two-dimensional sparse
matrix to represent each spectrum. The first dimension
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divides a spectrum into broad segments, and the second
dimension divides each segment into a series of bins sized
according to the Bfragment_bin_tol^ parameter setting. One
hundred bins per segment was determined to be optimal
(see Supplemental Materials for supporting data). If all the
bins in a segment do not contain any peak information, the
entire segment is released and the memory is not used. See
Figure 2 for a visual depiction of the sparse matrix data
representation. During peak matching, a simple hash func-
tion converts each requested m/z value to the two-
dimensional coordinates of the sparse matrix. If the seg-
ment requested by the first coordinate is null, indicating all
bins would return a null value, the process moves to the
next m/z value. If the segment is not null, the value in the
bin represented by the second coordinate is returned. The
overhead on the whole process occurs in two places: (1) a
one-time overhead converting the full matrix to sparse
matrix prior to searching, and (2) a small amount of
additional time required to perform the hash operation for
each m/z value being compared.

Spectrum Batches

Despite the memory savings with the sparse matrix represen-
tation, there exist high resolution LC-MS/MS data sets that are
still too large to fit into the memory of some desktop com-
puters. The Bspectrum_batch_size^ parameter is a second op-
tion in Comet developed to address memory use; this search
option can be used independently or in conjunction with
Buse_sparse_matrix.^ For a typical search, Comet loads all
spectra into memory, performs all processing on the spectral
data, and searches all spectra against all peptides in a single
pass through the sequence database. This is the optimal ap-
proach to searching the data because the sequence database is
parsed just once and fragment ions are calculated just once for
each candidate peptide and scored against every relevant query
spectrum. When a non-zero Bspectrum_batch_size^ is speci-
fied, Comet will iteratively load that many spectra at a time,
perform a search through the database, report results, and
repeat the process with the next batch of spectra until every
input spectrum has been searched. By only loading a subset of

Figure 1. A depiction of the representation of a mass spectrum in an array format

Figure 2. Illustration of the sparse matrix format. (a) Linear representation of a spectrum array. Each box represents a bin: gray
boxes are empty and yellow boxes have a non-zero value. (b) Two-dimensional representation of the linear array. (c) The sparse
matrix ismade by freeingmemory for each row (segment) where all bins are null. A single bin remains at the start of the row to indicate
the null pointer representation of the segment. Panel (c) shows a 40% savings in memory usage. Actual savings vary for each
spectrum depending on bin size, scan range, signal density, and frequency of empty bins
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spectra at a time, the memory use is proportionally reduced.
The tradeoff is an increase in search times because of the
redundant passes through the sequence database and redundant
fragment ion calculations of candidate peptides for each batch.
To evaluate the effects of both the Buse_sparse_matrix^ and
Bspectrum_batch_size^ parameters, a high-resolution LC-MS/
MS run containing over 18,000 MS/MS spectra was searched
against yeast and human sequence databases. Variable modifi-
cation of 15.9949 on methionine was applied to the yeast
search and an additional 79.966331 on serine, threonine, and
tyrosine was applied to the human database search. Both low
resolution and high resolution MS/MS search settings were
evaluated. The Bspectrum_batch_size^ parameter was set to
3,000 when applied. See Supplemental Materials for the details
on the search parameters, sequence databases, and raw file. The
search times results, tabulated in Table 1, indicate that the new
sparse matrix format is just as fast as the default array format.
For the low resolution search settings, the memory use is
minimal and is not a bottleneck for both the default array and
sparse matrix formats. But for the high resolution search set-
tings, the new sparse matrix format exhibits a significant 7- to
8-fold savings in memory use. Coupled with no degradation in
search times, it is recommended that this new sparse matrix
implementation always be applied going forward.

Search Speed and Memory Use Versus Spectrum
Batch Size

As mentioned previously, searches run most efficiently by
loading as many MS/MS spectra at a time into the computer’s
memory. Figure 3 shows memory use and run times for a query
set with 50,000 MS/MS spectra searched against a human
sequence database with the following search parameters: four
search threads, 20 ppm precursor tolerance with isotope error
option on, full tryptic search allowing two missed cleavages,
oxidized methionine variable modification, carbamidomethyl
cysteine as a static modification, and using the sparse matrix
option. Both high resolution and low resolution fragment ion
search settings are evaluated. Actual memory use depends on a
number of factors but the data presented in Figure 3 can be used
as a guide for determining memory use as a function of the
Bspectrum_batch_size^ parameter. The plots indicate that one
should run searches with batches of at least 10,000 spectra at a
time for optimum search speed. Going to even larger spectrum

batch size values is helpful but additional gains in search speed
plateau quickly.

Given the rapidly increasing data acquisition throughput of
modern instrumentation, the ability to process much largerMS/
MS datasets is a necessity for modern search engines. Comet is
well suited to handle this use case given the two developments
described here: the sparse matrix format for improved memory
efficiency and batch searching to facilitate iteratively analyzing
extremely large files. Comet will run well on any modern
computer where search throughput is directly related to the
CPU speed, core count, and, to a lesser extent, memory size.
The fast cross-correlation score is a spectrum-specific analysis
where every spectrum is processed independently of every
other spectrum. So there are no inherent issues to searching
extremely large queries beyond simply having to process more
spectra. The benchmark run times shown in Figure 3, using
four cores of a 2012-era Intel CPU, should assist users in
defining computer/server configurations suitable for the pro-
cessing throughput desired (e.g., double the CPU core count to
double the search throughput).

Impact of the Fragment Bin Offset Parameter

Comet has a parameter, Bfragment_bin_offset,^ that is impor-
tant but not well understood. The bin offset defines the align-
ment of the fragment mass bins relative to the fragment ion
peaks. Finding the mass bin index with an offset is accom-
plished using the equation Bidx=(int)((m/w)+offset)^where idx
is the array index,m is the mass,w is the bin width, and offset is
the bin offset. The importance of the bin offset parameter is
illustrated in Figure 4. In Figure 4a, all fragment ions from the
MS/MS spectra of a high-resolution LC-MS/MS run were
summed together and plotted. The figure displays the period-
icity in fragment ion and peptide m/z, clearly showing discrete
locations in the mass range where peaks exist and where there
are no signals (i.e. forbidden zones [19]), where there are no
peptide or fragment m/z at those values because of the elemen-
tal composition of amino acid masses. The smaller interleaved
peaks are due to doubly charged ions. In Figure 4b, the blue
lines depict the edges of the 1.0005 mass bins where the bin
offset is set to 0. In the original implementation of SEQUEST,
this is approximately where the bin edges lie as the concept of
the bin offset did not exist in that version nor were high
resolution MS/MS spectra common at that time. The bin edges
at the blue lines in Figure 4b are at the least optimal locations

Table 1. Run times (in minutes:seconds) and memory use for a combination of default, sparse matrix, batch size, and fragment bin width options. Memory use is a
function of the bin width setting plus the number of input spectra and does not vary with the sequence database size. Results indicate the new sparse matrix format
performs as fast as the default array format with the added benefit of significant memory savings for high resolution search settings

Database Bin width Default array Sparse matrix Default array + batch size Sparse matrix + batch size

Yeast 1.0005 1:56 1:59 2:32 2:32
Yeast 0.02 2:32 2:29 2:59 2:57
Human 1.0005 17:03 17:50 22:15 22:41
Human 0.02 18:56 18:41 23:27 22:23

1.0005 1.2 GB 1 GB 0.3 GB 0.2 GB
0.02 27 GB 3.4 GB 5.6 GB 0.8 GB
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because they split the major peaks. Minor fluctuations in mass
measurements, or instrumentation that is not properly calibrat-
ed, can result in a peak being assigned inconsistently to either
bin. Figure 4c illustrates the location of what might be consid-
ered more optimal bin edges using a 0.5 offset where the major
peaks are centered in each respective bin.

To demonstrate the effects of Comet’s Bfragment_bin_offset^
parameter on search results, we analyzed two LTQ Orbitrap
Velos runs (human ES cell lysates, see Supplemental Materials
for details). A human sequence database was searched and decoy
peptides were analyzed using the Bdecoy_search=1^ parameter
option, which generates on-the-fly decoy peptides and scores
them in competition with the target peptides as if searching a
concatenated target-decoy sequence database (see Supplemental
Materials for details of the decoy peptide generation). The
Bfragment_bin_tol^ parameter was set to 1.0005, and the bin
offsets were varied from 0.0 to 0.9 in 0.1 increments. The results
of this analysis are shown in Figure 5, in which the x-axis is q-
value [20] and the y-axis is the number of target peptide-
spectrum-matches. The best performing offset value is 0.4,
whereas the 0.0, 0.1, and 0.2 offsets perform poorly. This
analysis and others (data not shown) indicate that a setting of
Bfragment_bin_offset=0.4^ consistently performs well when
Bfragment_bin_tol^ is set to 1.0005. From a practical standpoint,
users who do not want to tinker with optimizing parameters for
each dataset should simply apply the following parameters for
low resolution MS/MS data:

fragment bin tol ¼ 1:0005
fragment bin offset ¼ 0:4
theoretical fragment ion ¼ 1

and for high resolution MS/MS data:

fragment bin tol ¼ 0:02
fragment bin offset ¼ 0:0
theoretical fragment ion ¼ 0

As demonstrated in Figure 4, the choice of bin size and bin
offset can make a big impact on the resulting spectral repre-
sentation and search scores. Note that the bin width is related to
but inherently different from a classic fragment mass tolerance
setting. The effect of varying the bin width is not the same as
varying a fragment mass tolerance using the same values. The
bin width choice, along with the bin offset value, will define
where the bin edges lie but this does not guarantee that they are
centered on each fragment peak even if using values greater
than the instrument mass accuracy. Small variations of the bin
width will cause the bin edges to end up in suboptimal locations
across many regions of the spectrum.

Theoretical Peaks Shape and Flanking Peaks

The Btheoretical_fragment_ion^ parameter instructs Comet
whether or not to include signal from the flanking bins in the
cross-correlation calculation. In the original implementation of
SEQUEST, fragment ions in the theoretical spectrum have
reconstructed peaks with an intensity of 50 at the mass bin
corresponding to the fragment ion mass and peaks of
intensity 25 at the flanking bins. Adding the flanking peaks
was meant to generate a peak shape that mimicked the
wide peaks of the low resolution data at that time. The
Btheoretical_fragment_ion^ parameter controls whether or
not to incorporate these flanking peaks in the current
cross-correlation calculation. With a wide bin size of
1.0005, adding signal from the flanking bins performs
poorly compared with leaving off the flanking peaks. But
with narrow bin widths, contributions from the flanking
peaks do improve identification rates (data not shown).

Modification Options

Searching for post-translational modifications is routinely ap-
plied in MS/MS analysis. Whether it is the addition of, nomi-
nally, 57 Da to cysteine to account for the chemical derivative

Figure 3. Run time and memory use as a function of spectrum batch size (with sparse matrix on). With both high resolution (a) and
low resolution (b) MS/MS settings, run times improve dramatically as the spectrum batch size parameter is increased from 1,000 to
10,000. Memory use increases linearly as spectrum batch size increases
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(carbamidomethylation) of the alkylation process with
iodoacetamide, or the addition of 16 Da for methionine oxida-
tion, which is common as a sample preparation artifact, the vast
majority of database searches will include some form of mod-
ification analysis as default practice. Comet release 2014.02
introduced the ability to limit variable modifications to the N-
or C-terminus of proteins, or a fixed number of amino acid
positions from each terminus. For example, with extracellular
proteins, a portion of the N-terminus may be cleaved off,
exposing the new N-terminal residue to modification such as
methionine cleavage and N-terminal acetylation [21]. The
structure of each variable modification parameter in Comet is
complex as documented in Figure 6. However, the complexity
does allow one to perform more refined modification analysis.

For example, to analyze protein N-terminal acetylation where
the N-terminus of the protein may not contain the first few
amino acids (up to 25 beyond the terminal residue) of the
predicted gene product, the modification parameter would be
set to:

variable mod01 ¼ 42:010565 K 0 1 25 0 0

In the current release, the terminal distance constraint option
was extended to allow the terminal constraint to be applied to
either the protein termini or peptide termini. This extension
allows for the specification of a modification on particular
residues only if they exist at the terminal position of each

Figure 4. (a) Depicts the periodicity of peptide fragment peaks by summing all fragment ion masses from all MS/MS scans of a
high-resolution LC-MS/MS run; (b) depicts where the bin edges are located at a 0 bin offset setting; (c) depicts bin edges where the
major peaks are centered in themiddle of each bin. This corresponds to a bin offset of 0.5, which reflects the starting edge of the bin
beginning at 50% of the bin width. Note the small peaks in these plots are due to doubly charged ions
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peptide (or within some number of amino acids from the
termini). This enables Comet to now search for modifications
such as pyroglutamate, also known as pyrrolidone carboxylate,
which is a cyclic amino acid found on the N-termini of some

proteins and peptides [22]. This modification is so common
that early versions of X!Tandem [23] prior to version
2010.01.01.1 included it by default on all searches without a
mechanism to turn it off. In Comet 2015.01, these modifica-
tions can now be specified using the parameter entries below.
Note the ‘0’ in the fifth field specifies that only the terminal
residue can be modified by setting the terminal distance to 0;
the ‘2’ in the sixth field specifies that the terminal distance
constraint applies to the N-terminal position of each peptide. So
glutamine, glutamic acid, and carbamidomethylated cysteine
can be modified only if they appear at the N-terminal position
of each peptide using the following parameter settings:

variable mod01 ¼ −17:026549 QC 0 1 0 2 0
variable mod02 ¼ −18:010565 E 0 1 0 2 0

Additionally, Comet version 2015.01 includes two new
options to force the analysis of modified peptides where only
peptides that contain a variable modification will be analyzed.
The Brequire_variable_mod^ parameter will require that any
analyzed peptide has to have a variable modification. Similarly,
each individual variable modification parameter now has an
extra seventh parameter field that can be used to require
that specific modification be present in peptides that are
analyzed. With these additional parameter options, any
specific sets of variable modifications can be forced to be
present or at least one of any of the variable modifications
can be forced to be present. For example, the following
parameters will search for phosphorylation and acetylation

Figure 5. Plot of q-value versus number of target hits while
varying the Bfragment_bin_offset^ parameter from 0.1 to 0.9 in
0.1 increments. Offset 0.4 give best identification performance
whereas offsets 0.0, 0.1, and 0.2 perform much worse than the
other offset settings

Figure 6. Format of the variable modifications parameter entry. There are seven fields that control how the variable modifications
are defined and applied
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and require that any analyzed peptide be modified with at
least one of these modifications:

variable mod01 ¼ 79:966331 STY 0 3 −1 0 0
variable mod02 ¼ 42:010565 nK 0 3 −1 0 0
require variable mod ¼ 1

Alternatively, to require all analyzed peptides to be phos-
phorylated but allow for the peptide to also be acetylated, can
be accomplished using:

variable mod01 ¼ 79:966331 STY 0 3 −1 0 1
variable mod02 ¼ 42:010565 nK 0 3 −1 0 0

The current variable modification support allows for flexi-
bility in how and where modifications are applied. Up to nine
variable modifications can be specified, each of which can be
applied to multiple residues, and more than one (actually up to
nine) variable modification can be specified for the same amino
acid. The concept of a binary modification, where all residues
present in a peptide must be all modified or all un-
modified, is currently supported on a per-modification
parameter basis. However, binary modifications across
modification parameters, such as heavy lysine and heavy
arginine in a SILAC experiment requiring specification
of different modification masses using separate variable
modification parameters, is a feature that will be imple-
mented in a future release. Additionally, N15 metabolic
labeling currently requires two separate searches, one normal
and one where all amino acid masses are statically modified to
their N15 counterparts; a future release will support N15 light
and heavy searches directly.

Comparison of Comet Versus SEQUEST
Cross-Correlation Score

Although they share a similar heritage, Comet and the
University of Washington’s (UW) academic version of

SEQUEST have undergone nearly two decades of indepen-
dent development from the commercial SEQUEST main-
tained by Thermo Scientific. A comparison of search scores
depicted in Figure 7 displays the correlation between Comet
versus UW SEQUEST (2012.01 rev. 6), Comet versus
Thermo SEQUEST (Proteome Discoverer 1.2), and finally
UW SEQUEST versus Thermo SEQUEST. The plots depict
a pairwise distribution of cross-correlation scores where the
same peptide is identified by each pair of tools. There is
high correlation between Comet and UW SEQUEST cross-

Figure 7. Pairwise distribution of cross-correlation scores between Comet (2015.01 rev. 1), academic SEQUEST (2012.01 rev. 6),
and Thermo SEQUEST (Proteome Discoverer 1.2). Scatter plots of cross-correlation scores for those spectra that identify the same
peptide in each pair of tools. Comet and the University of Washington’s academic version of SEQUEST exhibit very high correlation
as they shared the same code base in 2011. Both of these tools correlate a bit less with Thermo SEQUEST as that commercial tool
diverged in the late 1990s

Figure 8. ROC plot of Comet and Thermo SEQUEST identifi-
cation performance. Comet’s expectation value and cross-
correlation scores outperform the Thermo SEQUEST probability
and cross-correlation score counterparts for this given dataset
and search settings
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correlation scores (Figure 7a, R2=0.98) as expected given
that these tools were the same code base when the software
was made open-sourced and renamed in 2011. The correla-
tion between Comet versus Thermo SEQUEST (Figure 7b,
R2=0.81) and UW SEQUEST versus Thermo SEQUEST
(Figure 7c, R2=0.82) show that internal implementation
details have diverged over the many years since these tools
shared the same code. Without access to proprietary source
code, it is difficult to pinpoint exact differences in the tools.
The major differences are speculated to be changes to spec-
tral processing and the implementation of bin offsets.

To compare search performance, an LTQ Orbitrap Velos
file was searched against a human target-decoy database. A
comparison of identification performance of Comet and
Thermo SEQUEST is depicted in the receiver-operator-
characteristic (ROC) plot displayed in Figure 8. Search
performance using Comet’s E-value (comet.evalue), cross-
correlation score (comet.xcorr), Thermo SEQUEST proba-
bility score (sequest.probability), and cross-correlation score
(sequest.xcorr) are plotted as FDR (q-value) versus the number
of target hits. The data file, search parameters, and sequence
database are documented in the Supplemental Materials.
Comet’s E-value significantly outperforms SEQUEST’s prob-
ability score and Comet’s cross-correlation score performs
better than its counterpart. However, identification perfor-
mance can vary significantly with search parameter settings
so it is possible that Thermo SEQUEST is not being searched
optimally in our hands with the applied parameters; this
plot is a snapshot of identification performance for the
search parameters applied. Additionally, newer versions of
Thermo’s commercial package exists, which may exhibit
improved identification performance than that demonstrated
here. Machine-learning post-processing tools that do not
rely on a single search engine score will also mitigate the
performance differences shown.

Conclusion
Quite often, the internal details of database search algorithms
are a mystery to those that use the tools daily, even those
that are open sourced or have been in use for decades.
While Comet stems from the academic version of
SEQUEST that has existed for many years, it is still being
actively developed and extended on a regular basis. Im-
provements include adding search features, optimizing the
code for speed improvements, and tweaking the core iden-
tification routines. Changes in the current release of Comet
include implementation of more flexible modification op-
tions, a new sparse matrix data structure, multi-threaded
optimization, and better search progress reporting.
mzXML, mzML, ms2, and native Thermo RAW files are
supported input formats whereas pepXML, SQT, Percola-
tor TSV, and text files are supported output formats. Since
its initial release in 2012, Comet has had five subsequent
major releases, has been directly downloaded well over

1,000 times, and is incorporated into a number of larger
software projects. These include Crux [4], Chorus [24],
PatternLab [25], ProHits [26], LabKey Server [27],
PeptideShaker [28], MASSyPup [29], and the Trans-
Proteomics Pipeline [30], among others. Users are encour-
aged to access Comet from within any one of these tools.
Documentation and direct Comet download are available at
http://comet-ms.sourceforge.net.
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