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Abstract. In the last two decades, computational tools for mass spectrometry-based
proteomics data analysis have evolved from a few stand-alone software solutions

serving specific goals, such as the identification of amino acid sequences based on
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mass spectrometry spectra, to large-scale complex pipelines integrating multiple
computer programs to solve a collection of problems. This software evolution has
been mostly driven by the appearance of novel technologies that allowed the com-
munity to tackle complex biological problems, such as the identification of proteins
that are differentially expressed in two samples under different conditions. The
achievement of such objectives requires a large suite of programs to analyze the

intricate mass spectrometry data. Our laboratory addresses complex proteomics
questions by producing and using algorithms and software packages. Our current computational pipeline
includes, among other things, tools for mass spectrometry raw data processing, peptide and protein identification
and quantification, post-translational modification analysis, and protein functional enrichment analysis. In this
paper, we describe a suite of software packages we have developed to process mass spectrometry-based
proteomics data and we highlight some of the new features of previously published programs as well as tools

currently under development.
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Introduction

C omputer science and bioinformatics played a crucial role
in the development of the field of mass spectrometry
(MS)-based proteomics. As MS instruments evolved, the data
generated grew increasingly intricate. In response, computa-
tional strategies were developed to dramatically increase our
capacity to extract knowledge from MS data. Foremost among
these is the SEQUEST algorithm [1] that allowed the high-
throughput identification of thousands of tandem MS (MS/MS)
spectra in a reasonable time; such a feat was unthinkable 20
years ago. Since then, multiple peptide and protein sequence
database search engines have been proposed (Mascot [2],
OMSSA [3], X!Tandem [4], MS-GF [5], Andromeda [6],
and, more recently, Morpheus [7]). However, protein identifi-
cation still remains an important challenge, and MS-based
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proteomics now involves a larger variety of computational
and data analysis problems.

MS now allows, among other things, the identification and
quantification of post-translationally modified proteins as well
as interacting proteins and the differential quantification of
proteins in samples under different experimental conditions
[8—11]. These analyses are achieved with a large collection of
software packages for processing MS data and for performing
statistical analyses. A large number of MS-based proteomics
analyses can be typically broken down into three initial steps:
first, the raw data produced by mass spectrometers need to be
processed and transformed into a suitable input for programs
performing data analysis. Second, the spectra are matched to
peptides using protein sequence database searching, spectral
library searching, or de novo sequencing. Third, the statistical
significance of peptide and protein identifications needs to be
assessed. Subsequent steps may vary based on the goals of the
experiment. A variety of computational tools may be used to
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quantify peptides and proteins (e.g., ProRata [12], pQuant [13],
and MaxQuant [14]), as well as identify PTMs (e.g., Ascore
[15], InsPecT [16]). Of note, the three previously enumerated
initial steps may differ in MS-based proteomics workflows that
involve methods such as selected reaction monitoring (SRM)
and data-independent acquisition (DIA) [17, 18]. There is also
a collection of publicly available software packages that can be
used to filter out nonspecific protein—protein interactions (PPIs)
and identify those of high confidence in datasets produced
using affinity purification coupled to MS. While we do not
explicitly describe these tools here, we count among them
software packages such as SAINT [19], Decontaminator [20,
21], Mist [22], and Compass [23].

The large number of complex software packages required to
perform the computational analysis transforming the mass
spectrometer raw data into meaningful proteomics and biolog-
ical discoveries can make the processing of large-scale datasets
quite challenging, especially when relying on multiple appli-
cations from different sources. Since the output of a given
program often serves as input for another computational tool,
paired outputs and inputs have to remain compatible over time
from a file format and conceptual perspective throughout the
computational pipeline. A number of computational proteo-
mics pipelines that include the complete set of tools necessary
to perform all or a subset of the analysis of an MS-based
proteomics experiment have been proposed. Some of these
pipelines present a comprehensive software solution for MS-
based proteomics data analysis and include among their mod-
ules computational tools for peptide and protein identification
and quantification (e.g., MaxQuant [14], pFind Studio [24],
PEAKS [25], OpenMS Proteomics Pipeline (TOPP) [26], and
Trans-Proteomic Pipeline (TPP) [27]). Others focus on the
quantitative analysis and biological interpretation of MS-
based proteomics data (e.g., PatternLab [28]) or on the protein
identification and the statistical validation of the results (e.g.,
Mascot-Percolator interface package [29]). In addition, a set of
modular open-source cross-platform computational tools and
libraries processing and analyzing MS data are available under
the ProteoWizard software project [30]. ProteoWizard includes
among other things the Skyline software package [31] that
allows the analysis of quantitative MS-based proteomics data
acquired using a variety of methods such as SRM and DIA.

Our group has also developed a collection of computational
tools to perform the computational analysis of MS-based pro-
teomics datasets from the raw data to its biological interpreta-
tion [1, 32-35]. Our tools were developed using a set of
requirements (of which we have a complete control) in order
to ensure the compatibility of each tool throughout the evolu-
tion of our pipeline. Figure 1 illustrates our main computational
pipeline. While all of the tools developed by our group are
publically available as stand-alone applications (http://
fields.scripps.edu/researchtools.php), a large number of these
software packages are also available in a web-based compre-
hensive environment, called Integrated Proteomics Pipeline
(IP2) (Integrated Proteomics Applications) that allows the anal-
ysis of large-scale MS-based proteomics datasets. While some
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Figure1. Schematic representation of the main computational
pipeline of our laboratory. For a given experiment, the compu-
tational tools in the large black box may be used based on the
goals of the experiment. Green boxes represent software pack-
ages developed in our laboratory and yellow boxes illustrate
those designed by third parties

users prefer executing each computational tool in the pipeline
independently, IP2 facilitates the analysis of large-scale com-
plex datasets by providing a single interface and work environ-
ment for the implementation of the complete analysis pipeline.
In this article, we discuss numerous tools that compose our
computational pipeline for MS-based proteomics analysis, with
an emphasis on some of their new features. We also present our
most recent software packages and the algorithms that are
currently under development in our laboratory.

Computational Pipeline
Mass Spectrometry Raw Data Processing

The first step of the vast majority of MS-based proteomics
experiments still remains peak extraction from MS raw data.
Our laboratory previously developed a tool named RawExtract
that converts binary Thermo Fisher Scientific RAW files to
text-based files in MS1/MS2 format [36], which can be used
for peptide identification. RawExtract has evolved over time
and its latest version, named RawConverter, introduces a set of
novel features. RawConverter can convert RAW files to MS1/
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MS2, but also to MGF (Mascot Generic Format), or mzXML
[37] formats. It also now provides file format conversions from
mzXML and mzML files [38] to MS1/MS2 and MGF files, and
from MGF files to MS2 files. These conversions conveniently
fulfill the MS file format requirements of the vast majority of
downstream data analysis tools that are publically available,
including those of our computational pipeline.

In addition to extracting the MS or MS/MS data from RAW
files generated by Thermo Fisher Scientific instruments,
RawConverter addresses problems regarding the selection of
the monoisotopic peaks of precursor ions. The inaccurate pre-
cursor mass assignment of an MS/MS spectrum significantly
increases the probability of introducing false positives in sub-
sequent peptide and protein identifications. Mass spectrometers
from certain manufacturers tend to label the peak with the
highest intensity in a given isolation window as the precursor
peak when spectra are collected using data-dependent acquisi-
tion (DDA). Generally, this precursor peak can be considered
as the monoisotopic peak for short peptides (with mass equal to
or less than 1,500 Da) since their monoisotopic peaks typically
have the highest intensities [39]. However, the monoisotopic
ions of longer peptides (with mass greater than 1,500 Da) may
not be those with the highest intensities [39], making the above
straightforward peak picking strategy far from ideal for large
peptides. Existing tools available in the ProteoWizard software
project [30] and pParse [40] have recently made progress on
tackling this issue. The RawConverter algorithm also addresses
this problem by combining the Averagine model [41] and the
information of successive MS1 scans to select the monoisoto-
pic peak for each precursor ion.

Another problem arises in the context of DIA methods.
Most MS instruments do not supply precursor m/z and charge
information of the peptides in a given wide acquisition win-
dow; they merely provide the middle m/z and the size of the
isolation windows [18]. Providing more accurate precursor
information to database search engines would allow a reduction
of the search space and, therefore, an increased discriminative
power when scoring peptide-spectrum matches (PSMs). This
would benefit the majority of the current tools assessing the
confidence of protein and peptide identifications [32, 42, 43].
RawConverter attempts to address this issue by enumerating
and evaluating all possible precursor isotopic envelopes in a
given DIA isolation window. Users can define the maximum
number of precursor isotopic envelopes reported. The most
confident envelopes are selected to determine the possible
precursor m/z values and charge states. MS/MS spectra can
then be duplicated for each possible precursor, thereby
allowing each spectra to be individually searched for peptide
identification.

Peptide and Protein Identification and Statistical
Significance Assessment

Once extracted, the MS data output by RawConverter (MS2
file format) is searched by our protein sequence database search
engine ProLuCID [44] to identify PSMs. ProLuCID, which is
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implemented as a platform-independent Java program, is in-
spired by the SEQUEST algorithm and, therefore, uses a mod-
ified cross-correlation (XCorr) calculation to score a spectrum
against the theoretical spectrum of a given peptide sequence.
ProLuCID supports low- and high-resolution MS data. It also
introduces the computation of a binomial probability serving as
a preliminary score to pre-filter spectra and to improve com-
putational performances. In addition, it reports a Z-score for the
PSM with the highest XCorr for each spectrum, which can be
used to filter search results.

The significance of the set of PSMs produced by most
database search engines needs to be statistically assessed by
computational tools, such as Percolator [42]. In our pipeline,
PSMs found with ProLuCID are statistically assessed using
DTASelect [32, 43]. DTASelect also identifies the set of pro-
teins present in the analyzed sample based on ProLuCID’s
PSMs. Over the years, DTASelect’s PSM filtering accuracy
has been improved. Furthermore, the latest version (DT ASelect
2) now outputs the set of spectra, peptides, or proteins identi-
fied under a user-selected false discovery rate for a given
experiment. Thanks to recent improvements, DTASelect 2
provides a great filtering flexibility by allowing users to define
up to 150 different parameters. For example, a filter can be set
so that the only reported proteins are those identified by a
certain number of peptides and that at least one of these
peptides obtained a XCorr above a given threshold. These
new filters allow the generation of high-confidence datasets
by increasing the number of protein identifications under a
given false discovery rate.

While the vast majority of the samples analyzed by MS/MS
in our laboratory involve organisms for which most protein
sequences are known, we sometimes process samples originat-
ing from organisms for which the genomes are not yet se-
quenced. This renders a typical sequence database search im-
possible. For such samples, peptides are usually identified
using the de novo sequencing software package pNovo [45].

Peptide and Protein Quantification

Peptide and protein quantification is the next step of the data
analysis in several MS-based proteomics pipelines. Computa-
tional tools such as ProRata [12], pQuant [13], and MaxQuant
[14] have been proposed to calculate accurate proteomics
quantitative measurements. We have also previously intro-
duced a software tool named Census [33]. Census is capable
of using the vast majority of quantitative MS-based proteomics
strategies and can take as its input DTASelect’s output as well
as pepXML and mzXML files. Census can quantify peptides
and proteins labeled using a variety of labeling strategies (e.g.,
SN [46], SILAC [47], iTRAQ [48], TMT [49], dimethyl [50,
5171, "*0 [52]), as well as label-free strategies for both high- and
low-resolution MS data [spectral counting and extracted-ion
chromatogram (XIC)-based quantification] (see Figure 2). Cen-
sus can be used to analyze large-scale quantitative datasets and,
when coupled to high-resolution MS data, shows improved
quantification efficiency [33]. Among its numerous features,
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Figure 2. Main MS-based quantitative proteomics ap-
proaches supported by Census

Census quantifies peptides originating from DIA data with high
sensitivity by filtering out noisy fragment ions and also builds
chromatograms from peak lists to quantify stable isotope-
labeled peptides.

The recently released Census ver. 2 [53] comprises novel
features for the analysis of peptides quantified using tandem
mass tag (TMT) reporter ions. Included among these are a
reporter ion impurity correction, a reporter ion minimum inten-
sity threshold filter, and an optional weighted normalization
that corrects mixing errors. Census 2 can also process MS
experiments performed using HCD, CID/HCD double-play,
HCD MS?, or MultiNotch MS3 [54, 55] data. Additional
features have also been included for quantification using met-
abolic labeling (e.g., '°N, SILAC). Among these are the calcu-
lation of a reverse ratio for the label swap experimental setup
[56, 57] and the assessment of the statistical significance of
differentially expressed peptides. More recently, improvements
were implemented in Census 2 for the calculation of '*N
enrichment ratios. Census 2 uses the elemental composition
of amino acids to calculate the isotopic distributions of '*N
enriched peptides. As '°N labeling shifts the mass of peptides
based on the number of nitrogen atoms they contain, Census 2
uses all possible theoretical isotope distributions and maps
them to the experimental ones to find the best match using a
linear regression. Census 2 computes the atomic enrichment for
each peptide independently, as it can vary based on a given
protein’s turnover rate.

Post-Translational Modifications Discovery
and Assessment

While ProLuCID’s database search algorithm allows the iden-
tification of post-translationally modified peptides, some pro-
teomics studies might require a more in-depth analysis of
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certain PTM events. Hence, our computational pipeline also
includes the probability-based phosphorylation localization
tool Ascore, which was developed by Beausoleil et al. [15].
In addition, we developed an algorithm named Debunker [34]
that uses a support vector machine binary classifier to assess the
phosphorylation status of a given peptide. Debunker may be
used in combination with Ascore to assess the confidence of
phosphorylation status and site localization for a given peptide.

Functional Enrichment Analysis

Functional enrichment analyses are often used to generate
hypotheses regarding the underlying mechanisms revealed in
MS-based proteomics datasets. Such analyses can consist of
identifying gene ontology (GO) [58] annotations that are over-
represented in a set of differentially expressed proteins or
finding biological pathways that are significantly implicated
in a set of protein—protein interactions (PPIs). Our computa-
tional pipeline currently includes the use of the Ingenuity
Pathway Analysis (IPA, QIAGEN Redwood City, CA, USA
www.qiagen.com/ingenuity) and of DAVID [59] as well as
Ontologizer [60] for GO enrichment analyses.

We also recently developed our own functional enrichment
analysis algorithm for MS-based proteomics quantification
experiments (PSEA-Quant [35]). Enrichment analyses of
gene/protein sets, such as those obtained from the GO and the
Molecular Signature databases [61] were often developed for
genomic datasets [62] and are poorly adapted to some of the
particularities of MS-based proteomics data, including the level
of reproducibility of MS quantitative measurements. They also
tend to require the use of arbitrary thresholds to define the
subset of proteins in a dataset on which the enrichment analysis
should be performed. PSEA-Quant addresses both of these
problems. This web-based user-friendly algorithm, inspired
by GSEA [62], entails a novel protein set enrichment analysis
for label-free and labeled MS-based quantitative proteomics.
Unlike GSEA, PSEA-Quant allows the analysis of proteomics
samples originating from single or multiple conditions. This
Java program uses Census’ output, while supporting other file
formats, to identify protein sets that are statistically enriched
significantly among abundant proteins that are quantified with
high reproducibility across a set of replicates. PSEA-Quant was
used to highlight putative underlying mechanisms of cystic
fibrosis [35], among other things.

Algorithms and Tools Currently in Development

This article presents a snapshot of the state of our current
computational pipeline. However, our suite of software pack-
ages is under constant evolution. It continuously adapts to
novel technologies with the goal of producing high impact
discoveries. For instance, we are currently developing algo-
rithms for the identification of cross-linked peptides. In addi-
tion, we are designing a novel blind search algorithm that
allows the identification of peptides with any unspecified
PTMs or amino acid substitutions using MS/MS spectra. We
also continue to improve our intact protein (top-down)
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computational analysis pipeline, which includes tools such as
ProSightPC (Thermo Fisher Scientific) and ByOnic [63], by
developing algorithms that improve protein identification sen-
sitivity and estimate the number of protein species in a dataset
analyzed through top-down MS [64].

A recent addition to our computational pipeline is a tool
named PrOntoNet, which infers PPIs from a list of identified
proteins in organisms for which there are very few known PPIs
in the literature and for which the proteins are largely
uncharacterized functionally. PrOntoNet uses the output of
DTASelect to recover known PPIs from identified proteins in
the STRING [65] and BioGRID [66] databases. It then uses
blast2GO [67] to associate GO annotations to the proteins in
the dataset. PrOntoNet finally uses the proportion of overlap
between the GO annotations of all protein pairs in the dataset in
order to infer interactions between them.

The tools described above provide a large amount of
information on the PSMs and the proteins identified in a
given proteomics dataset. The results from several bioinfor-
matics analyses and data from public external resources and
databases are typically processed and combined in order to
convey to the scientific community a comprehensive and
meaningful message about a proteomics study. This task
often involves the manual integration of in-house software
and script results, as well as data from spreadsheets, into
customized summary tables that are later published in an
article. The large-scale datasets and results produced with
MS-based proteomics pose important challenges in terms of
long-term storage and data reusability. Reproducing the cre-
ation process of complex summary tables can be difficult
after a long period of time, especially when attempted by
someone other than the original author. Databases such as
PRIDE [68], MassIVE (massive.ucsd.edu), and PeptideAtlas
[69], which are all included in the ProteomeXchange con-
sortium [70], allow the long-term storage and distribution of
data. However, for the most part they do not permit the full
integration of custom computational and statistical signifi-
cance results. We are currently tackling both of these chal-
lenges simultaneously by designing a software package
named Proteomics INTegrator (PINT). PINT is an open-
source platform-independent Java program built on top of a
MySQL database engine that provides an environment to
store data and integrate results from various computational
analyses (including ProLuCID, DTASelect, and Census),
which may originate from different proteomics approaches.
The protein annotations available in the UniProtKB reposi-
tory [71] are automatically appended to all datasets stored in
PINT. PINT allows users to easily import, visualize, and
download data though a user-friendly web interface, thereby
facilitating its dissemination and accessibility. In addition,
our tool also provides a powerful and flexible query system
allowing the retrieval of specific elements and values (e.g.,
quantification measurements, confidence scores, statistical
significance results, manual annotations, UniprotKB protein
annotations) in the data of a given experiment or across
several experiments simultaneously.
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Conclusion

Our computational pipeline has come a long way since the
publication of the SEQUEST algorithm. We strive to continu-
ously produce and use novel algorithms that take advantage of
new MS technological improvements. We strongly believe that
computational approaches that aim to make the most out of
cutting-edge technologies will continue to yield high impact
biological discoveries.

Acknowledgments

The authors are grateful to Claire M. Delahunty for helpful
discussions and comments. They acknowledge funding from
the following National Institute of Health grants: P41
GM103533, ROl MH067880, RO1 MH100175, UCLA/
NHLBI Proteomics Centers (HHSN268201000035C), and
1U54GM114833. M.L.A. holds a postdoctoral fellowship from
the Fonds de recherche du Québec — nature et technologies
(FRQNT).

References

1. Eng, JK., McCormack, A.L., Yates III, J.R.: An approach to correlate
tandem mass spectral data of peptides with amino acid sequences in a
protein database. J. Am. Soc. Mass. Spectrom. 5, 976-989 (1994)

2. Cottrell, J.S., London, U.: Probability-based protein identification by
searching sequence databases using mass spectrometry data. Electrophore-
sis 20, 3551-3567 (1999)

3. Geer, L.Y., Markey, S.P., Kowalak, J.A., Wagner, L., Xu, M., Maynard,
D.M,, Yang, X., Shi, W., Bryant, S.H.: Open mass spectrometry search
algorithm. J. Proteome. Res. 3, 958-964 (2004)

4. Craig, R., Beavis, R.C.: TANDEM: matching proteins with tandem mass
spectra. Bioinformat. 20(9), 1466-1467 (2004)

5. Kim, S., Gupta, N., Pevzner, P.A.: Spectral probabilities and generating
functions of tandem mass spectra: a strike against decoy databases. J.
Proteome. Res. 7, 3354-3363 (2008)

6. Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V., Mann,
M.: Andromeda: a peptide search engine integrated into the MaxQuant
environment. J. Proteome. Res. 10, 1794-1805 (2011)

7. Wenger, C.D., Coon, J.J.: A proteomics search algorithm specifically
designed for high-resolution tandem mass spectra. J. Proteome. Res. 12,
1377-1386 (2013)

8. Yates, J.R., Ruse, C.1., Nakorchevsky, A.: Proteomics by mass spectrom-
etry: approaches, advances, and applications. Annu. Rev. Biomed. Eng. 11,
49-79 (2009)

9. Gingras, A.-C., Gstaiger, M., Raught, B., Aebersold, R.: Analysis of protein
complexes using mass spectrometry. Nat. Rev. Mol. Cell. Biol. 8, 645-654
(2007)

10. Sinz, A.: Chemical cross-linking and mass spectrometry to map three-
dimensional protein structures and protein—protein interactions. Mass.
Spectrom. Rev. 25, 663—682 (2006)

11. Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., Kuster, B.: Quantita-
tive mass spectrometry in proteomics: a critical review. Anal. Bioanal.
Chem. 389, 10171031 (2007)

12. Pan, C., Kora, G., McDonald, W.H., Tabb, D.L., VerBerkmoes, N.C.,
Hurst, G.B., Pelletier, D.A., Samatova, N.F., Hettich, R.L.: ProRata: a
quantitative proteomics program for accurate protein abundance ratio esti-
mation with confidence interval evaluation. Anal. Chem. 78, 7121-7131
(2006)

13. Liu, C., Song, C.-Q., Yuan, Z.-F., Fu, Y., Chi, H., Wang, L., Fan, S.-B.,
Zhang, K., Zeng, W.-F., He, S.-M., Dong, M.-Q., Sun, R.-X.: pQuant
improves quantitation by keeping out interfering signals and evaluates the
accuracy of calculated ratios. Anal. Chem. 86(11), 5286-5294 (2014)

14. Cox, J., Mann, M.: MaxQuant enables high peptide identification rates,
individualized ppb-range mass accuracies and proteome-wide protein quan-
tification. Nat. Biotechnol. 26, 13671372 (2008)



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

. Beausoleil, S.A., Villén, J., Gerber, S.A., Rush, J., Gygi, S.P.: A

probability-based approach for high-throughput protein phosphorylation
analysis and site localization. Nat. Biotechnol. 24, 1285-1292 (2006)

. Tanner, S., Shu, H., Frank, A., Wang, L.-C., Zandi, E., Mumby, M.,

Pevzner, P.A., Bafna, V.: InsPecT: identification of post-translationally
modified peptides from tandem mass spectra. Anal. Chem. 77, 4626~
4639 (2005)

. Gillet, L.C., Navarro, P., Tate, S., Rost, H., Selevsek, N., Reiter, L., Bonner,

R., Aebersold, R.: Targeted data extraction of the MS/MS spectra generated
by data-independent acquisition: a new concept for consistent and accurate
proteome analysis. Mol. Cell. Proteom. 11, O111.016717 (2012)

. Venable, J.D., Dong, M.-Q., Wohlschlegel, J., Dillin, A., Ates, J.R.: Auto-

mated approach for quantitative analysis of complex peptide mixtures from
tandem mass spectra. Nat. Methods 1, 3945 (2004)

. Choi, H., Larsen, B., Lin, Z.-Y ., Breitkreutz, A., Mellacheruvu, D., Fermin,

D., Qin, Z.S., Tyers, M., Gingras, A.-C., Nesvizhskii, A.I.: SAINT: prob-
abilistic scoring of affinity purification-mass spectrometry data. Nat.
Methods 8, 70-73 (2011)

Lavallée-Adam, M., Cloutier, P., Coulombe, B., Blanchette, M.: Modeling
contaminants in AP-MS/MS experiments. J. Proteome. Res. 10, 886-895
(2010)

Lavallée-Adam, M., Rousseau, J., Domecq, C., Bouchard, A., Forget, D.,
Faubert, D., Blanchette, M., Coulombe, B.: Discovery of cell compartment
specific protein—protein interactions using affinity purification combined
with tandem mass spectrometry. J. Proteome. Res. 12, 272-281 (2012)
Jéger, S., Cimermancic, P., Gulbahce, N., Johnson, J.R., McGovern, K.E.,
Clarke, S.C., Shales, M., Mercenne, G., Pache, L., Li, K., Hernandez, H.,
Jang, G.M., Roth, S.L., Akiva, E., Marlett, J., Stephens, M., D'Orso, 1.,
Fernandes, J., Fahey, M., Mahon, C., O'Donogue, A.J., Todorovic, A.,
Morris, J.H., Maltby, D.A., Alber, T., Cagney, G., Bushman, F.D., Young,
J.A., Chanda, S.K., Sundquist, W.I., Kortemme, T., Hernandez, R.D.,
Craik, C.S., Burlingame, A., Sali, A., Frankel, A.D., Krogan, N.J.: Global
landscape of HIV-human protein complexes. Nature 481, 365-370 (2012)
Sowa, M.E., Bennett, E.J., Gygi, S.P., Harper, J.W.: Defining the human
deubiquitinating enzyme interaction landscape. Cell. 138, 389-403 (2009)
Li, D., Fu, Y., Sun, R., Ling, C.X., Wei, Y., Zhou, H., Zeng, R., Yang, Q.,
He, S., Gao, W.: pFind: a novel database-searching software system for
automated peptide and protein identification via tandem mass spectrometry.
Bioinformatics 21, 3049-3050 (2005)

Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A.,
Lajoie, G.: PEAKS: powerful software for peptide de novo sequencing by
tandem mass spectrometry. Rapid. Commun. Mass. Spectrom. 17, 2337—
2342 (2003)

Kohlbacher, O., Reinert, K., Gropl, C., Lange, E., Pfeifer, N., Schulz-
Trieglaff, O., Sturm, M.: TOPP—the OpenMS proteomics pipeline. Bioin-
formatics 23, ¢191-e197 (2007)

Keller, A., Eng, J., Zhang, N., Li, X., Aebersold, R.: A uniform proteomics
MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol.
1, 2005.0017 (2005)

Carvalho, P.C., Fischer, J.S.G., Chen, E.I., Yates III, J.R., Barbosa, V.C.:
PatternLab for proteomics: a tool for differential shotgun proteomics. BMC.
Bioinformat. 9, 316 (2008)

Brosch, M., Yu, L., Hubbard, T., Choudhary, J.: Accurate and sensitive
peptide identification with Mascot Percolator. J. Proteome. Res. 8, 3176—
3181 (2009)

Kessner, D., Chambers, M., Burke, R., Agus, D., Mallick, P.:
ProteoWizard: open source software for rapid proteomics tools develop-
ment. Bioinformatics 24, 2534-2536 (2008)

MacLean, B., Tomazela, D.M., Shulman, N., Chambers, M., Finney, G.L.,
Frewen, B., Kern, R., Tabb, D.L., Liebler, D.C., MacCoss, M.J.: Skyline:
an open source document editor for creating and analyzing targeted prote-
omics experiments. Bioinformatics 26, 966-968 (2010)

Tabb, D.L., McDonald, W.H., Yates, J.R.: DTASelect and Contrast: tools
for assembling and comparing protein identifications from shotgun prote-
omics. J. Proteome. Res. 1, 21-26 (2002)

Park, S.K., Venable, J.D., Xu, T., Yates, J.R.: A quantitative analysis
software tool for mass spectrometry-based proteomics. Nat. Methods 5,
319-322 (2008)

Lu, B., Ruse, C., Xu, T., Park, S.K., Yates, J.: Automatic validation of
phosphopeptide identifications from tandem mass spectra. Anal. Chem. 79,
1301-1310 (2007)

Lavallée-Adam, M., Rauniyar, N., McClatchy, D.B., Yates J.R. IIl: PSEA-
Quant: a protein set enrichment analysis on label-free and label-based
protein quantification data. J. Proteome Res. 13(12), 5496-5509 (2014)

. Lavallée-Adam et al.: A Proteomics Computational Analysis Pipeline

36.

37.

38.
39.
40.
41.
42.

43.

44,

45.

46.

47.

48.

49.
50.
S1.
52.

53.

54.

55.

1825

McDonald, W.H., Tabb, D.L., Sadygov, R.G., MacCoss, M.J., Venable, J.,
Graumann, J., Johnson, J.R., Cociorva, D., Yates, J.R.: MS1, MS2, and
SQT—three unified, compact, and easily parsed file formats for the storage
of shotgun proteomic spectra and identifications. Rapid Commun. Mass.
Spectrom. 18, 2162-2168 (2004)

Pedrioli, P.G.A., Eng, J.K., Hubley, R., Vogelzang, M., Deutsch, E.-W.,
Raught, B., Pratt, B., Nilsson, E., Angeletti, R.H., Apweiler, R., Cheung,
K., Costello, C.E., Hermjakob, H., Huang, S., Julian, R.K., Kapp, E.,
McComb, M.E., Oliver, S.G., Omenn, G., Paton, N.W., Simpson, R.,
Smith, R., Taylor, C.F., Zhu, W., Aebersold, R.: A common open repre-
sentation of mass spectrometry data and its application to proteomics
research. Nat. Biotechnol. 22, 1459-1466 (2004)

Deutsch, E.: mzML: a single, unifying data format for mass spectrometer
output. Proteomics 8, 27762777 (2008)

Nassar, A.F., Hollenberg, P., Scatina, J.: Drug Metabolism Handbook: Con-
cepts and Applications. John Wiley and Sons, Hoboken, NJ, p. 216 (2009)
Liu, C., Wang, H.-P., Sun, R.-X,, Fu, Y., Zhang, J.-F., Wang, L.-H., Chi,
H., Li, Y., Xiu, L.-Y., Wang, W.-P., He, S.M.: pParse: a method for
accurate determination of monoisotopic peaks in high-resolution mass
spectra. Proteomics 12, 226-235 (2012)

Senko, M.W., Beu, S.C., McLafferty, F.W.: Determination of monoisoto-
pic masses and ion populations for large biomolecules from resolved
isotopic distributions. J. Am. Soc. Mass. Spectrom 6, 229-233 (1995)
Kall, L., Canterbury, J.D., Weston, J., Noble, W.S., MacCoss, M.J.: Semi-
supervised learning for peptide identification from shotgun proteomics
datasets. Nat. Methods 4, 923-925 (2007)

Cociorva, D., L Tabb, D., Yates, J.R.: Validation of tandem mass spec-
trometry database search results using DTASelect. Curr. Protoc.
Bioinformat. 16, 13.4.1-13.4.14 (2007)

Xu, T., Venable, J.D., Park, S.K., Cociorva, D., Lu, B., Liao, L.,
Wohlschlegel, J., Hewel, J., Yates III, J.R.: ProLuCID, a fast and sensitive
tandem mass spectra-based protein identification program. Mol. Cell.
Proteom. 5, S174-S174 (2006)

Chi, H., Sun, R.-X., Yang, B., Song, C.-Q., Wang, L.-H., Liu, C., Fu, Y.,
Yuan, Z.-F., Wang, H.-P., He, S.-M., Dong, M.-Q.: pNovo: de novo
peptide sequencing and identification using HCD spectra. J. Proteome.
Res. 9 111, 2713-2724 (2010)

Washburn, M.P., Ulaszek, R., Deciu, C., Schieltz, D.M., Yates, J.R.:
Analysis of quantitative proteomic data generated via multidimensional
protein identification technology. Anal. Chem. 74 III, 1650-1657 (2002)
Ong, S.-E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H.,
Pandey, A., Mann, M.: Stable isotope labeling by amino acids in cell
culture, SILAC, as a simple and accurate approach to expression proteo-
mics. Mol. Cell. Proteom. 1, 376-386 (2002)

Ross, P., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan,
S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz,
P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., Pappin, D.J.:
Multiplexed protein quantitation in Saccharomyces cerevisiae using
amine-reactive isobaric tagging reagents. Mol. Cell. Proteom. 3, 1154—
1169 (2004)

Thompson, A., Schifer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G.,
Neumann, T., Hamon, C.: Tandem mass tags: a novel quantification
strategy for comparative analysis of complex protein mixtures by MS/
MS. Anal. Chem. 75, 18951904 (2003)

Hsu, J.-L., Huang, S.-Y., Chow, N.-H., Chen, S.-H.: Stable-isotope dimeth-
yl labeling for quantitative proteomics. Anal. Chem. 75, 6843-6852 (2003)
Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S., Heck, A.J.R.:
Multiplex peptide stable isotope dimethyl labeling for quantitative proteo-
mics. Nat. Protoc. 4, 484-494 (2009)

Yao, X., Freas, A., Ramirez, J., Demirev, P.A., Fenselau, C.: Proteolytic
180 labeling for comparative proteomics: model studies with two serotypes
of adenovirus. Anal. Chem. 73, 2836-2842 (2001)

Park, S.K.R., Aslanian, A., McClatchy, D.B., Han, X., Shah, H., Singh, M.,
Rauniyar, N., Moresco, J.J., Pinto, A.F.M., Diedrich, J.K., Delahunty, C.,
Yates J.R. III: Census 2: isobaric labeling data analysis. Bioinformatics.
30(15), 2208-2209 (2014)

Ting, L., Rad, R., Gygi, S.P., Haas, W.: MS3 eliminates ratio distortion in
isobaric multiplexed quantitative proteomics. Nat. Methods 8, 937-940
(2011)

McAlister, G.C., Nusinow, D.P., Jedrychowski, M.P., Wiihr, M., Huttlin,
E.L., Erickson, B.K., Rad, R., Haas, W., Gygi, S.P.: MultiNotch MS3
enables accurate, sensitive, and multiplexed detection of differential ex-
pression across cancer cell line proteomes. Anal. Chem. 86, 7150-7158
(2014)



1826

56.

57.

58.

59.

60.

62.

63.

64.

Cox, J., Mann, M.: Quantitative, high-resolution proteomics for data-driven
systems biology. Annu. Rev. Biochem. 80, 273-299 (2011)

Park, S.-S., Wu, W.W., Zhou, Y., Shen, R.-F., Martin, B., Maudsley, S.:
Effective correction of experimental errors in quantitative proteomics using
stable isotope labeling by amino acids in cell culture (SILAC). J. Proteom.
75, 3720-3732 (2012)

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry,
J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A.,
Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richard-
son, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool
for the unification of biology. Nat. Genet. 25, 25-29 (2000)

Dennis Jr., G., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane,
H.C., Lempicki, R.A.: DAVID: database for annotation, visualization, and
integrated discovery. Genome Biol. 4, P3 (2003)

Bauer, S., Grossmann, S., Vingron, M., Robinson, P.N.: Ontologizer
2.0—a multifunctional tool for GO term enrichment analysis and data
exploration. Bioinformatics 24, 1650-1651 (2008)

. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdottir, H., Tama-

yo, P., Mesirov, J.: Molecular signatures database (MSigDB) 3.0. Bioin-
formatics 27, 1739-1740 (2011)

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L.,
Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S.,
Mesirov, J.: Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A.
102, 15545-15550 (2005)

Bern, M., Cai, Y., Goldberg, D.: Lookup peaks: a hybrid of de novo
sequencing and database search for protein identification by tandem mass
spectrometry. Anal. Chem. 79, 1393—1400 (2007)

Han, X., Wang, Y., Aslanian, A., Bern, M., Lavallée-Adam, M., Yates III,
J.R.: Sheathless capillary electrophoresis-tandem mass spectrometry for

65.

66.

67.

68.

69.

70.

71.

M. Lavallée-Adam et al.: A Proteomics Computational Analysis Pipeline

top-down characterization of pyrococcus furiosus proteins on a proteome
scale. Anal. Chem. 86, 11006-11012 (2014)

Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A.,
Minguez, P., Doerks, T., Stark, M., Muller, J., Bork, P., Jensen, L.J., von
Mering, C.: The STRING database in 2011: functional interaction networks
of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561—
D568 (2011)

Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers,
M.: BioGRID: a general repository for interaction datasets. Nucleic Acids
Res. 34, D535 (2006)

Conesa, A., Gotz, S., Garcia-Gomez, J.M., Terol, J., Talon, M.,
Robles, M.: Blast2GO: a universal tool for annotation, visualization
and analysis in functional genomics research. Bioinformatics 21,
3674-3676 (2005)

Martens, L., Hermjakob, H., Jones, P., Adamski, M., Taylor, C., States, D.,
Gevaert, K., Vandekerckhove, J., Apweiler, R.: PRIDE: the proteomics
identifications database. Proteomics 5, 3537-3545 (2005)

Deutsch, E.W., Eng, J. K., Zhang, H., King, N.L., Nesvizhskii, A.L., Lin, B.,
Lee, H., Yi, E.C., Ossola, R., Aebersold, R.: Human plasma peptideatlas.
Proteomics 5, 3497-3500 (2005)

Vizcaino, J.A., Deutsch, E.W., Wang, R., Csordas, A., Reisinger, F., Rios,
D., Dianes, J.A., Sun, Z., Farrah, T., Bandeira, N., Binz, P.A., Xenarios, 1.,
Eisenacher, M., Mayer, G., Gatto, L., Campos, A., Chalkley, R.J., Kraus,
H.J., Albar, J.P., Martinez-Bartolomé, S., Apweiler, R., Omenn, G.S.,
Martens, L., Jones, A.R., Hermjakob, H.: ProteomeXchange provides
globally coordinated proteomics data submission and dissemination. Nat.
Biotechnol. 32, 223-226 (2014)

UniProt Consortium: Activities at the universal protein resource (UniProt).
Nucleic Acids Res. 42.D1, D191-D198 (2014)



	 Proteomics
	Abstract
	Section12
	Section13
	Section24
	Section25
	Section26
	Section27
	Section28
	Section29

	Section110
	Acknowledgments
	References


