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Abstract. Recently, an elegant iterative algorithm called BRAIN (Baffling
Recursive Algorithm for Isotopic distributioN calculations) was presented. The
algorithm is based on the classic polynomial method for calculating aggregated
isotope distributions, and it introduces algebraic identities using Newton-Girard
and Viète’s formulae to solve the problem of polynomial expansion. Due to the
iterative nature of the BRAIN method, it is a requirement that the calculations start
from the lightest isotope variant. As such, the complexity of BRAIN scales
quadratically with the mass of the putative molecule, since it depends on the
number of aggregated peaks that need to be calculated. In this manuscript, we
suggest two improvements of the algorithm to decrease both time and memory

complexity in obtaining the aggregated isotope distribution. We also illustrate a concept to represent the
element isotope distribution in a generic manner. This representation allows for omitting the root calculation
of the element polynomial required in the original BRAIN method. A generic formulation for the roots is of
special interest for higher order element polynomials such that root finding algorithms and its inaccuracies
can be avoided.
Key words: Isotopic distribution, Isotopic abundance’s ratios, Mass spectrometry, Proteomics, BRAIN
algorithm
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Introduction

During the last decade there seems to be a revived
interest in methods that calculate the isotope distribu-

tion of molecules when the molecular formula is given.
Numerous publications and discussions in the literature do
witness this trend [1-7]. A recent review article by
Valkenborg et al. [8] gives an extensive overview of the
methodology. However, Claesen et al. [9] introduced a new
method called BRAIN (Baffling Recursive Algorithm for
Isotopic distributioN calculations) that is able to compute the
aggregated isotope distributions and their corresponding

center-masses. The BRAIN method is based on the
polynomial expansion of the element polynomials as
described by [10, 11]. Of note, instead of expanding the
polynomial using a symbolic approach [12-15], fast Fourier
transform approach (FFT) [16-20], or just explicitly perform
the polynomial multiplications [21, 22], the BRAIN method
employs an iterative algorithm that exploits the algebraic
identities of polynomial power series. For this purpose,
BRAIN uses two polynomial generating functions that rely
on the theory of Newton-Girard and Viète’s formulae. These
two generating functions calculate the aggregated distribu-
tion and corresponding center-masses. Interestingly, the
generating function approach for center-masses was also
used by Fernandez-de-Cossio Diaz and Fernandez-de-Cossio
and implemented in a software using the FFT-approach [6].

The advantage of BRAIN lies in its simple implementa-
tion and has been shown to be as accurate as existing
methods: Emass and SIRIUS [4, 5, 7, 9, 23, 24]. However, it
has been found by [6] that the computational complexity is
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asymptotically suboptimal in comparison with their fast
Fourier-based algorithm. A first reason for this suboptimal
behavior is that BRAIN requires starting the iteration at the
lightest variant because of the nature of Newton-Girard’s
identities [25]. In theory, one can start the iteration from the
heaviest variant, but this non-standard use of the algorithm
will not be discussed here. Second, for each aggregated
isotope variant, two additional terms are stored in the
memory for further usage during the iterative process. Previous
properties result in a BRAIN algorithm that has a computa-
tional complexity of order O(N2), as described by [6].

In this paper, we introduce two improvements to the
original BRAIN method that optimize the algorithm in
terms of memory and time complexity without compromis-
ing its simplicity of implementation as an iterative algo-
rithm. The gain in efficiency is especially noticeable when
calculating large molecules (e.g., 50 or more aggregated
isotope variants to adequately span the isotope distribu-
tion). As such, for small molecules, we suggest to revert to
the original BRAIN method [7]. It should be noted that the
presented improvements are only intended for the calcula-
tion of the aggregated isotope distribution and not for the
center-masses. Currently, we are investigating whether the
improvements are also suitable for the center-mass calcu-
lation.

Furthermore, we introduce a new formulation to
represent element polynomials in a generic form. Doing
so, we avoid the calculation of the roots of the element
polynomial, which are required in the original BRAIN
approach. This third improvement is especially interesting
when the molecular formula includes elements with many
isotopes (e.g., platinum). Such a poly-isotopic element will
result in a high-order element polynomial for which the
roots cannot be calculated explicitly or are complicated to
compute.

All proposed improvements are based on mathematical
concepts that simplify the original BRAIN approach. We
will provide an intuitive reasoning for each of these
improvements. Since the BRAIN method has already been
extensively validated in the literature, we will compare the
impact of the improvements only to the original algorithm.

Methods
Before going into detail about the three improvements, we
provide the basic concepts of the original BRAIN method.
The overview is provided in the section about the standard
BRAIN algorithm. The section about BRAIN 2.0 deals with
the proposed improvements.

Standard BRAIN Algorithm

Consider a molecule composed of v carbon, w hydrogen, x
nitrogen, y oxygen, and z sulphur atoms (i.e., having chemical

formula CvHwNxOySz). Such a molecule can be represented by
a polynomial generating function:

Q I ; v;w; x; y; zð Þ¼ PC12I
0 þ PC13I

1
� �v � PH1 I

0 þ PH2 I
1

� �w
� PN14I

0 þ PN15I
1

� �x � PO16I
0 þ PO17I

1 þ PO18I
2

� �y
� PS32I

0 þ PS33I
1 þ PS34I

2 þ PS36I
4

� �z
¼ QC Ið Þf gv � QH Ið Þf gw � QN Ið Þf gx � QO Ið Þf gy � QS Ið Þf gz :

The polynomial generating function is composed of a
multiplication of simple element polynomials QC(I), QH(I),
…, QS(I), which are raised to a power that corresponds to the
number of elements in the molecule. An important variable
in this polynomial is the indicator variable I, whereas its
power denotes the additional neutrons compared with the
lightest variant, or the monoisotopic variant in the case of C,
H, N, O, and S. The coefficients PC12 , PC13 , …, PS36 are the
probabilities of occurrence related to the stable isotopes of
previous elements. In order to obtain the aggregated isotope
distribution, the expansion of the polynomial Q is of interest:

Q I ; v;w; x; y; zð Þ ¼
X
j¼0

n

q jI
j ð1Þ

where n = v + w + x + 2y + 4z indicates the order of the
expanded polynomial. The coefficients qj are meaningful as
they correspond to the probability of j-th aggregated isotope
variant (i.e., the molecule with j additional neutrons
compared to the monoisotopic one). BRAIN adopts an
iterative scheme that calculates qj as a function of its lighter
aggregated isotope variants that are calculated in a previous
iteration of the procedure:

qj ¼ −
1

j

X
l¼1

j

q j − lψl ð2Þ

where ψl is a power sum of the roots of the element
polynomials of QC(I), QH(I), …, QS(I). The term ψl can be
calculated as follows:

ψl ¼ v rCð Þ−l þ w rHð Þ−l þ x rNð Þ−l þ y rO;all;l
� �þ z rS;all;l

� �ð3Þ

where rC,rH,rN are the roots of the element polynomials QC(I),
QH(I) and QN(I). For simplicity, oxygen and sulphur, which
have more than one root, will be denoted by the notation
rO;all;l ¼ rOð Þ−l þ rOð Þ−l and rS;all;l ¼ rS;1

� �−l þ rS;1
� �−l þ

rS;2
� �−l þ rS;2

� �−l
. The roots can be pre-computed as a closed

form equation or derived by numerical root finding methods.
Typically, the iteration is started from the lightest isotope
variant. However, duality in the Newton-Girard formulae
allows it to start from the heaviest isotope variant as well.
More details about the BRAIN algorithm can be found in the
presentation of Claesen et al. [9].
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BRAIN 2.0

BRAIN 2.0 includes two improvements that reduce the
complexity of the computation. The first improvement
reduces the length of the summation in Equation (2) for
accurately calculating the isotope variant qj. The second
improvement allows for a user-defined starting peak in
the recursive procedure. Both steps lead to less demand-
ing memory requirements and to a gain in computation
time. The third improvement, a root omitting algorithm,
is proposed to avoid the calculation of the roots of
element polynomials used in ψl. Instead, the sums of
powered roots are represented as a function of the
coefficients of the element polynomial by using the
theorem of Newton-Girard. This representation allows
for a generic form and implementation of the elements in
BRAIN 2.0.

Recurrence of Constant Length [RCL] As we can observe
in Equation (2), an aggregated isotope variant qj is
calculated based on the results from previous iterations.
As a consequence, the calculation for coefficient qj requires
j � j þ 1ð Þ

2 multiplications. However, it should be noted that
the multiplication involves the terms qj − l and ψl. The term
qj − l is a probability, which is by definition smaller than
one. The term ψl is a power sum of the element roots,
which becomes in general smaller for increasing l. This
decreasing trend is caused by the high powers to which the
roots are raised. Figure 1a illustrates how the power roots
for carbon, hydrogen, nitrogen, oxygen, and sulphur
decrease as a function of the power. Interestingly, the
elements with two isotope variants decrease faster than the
more complex elements (e.g., oxygen and sulphur).

Even for large molecules, for which the power roots
are multiplied with large values for v,w,x,y,z as indicated
in Equation (3), the term ψl will decrease to ignorable
values at some point in the iteration. This principle is
illustrated in Figure 1b for the four heavy biomolecules
presented in the Supplementary Table S1. Note that
these molecules correspond to molecules 7–10 used
previously by Olson and Yergey [26], Claesen et al. [9],
and Böcker [4] for the evaluation of NeutronCluster,
BRAIN, and SIRIUS, respectively. The results in Figure 1
indicate that the summation in Equation (2) can be
trimmed to a constant number of d iterations to ignore
irrelevant values of ψl. Obviously, this intervention is
only valid when index j is larger than d. The summation
from l = 1 to j in Equation (2) can be replaced by a
summation to d:

qj ¼ −
1

j

X
l¼1

d

q j − lψl : ð4Þ

Late Starting Point [LSP] As already pointed out by [6, 25] a
limitation of the original BRAIN method is that the iterative
procedure has to start from the lightest variant. This artefact is
inconvenient when calculating very large molecules (cfr. human
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Figure 1. (a) For each atom we show the absolute value of
the roots raised to the power −l, i.e., for carbon it is |(rC)

− l|
and for sulphur it is |rS,all,l| (the latter can be calculated using
de Moivre’s formula or [RO] improvement pointed out in this
manuscript). (b) For the four heaviest biomolecules from [26],
we plot the absolute value of ψl. Formulas and monoisotopic
masses corresponding to the molecules are presented in
Supplementary Table S1. Note that the scale of the y-axes in
both panels is logarithmic
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dynein heavy chain; C23832H37816N6528O7031S170) because the
light isotope variants are not of interest as they often fall
below the normal detection range of a mass spectrometer.
The reason why the procedure has to start from the lightest
or heaviest isotope variant is that the probability of
occurrence has to be calculated exactly to receive the
aggregated isotope distribution as a probability distribution
and the information about previously calculated aggregated
isotope variant is required to accurately calculate a new
variant. However, when probabilities are not required, the
relative isotope distribution (e.g., maximum peak normalized
to 100 %), can be computed from any starting point. This
concept is realized by the fact that Equation (2) is a linear
function of the recursion starting point. As a consequence,
the iterative procedure is independent from the starting values
in terms of the ratios of consecutive peaks. Therefore, the
starting value can be arbitrarily set, e.g. to 1.

Let us assume we are interested in the isotope distribution
from peak nstart to nstop, then

1. The recursion shall start at variant nstart − bwith coefficient
qnstart − b ¼ 1 because b burn-in steps are required to stably
calculate the coefficients (see heuristic from formula 10 for
exemplary values). The starting point nstart and stopping
point nstop are user-defined parameters;

2. The next values qnstart − bþ1;… are calculated using
Equation (2) or Equation (4);

3. The maximum peak is normalized to 1.

As we start from an arbitrary selected value, the burn-in
period b is needed for recovering the real proportions
between the consecutive peaks. It is crucial that the
procedure converges before the calculation of the nstart
variant because previous results are being propagated in this
calculation. The late starting option allows us to focus the
calculation on the prominent part of the aggregated isotope
distribution, similar in spirit as heterodyning in FFT-based
algorithms [6, 16-20].

Root Omitting [RO] It is intuitional that Newton-Girard
identities can be used to find the roots for the element
polynomials as well. Doing so, for each chemical element
one may obtain a formula for ψl as a function of the
coefficients of the element polynomials QC(I),…,QS(I)
avoiding the direct calculation of the roots. This generic
representation can be useful for elements with a large
number of stable isotope forms when roots cannot be
obtained from closed formulae or when closed formed
formulae are cumbersome to notate. As we already have
shown in Equation (3), ψl is a standard inner product of

(a) vector (v,w,x,y,z) denoting the element composition of
the molecule;

(b) vector ((rC)
− l,(rH)

− l,(rN)
− l,(rO,all,l),(rS,all,l)) indicating the

power sum of the element roots.

The vector in (a) is given by the chemical formula of the
molecule, whereas the vector in (b) can be calculated from
the element roots of C,H,N,O,S. Note that only the power l
will change during the iterations. We will illustrate the
principle of root omitting for sulphur, however, the concept
is similar for all atoms. By applying the Newton-Girard
theorem from Equation (2) directly on the element polyno-
mial of sulphur QS(I), we obtain a following system of
equations:

PS33 ¼ −PS32rS;all;1

PS34 ¼ −
1

2
PS33rS;all;1 þ PS32rS;all;2
� �

0 ¼ PS35 ¼ −
1

3
PS34rS;all;1 þ PS33rS;all;2 þ PS32rS;all;3
� �

PS36 ¼ −
1

4
PS34rS;all;2 þ PS33rS;all;3 þ PS32rS;all;4
� �

ð5Þ

Note that the development of the set of equations also
includes the non-existing (we consider here only stable
isotopes) sulphur isotope 35S for which we set the
probability equal to zero. From the first line in (5), the
value of (rS,all,1) can be easily calculated from the known

isotope distribution as − PS33
PS32

. Given the results of the first

equation, the root from the second equation (rS,all,2) can be
obtained and so on. This recurrence procedure enables us to
calculate the powered root up to (rS,all,4). Next, the higher
power roots can be calculated by extending the procedure to
nonexisting sulphur isotopes for which the probability of
occurrence is also set to zero, as displayed below or in (6):

0 ¼ PS37 ¼ −
1

5
PS36rS;all;1 þ PS35rS;all;2 þ PS34rS;all;3 þ PS33rS;all;4 þ PS32rS;all;5ð Þ

0 ¼ PS38 ¼ −
1

6
PS37rS;all;1 þ PS36rS;all;2 þ PS35rS;all;3 þ PS34rS;all;4 þ PS33rS;all;5 þ PS32rS;all;6ð Þ

⋮

More generally, we may extend the formulae for the non-
existing sulphur isotopes PS32 þ i with (i ≥ 5) as a function of
the powered sulphur roots rS

− i and only the stable isotopes
with non-zero probabilities as:

0 ¼ PS32þi ¼ −
1

i
ðPS36rS;all; i − 4ð Þ þ PS34rS;all; i − 2ð Þ

þ PS33rS;all; i − 1ð Þ þ PS32rS;all;iÞ
ð6Þ

In turn, the previous equation can be represented as a
calculation to obtain the powered sulphur roots:

rS;all;i ¼ − PS32ð Þ−1ðPS36rS;all; i − 4ð Þ þ PS34rS;all; i − 2ð Þ

þ PS33rS;all; i − 1ð ÞÞ (7)

It should be noted that Equation (7) is a simple linear
equation that can be calculated simultaneously with the
iterative BRAIN procedure. Indeed, we do not have to
calculate roots of polynomial QS(I) anymore. The root
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omitting procedure can be combined with the recurrence of
constant length [RCL] method to keep the computational
requirements constant in time as discussed in the Results and
Discussion section.

Results and Discussion
The BRAIN method has already been extensively compared
with other methods for isotope distribution calculation [4, 6,
7, 9]. For this reason, we will restrict the evaluation of
BRAIN 2.0 to the original BRAIN method. To keep the
comparison as transparent as possible, we have disabled the
computation of center-masses in the original BRAIN method
because BRAIN 2.0 cannot calculate this metric. As the
presented improvements are mainly useful for large mole-
cules, we restrict the comparison to the four heavy
biomolecules displayed in Supplementary Table S1. For
small molecules (e.g., peptides), the original BRAIN is
better suited because the interest is mainly on the lighter
isotope variants. Moreover, for light molecules, the isotope
distribution contains too few isotope variants to enable the
[RCL] option safely (i.e., arrive at the point that previous
calculations of ψl becomes ignorable). Furthermore, it
should be noted that [RCL], [LSP], and [RO] are three
innovations that can be implemented independently from
each other. Since the focus of the evaluation is on the
computational speed and accuracy of the calculated isotope
distribution between BRAIN [27] and BRAIN 2.0, we only
include [RCL] and [LSP] in the comparison. The root omitting
procedure for all elements in the periodic table is implemented
in the original BRAIN method in C++ and is available at
https://code.google.com/p/brain-isotopic-distribution/. Root
omitting [RO] has no impact on the asymptotic algorithmic
efficiency as stated by Hu et al. [25], but represent molecules
by generic equations that allow calculation of the roots in a
recursive manner without numerical root-finding. The
Bioconductor package in R does not include the root omitting
option as its current version mainly serves the calculation of
peptides and proteins that only allow C, H, N, O, and S atoms.

The accuracy of the [RCL] and [LSP] implementation is
assessed by comparing the relative isotope distributions from
BRAIN and BRAIN 2.0. For this purpose, the Pearson χ2

error statistic on the consecutive isotope ratios is calculated
that provides a measure for the similarity of the generated
isotope distributions:

χ2 ¼
X

i ¼ nstart

nstop RI
i − RII

i

� �2
RI
i

ð8Þ

with Ri
I and Ri

II being the ratios between the probabilities
of consecutive isotope variants (i.e., qi þ 1

qi
), of the returned

isotope distribution from BRAIN and BRAIN 2.0,
respectively.

In a first assessment, the methods are compared with only
the [RCL] option implemented. The stopping peak for a

given molecule is specified by the heuristic in the BRAIN
paper [9]:

nstop ¼ max 2� massaverage −masslightestIsotopeVariant
� �

; 5
� �

; ð9Þ

where ⌈and⌉ are the ceiling corner brackets that indicate the
integer ceiling function (i.e.,the nearest integer not smaller
than the value between the brackets). Recall that in this
comparison the starting peak is equal to the lightest isotope
variant, i.e., nstart = 1 as required by BRAIN. The constant
memory d for [RCL] was selected according to the following
rule of thumb:

log10 Mð Þ þ 5d e ð10Þ

where M is the mass of the lightest isotope variant of the
molecule. In other words, the parameter d is set to five plus
the number of digits in the integer part of lightest isotope
mass. For each molecule, the elapsed system times is
measured and divided by the number of times the calculation
is repeated. To obtain a stable estimate for the timing, we
perform 100 independent calculations (the performance tests
presented in this manuscript were made on a machine with
two Intel(R) Core(TM)2 CPU 6600@2.40GHz). The obtain-
ed results for the selected molecules are displayed in
Supplementary Table S1. It can be observed that the
agreement between BRAIN and BRAIN 2.0 is large in term
of the obtained isotope distributions, as the χ2 error statistic
is very small. Indeed, reducing the memory to constant
length and ignoring previous states in the recursion does not
affect the accuracy of the computed isotope distribution.
However, the [RCL] option reduces the asymptotic com-
plexity of the algorithm because only a memory of size O(d)
is needed. Hence, [RCL] yields an improvement in speed, as
can be noted from the three last columns of Supplementary
Table S1.

In a second assessment, we compare BRAIN with
BRAIN 2.0 when only the [LSP] option is activated. The
burn-in period b for [LSP] is also defined by the rule of
thumb in Equation (10). Note that the core of the algorithm
in both BRAIN and BRAIN 2.0 is unchanged by [LSP]
since the summation is not restricted to a constant memory.
However, because we represent the isotope distribution as
relative intensities in BRAIN 2.0, we can avoid the
prerequisite to start from the lightest isotope variant. Such
an approach is not possible in the original BRAIN method
and requires the heuristic in Equation (9), which leads to a
calculation of too many isotope variants. It is obvious that
fewer peaks (i.e., iterations), lead to a speed-up of the
calculation. A complete discussion on the use of heuristics
and their impact on algorithmic efficiency is provided by Hu
et al. [25] and Fernandez-de-Cossio Diaz and Fernandez-de-
Cossio [6]. Since the [LSP] option enables a more efficient
heuristic to define the starting and stopping peak for a given
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molecule, we rely on the heuristic described by Rockwood et
al. [17] and used by Fernandez-de-Cossio Diaz and
Fernandez-de-Cossio [6]:

N ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2ð Þ

pl m
; ð11Þ

where α is set to 10 and σ is the standard deviation of the
mass distribution. Note that a smaller value for α is used
than the value specified in [6] as it gives smaller intervals
with still very high coverage of the isotope distribution. The
number of peaks N is centered on the average mass of the
particular molecule. A larger α value will result in a wider
span of the isotope distribution and a more complete
coverage, but a longer computing time, as more peaks are
included in the calculation. It should be noted that for a
molecule, BRAIN and BRAIN 2.0 with [LSP] return an
isotope distribution that contains a different number of
peaks. The similarity between the returned distributions is
evaluated on the peaks that are mutually present. As stated
by Hu et al. [25], the heuristic in Equation (9) includes the
range specified by Equation (11). The result for BRAIN 2.0
with the [LSP] option is given in Supplementary Table S2.
Interestingly, the number of peaks can be reduced tremen-
dously without affecting the coverage of the isotope
distribution, which is over 99.999% in all cases as calculated
by BRAIN. This result indicates that for very large
molecules, the original BRAIN method calculates isotope
peaks with a very low and ignorable probability, leading to a
suboptimal use of computation time.

The criterion used to define the burn-in period b is
sufficient, since the returned distributions have a good
agreement as illustrated by the small values for the Pearson
χ2 error statistic. For the molecules presented in Supplemen-
tary Table S2, at most 11 burn-in steps are required, which
indicate that the relative isotope intensities converge quickly
to the actual isotope ratios.

In the third assessment, both [RCL] and [LSP] will be
activated and compared with the original BRAIN method. The
burn-in b for [LSP] and the constant memory d for [RCL] are set
according to Equation (10). Doing so, the parameters b and d are
set equally. It should be underlined that this heuristic is
simplistic; in particular, the parameters may be set independently
from each other. The results are displayed in Table 1; they
indicate that while there is a big gain in time (last three columns),

only tiny differences are observed in the accuracy of the isotope
distribution (column ‘χ2’). For r ratios, or equivalently b + r + 1
peaks, a constant memory of length d leads to a time complexity
Ct =O(d × (r + b + 1)) and a memory complexityCm =O(d + r).
If heuristic formula (10) is applied for both [RCL] and [LSP],
then an asymptotic complexity of Ct = O(log(M)(r + log(M)))
and Cm = O(log(M) + r) is obtained as a function of the
molecular mass M.

It is obvious that the starting point of a calculation (i.e.,
nstart − b) cannot be smaller than the lightest isotope variant
peak. The starting value of the algorithm should be at least
equal to the lightest variant, as in the original BRAIN
method. In contrast, [RCL] can always be applied on the
condition that the returned number of peaks exceeds the
constant memory d. In the case the iteration is started from
the lightest isotope variant, exact values for the isotope
probabilities are estimated with [RCL] disabled or enabled.

Conclusions
We illustrate that the iterative algebraic approach used in the
BRAIN algorithm for calculating the isotope distribution can
be optimized to promote a more efficient use of memory and
computation time. For this purpose, we propose two
developments. First, the recurrence of constant length
[RCL] will restrict the number of terms in the summations
to a constant value. This development has an impact on the
asymptotic complexity of the algorithm. The second
development allows for a user-defined starting point [LSP],
which enables more efficient heuristics to define the number
of peaks returned by the algorithm. For example, the study
of one particular isotope ratio (e.g., the ratio between the
most abundant isotope peak and its consecutive peak) could
be performed accurately by [LSP] and [RCL] switched on.
Although the investigated peaks do not necessary cover a
large part of the whole distribution, the ratio is estimated
very accurately. This approach was not possible in the
original BRAIN method, where the iterative calculation
had to start from the lightest isotope variant. The implemen-
tation of a recurrence of constant length [RCL] and late
starting point [LSP] will be added as an option to the
existing Bioconductor BRAIN package [27] (http://
www.bioconductor.org/packages/release/bioc/html/
BRAIN.html). Root omitting [RO] enables an elegant and
generic representation of elements and avoids the calculation

Table 1. [RCL] and [LSP] Improvements Tested for 4 Heavy Biomolecules from [26]. Speed is Measured as Elapsed Time in Seconds and Averaged from
100 Independent runs. For this comparison, we used heuristic from [9] (cf. Equation (9)) for original BRAIN and heuristic from [6] (cf. Equation (11, α = 10))
for BRAIN 2.0 with both [RCL] and [LSP] improvements. Center-masses calculations are disabled in both cases.

i.d. monoMass(Da) b d χ2 speedBRAIN speedBRAIN 2 Improvement

1 112824 11 11 2.39e-13 0.00873 0.00473 1.85
2 186387 11 11 9.79e-14 0.0138 0.0054 2.56
3 398470 11 11 5.02e-14 0.0336 0.007 4.8
4 533403 11 11 1.87e-14 0.0493 0.00766 6.43
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of roots. However, the procedure for root omitting [RO] is
not implemented in the Bioconductor BRAIN package as
this version of the package is mainly intended to calculate
isotope distributions for peptides and proteins. As mentioned
earlier, root omitting is implemented in the C++ software
available online for all the elements in the periodic table. We
applied the proposed concepts on biomolecules that contain
only five elements (i.e., C, H, N, O, S). These concepts can
be easily extended to other elements as well; however,
caution should be applied when porting these principle to
other elements. The numerical properties explained in the
recurrence of constant length can differ for other elements as
they exhibit a different elemental isotope distribution. For
instance, elements such as bromine or chlorine will converge
at a slower rate to ignorable values for ψl. Therefore,
depending on the atomic composition of a molecule, the
parameter that defines the length of the memory d may vary.
Finally, the achieved improvements in computation time are
substantial but seem ignorable for the user when looking at a
single isotope calculation. Both BRAIN and BRAIN 2.0 are
able to quickly calculate the isotope distribution. However,
when the isotope distribution is required for large protein
databases or BRAIN 2.0 is used to generate hypothetical
isotope distributions in an optimization procedure, then the
[RCL] and [LSP] improvements will be noticeable by the
user.
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