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Abstract
The orbital trap mass analyzer provides a number of unique analytical features along with
inevitable limitations as an electrostatic instrument operating in high space charge regimes
resulting in systematic measured frequency errors as an effect of stored ion clouds on the trap
field and each other effect of non-ideal machining the trap electrodes, effect of injection slot,
effect of real versus theoretical trap dimensions, etc. This paper deals with determining the
influence of the space charge effect and imperfection of the electrostatic field on the motion of
ion ensembles in the orbital trap. We examine effects of theoretically modeled non-harmonicity
of the electrostatic potential and the number of confined ions on stability of coherent ion motion
in the trap that determines the frequency shifts of axial ion oscillation. Three different Orbitrap
geometries were considered: geometry close to preproduction Orbitrap, close to standard
Orbitrap, close to high field Orbitrap. Frequency shifts for m/z=500 and for charge state +23 of
cytochrome c isotopic cluster particles with 104-6*106 elemental charges in the trap were
considered. Refined spectra were calculated using the filter diagonalization method proposed
by Mandelshtam et al. and applied to mass spectrometry by O’Connor and Aizikov.

Key words: Orbitrap, Frequency Shifts, Fourier Transform, FDM, Inharmonic Oscillations, Trap
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Introduction

The use of mass spectrometry in analysis of biological
samples makes high demands to resolution (over 106)

and accuracy (above ppm) of mass measurement. For a long
long time, these demands were only met by the Fourier
transform ion cyclotron resonance mass spectrometry (FT-
ICR) [1]. However, while providing for unsurpassed
performance, especially with recently introduced dynamically
harmonized cells [2, 3], this method is not free of some
drawbacks like the need for high magnetic field cryomagnets

incurring significant usage expenses. For this reason, there is
growing interest in another design of Fourier transform-
based spectrometers—the recently invented orbital ion trap
having performance comparable to FT-ICR instruments,
which have ion traps without dynamic harmonization.
Instruments based on the orbital ion trap have gained
recognition owing to work by Makarov who had imple-
mented the principle proposed by Kingdon [4]. Currently
there is a considerable amount of understanding of limi-
tations of spectrometry based on the principle of orbital
charged particle trapping and ways of improving its
analytical performance. Trap field inharmonicities, geomet-
ric defects, and the space-charge effect are known to be
major factors compromising the resolution and accuracy of
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Orbitrap-based mass spectrometry [5–7]. Particularly, ion
loss behind the process of transient decay is caused by
collisions with background gas, trapping field imperfec-
tions, and the space-charge effect. Sensitivity to collisions
(uniform in m=z for the Orbitrap) requires a ultra-high
vacuum especially for “heavy” compounds. In this paper, we
address the following factors: (1) space-charge effect, which
causes loss of ion packet coherence and affects ions kinetic
energy in the axial direction, (2) unintentional defects of trap
electrode geometry caused by the injection slot and
inaccurate machining, and (3) inevitable trapping potential
inharmonicities as a result of the trap'’s finite size.

Experimental
Motion in the Orbital Trap

The Orbitrap’s operation is based on ions motion in the
electrostatic field induced by a potential [8]:
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where k, C are constants, Rm – characteristic radius, k – field
curvature; r2 ¼ x2 þ y2; x; y; z – Cartesian coordinates
oriented the way that Z is the symmetry axis. Such a field
can be created by a system of two coaxial, radially
symmetric electrodes whose geometry can be described in
the form of function ZðrÞ:
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where R1;R2 are geometrical parameters. The motion of an
individual ion having a near-elliptical trajectory can be
represented by three uncoupled types of motion: rotation
around the central electrode located on axis Z, oscillations
towards Z, and oscillations along Z [8, 9]. Thus the latter
oscillation
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¼ �qkZ ð3Þ

is useful for mass analysis, and its frequency can be expressed as

w ¼
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q
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For a given radius of the circular orbit R, the frequencies of
radial oscillations and rotation are, respectively:
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Numerical Simulation

A popular framework to explore mass, resolution, and
sensitivity in electromagnetic ion traps is based on observing
the space charge effect addressed by the particle in cell
approach [10], which is in turn based on solving the Poisson
equation at each time step of particle motion integration. We
followed this approach and combined the theoretically calcu-
lated field of the (unperturbed) orbital trap with the field of
confined charged particles by the principle of superposition.
The simulation presets included a specific time step to provide
100 revolutions around the central electrode, similar to ICR
simulations where the minimum cyclotron period contains 100
steps.We also checked different grid coarseness and found that
64×64 in the XY plane provide the optimal performance
without loss of precision. During the simulations, we found that
the initial conditions of ions resulted from the ion injection
process significantly affects their later evolution. The size of
the simulation cube was chosen so that the outer electrode
would fit into it at Z � 0 and all the ions would be confined
with the cube. Secondly, the cube’s side length Lwas tuned the
way that it would be expressed in an integer number of length
units of 0.5 in. = 1.27 cm used in our simulation program,
therefore L ¼ 3:0.

Determining Basic Geometric Parameters

In order to obtain comparable results, we need to define the
principal geometric parameters of the trap. We resort to open
sources and mostly theory only since those parameters are
proprietary manufacturing information. Thus, a specific Orbi-
trap geometry can be determined via the electric field curvature
k and the effective radius Rm. We know [11] that for the
standard Orbitrap R1 ¼6 mm, R2 ¼ 15 mm, Rm � R2

ffiffiffi
2

p
, and

U ¼3500 V; for the high-field Orbitrap R1 ¼9 mm, R2 ¼
15 mm, Rm � R2

ffiffiffi
2

p
, and Ur ¼5000 V; for the pre-industrial

design [12] R1 ¼7.393 mm, R2 ¼ 19.96 mm, Rm ¼
32.388 mm, and that m/z 280.169 corresponds to
w ¼246762.0 Hz. Thus, given knowledge of the spindle’s R1,
R2, and Uwe can estimate k and w, or given R1, R2, Rm, and w
we can getU . With respect to the fact that the outer electrode is
grounded and some voltage U is applied to the spindle, we
have: φðR2Þ ¼ 0 and φðR1Þ ¼ U . Then by expressing Z via R1

and R2 using (2) we finally have:

k ¼ 2U
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Using this expression, we can connect the frequency with
dimensional and voltage parameters of various Orbitrap
versions (see Table 1).

Ion Injection

During injection, voltage is applied to the central electrode in
order to attract ions moving in the proximity of the electrode.
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From the literature [12], we know that the axial amplitude of
ion oscillations is estimated to to be 7�1.5 mm, while
trajectory diameters at the spindle equator lie within the range
24–30mm; therefore, the injection radius should be 13.5 mm at
Z ¼ 7 mm. The initial cloud distribution was a uniform sphere
having a radius of 0.12 mm and the initial velocity vector
should be preset to mimic injection in a real trap.

The motion pattern significantly depends on these initial
conditions. From [11], we know that the real injection
system is designed the way that all the ions have a rotation
speed Vf, which can be expressed via Equation 6 as

m=zV 2
φ

2e
¼ k

4
ðR2

m � R2Þ ð8Þ

Also based on that work, the injection system is known to
have the asymptotic radius of rotation around the inner
electrode in the interval R ¼ 9� 10 mm for the standard
geometry and 10–10.5 mm for the high-field geometry. In a
real instrument injection, the central electrode is set to some
voltage when the ions are in its proximity. We simulated this
process via the following set-up: at the initial moment the
central electrode has some voltage applied, the ion cloud is
located at some radius corresponding to the free orbital motion,
and all the ions have the corresponding initial velocity.

The initial velocity and coordinates of particles are
critical for the subsequent simulation so we experimentally
pre-set them following the lines of tuning a real instrument
to some extent. The ions in the cloud were initialized to have
the same velocity at the direction of rotation and to be

uniformly distributed inside a sphere of radius r ¼ 0:12 mm
having center coordinates ðR; ZÞ ¼ ð9; 6Þ mm ( standard
geometry). In general, if the particle velocity in XY -plane is
different from the value given in Equation (6) then the
revolution trajectory around the spindle will tend to be
elliptical rather than circular. Accordingly, we experimentally
optimized the initial velocity to minimize ellipticity of the
asymptotic orbit. Figure 1 presents the simulation layout.
Figure 2 presents cloud evolution at various initial conditions
of injection. As expected, varying the initial velocity results in
different trajectory ellipticity (area of ion cloud cross-section),
particularly, the initial energy 1300 eV results in greater
ellipticity than 1600 eV. Injection parameters for various
Orbitrap geometries used in this paper are presented in Table 2.
This is in accordance with one of the results by Hu et al. [13]
that the ellipticity of trajectory will depend on “energy match”
of the tangential velocity and the radial potential.

Simulating the Transient Generation

The Orbitrap simulation not only calculates trajectories of
ions in the trap, but also the time domain signal induced on
the detection electrodes. The problem of accurate calculation
of the current created in an arbitrary shaped electrode can be
solved by allocating a number of virtual charges on the
electrode surface. Then the detected signal is the current of
charges induced between the halves of the outer electrode:

IðtÞ ¼ dQk

dt
ð9Þ

Table 1. Orbitrap Geometries

Geometry R1 [mm] R2 [mm] Rm [mm] U [V] f (500 Da) fφ (500 Da)

Pre-serial 7.393 19.96 32.388 3000 1:8�105 3:8�105
Standard 6 15 22 3500 3:1�105 4:8�105
High-field 9 15 22 5000 5:2�105 6:7�105

Figure 1. Schematic view of the numerical experiments. (a) Charged particles of spatial density � are propagated driven by electric

forces in the potential φtrðr; zÞ ¼ k
2 z2 � r2

2

� �
þ k

2R
2
mln

r
Rm

þ C between the inner and outer electrodes calculated viar2φ ¼ ��="0

in the grid 64� 64� 64 elements. (b)Metal electrodes in a homogeneous dielectric. Ions are filled circles and induced image charges
are empty circles located on the conductor surfaces. Arrows show the contributions that have to be summed for one image charge
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induced by the image charge Qk of i-th ion in the outer split
electrode by the ions’ axial motion with respect to the
surface charge polarization. Charge Qk is a sum of surface
charges Wi at discrete points of an electrode’s surface

Qk ¼
X

Wi: ð10Þ

Such a discrete point charge will create a potential

φk ¼ Wi

4p"ri
; ð11Þ

where " is the electric permittivity, and we need to find the
polarization of Wi maintaining the equipotential electrode
surfaces by adjusting the charges of those charges at discrete
points. Thus, the discrete charges are uniformly distributed
over each electrode surface to add up all potential contribu-
tion from each charge location and individual ions (see
Figure 1).

If Wi is the charge at the i-th discrete surface point and
rij is the distance between location i and j, qk is the charge
of k-th ion, and dij is the distance between ion location i
and discrete point j, we can express potential φk at location
h as
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φk is the potential of an electrode and can have one of

two values, φ1 or φ2. The sum of surface charges is known
to be 0 and the sum of potentials of the detection electrodes
where these charges are located is also 0. As a result we
have a system of nþ 2 eqs for nþ 2 unknowns, which
determines values of the charges induced on each electrode.
System 13 was numerically solved via pseudo-inversion.

Ion Cloud–Cloud Collision

Collision of ion clouds with each other is a significant factor
determining the dynamic range of the orbital trap resulting in
a quick loss of close oscillation phases of ions. Unlike in FT-
ICR mass analyzers, where frequencies of revolution are
measured, the orbital trap is based on measuring frequencies
of oscillations, which determines a significant difference in
the spatial pattern of ion motion; in particular, ion cloud
trajectories cross twice per period in the orbital trap, while in
ICR traps it happens at a frequency equal to the difference of
the clouds’ cyclotron frequencies. Our simulations show that
collisions of ion clouds with each other lead to the quick loss
of phase in clouds of same m/z when their population
reaches 4� 105 (Figure 3a). Simulation was performed for 2
clouds and for an isotope cluster of cytochrome c protein,
charge state +23.

Figure 2. Motion pattern significantly depends on initial position and velocity vector of the ions in the cloud. In this figure,

dynamics of 103 ions m=z ¼ 500, z ¼ 1e at various initial values of Vφ in each Orbitrap geometry. Electrodes are grey, ions are
red

Table 2. Paramters of Injection for Each of the Orbitrap Geometries

Geometry R [mm] Z [mm] Uφ [eV]

Pre-serial 13.5 7 900, 1200
Standard 9 6 1300, 1600
High-field 10 6 3850, 4250
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As a more practical example consider a spectrum of
isotope cluster cytochrome c of 105 charges given charge
state Z ¼ 23, m � 512, dm � 0:043, detection time 0.25 s,
100 time steps per minimum frequency period of evolution
around the central electrode. The mass list was produced
using PNNL’s molecular weight calculator [14]. The Fourier
spectrum and the signal transient of 105 ions of this isotope
cluster are presented in Figure 3b. Visual analysis of the
cloud evolution revealed that these changes of frequency
occur during one cloud’s passing through/by another one.
Cloud destruction and loss of phase of particles occurs with
the increase of the number of charges in an ion cluster.
Broadening of the beats and a decrease in the number of
spectral peaks can also be observed in this figure.

Concerning possible comparison with real commercial
instruments, the authors were considering not a specific
Thermo-manufactured device but a generic one due to not
having access to the proprietary data of the instrument’s
dimensions and the duration and shape of the signal applied
for ion capturing, as well as the scatter in time they arrive at
the central electrode. Particularly, if the entry times of ions
of different m/z vary enough, they arrive at different orbits,

hence, the effect of peak coalescence is not observed (see the
last case in Figure 3a).

Deviation from the Ideal Trapping Fields
and Resolution

In practice, to create an Orbitrap potential exactly as in (1)
requires electrodes of geometry described by (2) and to have
the infinite length by Z, which never takes place. In a real
instrument, the electrode has a finite Z length and, therefore,
the resulting potential will deviate from (1) by some amount.

An ion trap has a rotational (Z–) symmetry, therefore its
field can be expanded by a series of spherical or cylindrical
harmonics. For the case of electrostatic field in the FT-ICR
trap, such an expansion by cylindrical harmonics was done
in [15]. However, since term k

2 z2 � r2

2

� �
of the ideal Orbitrap

potential [1] is a spherical harmonic expansion term, we will
stick to using that expansion further:

The Maxwell equation for the electrostatic field gives
r�E ¼ �="0 and r�E ¼ 0 The latter is equivalent to the
statement that E is the gradient of the scalar potential φ and
E ¼ �rφ. Therefore the electrostatic field could be described

Figure 3. Evolution of ion cloud collision of two calibration masses and an isotope cluster of protein cytochrome c (charge state
+23) in an orbital trap mass analyzer (U ¼ 3500 V, R1 ¼ 6 mm, and R2 ¼ 22 mm), central 1.27 cm fragment displayed. (a) Two

calibration masses. (b) Cytochrome c (from � 105e to � 4 � 105e)
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by the Poisson equation r2φ ¼ ��="0. In regions of space
lacking charge density, the scalar potential satisfies the
Laplace equation r2φ ¼ 0. The general solution for bound-
ary-value problems of the Laplace equation in spherical
coordinates can be written in terms of spherical harmonics
and powers of r [16]:

φðr; �; fÞ ¼
X1
l¼0

Xl

m¼�l

Almr
l þ Blmr

�ðlþ1Þ
h i

Ylmð�; fÞ ð14Þ

where Ylm is a spherical harmonic. Note that k
2 z2 � r2

2

� �
is a

term of series expansion A20r2Y20. For simplicity, we
approximate imperfections of the field by series expansion
A30r3Y30 and A40r4Y40. Therefore, we represent an electro-
static potential by:
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where L – simulation region length, C – constant, A30, and
A40 are dimensionless electric field inharmonicity constants.

Expression (15) was obtained from (1) by adding term
A30r3Y30 (non-symmetric by Z) and A40r4Y40 (symmetric by Z).

The idea behind this selection of terms was to provide the
simplest approximation for exploring the behavior of ion clouds
at the inevitable non-harmonicity of the trapping potential. As
for terms of type Almr lYlm and Blmr�ðlþ1ÞYlm, if m is non-zero,
then the field is not rotation-symmetric while in our case we can
assume that the trap field has this property and its orthogonal
components should have the Z-axis rotational symmetry:
A11rY11 ¼ A11x, B11r�2Y11 ¼ B11y, A21rY21 ¼ A21zx, B21r
Y21 ¼ B21zy, and so forth. Therefore terms of this
kind were not considered in deriving formula (15). As
for terms Bl0rðlþ1ÞYl0, we can see that for B10r�2Y10 ¼
B10z=ðx2 þ y2 þ z2Þð3=2Þ, B20r�3Y20 ¼ B20ð2z2 � x2 � y2Þ=
ðx2 þ y2 þ z2Þð5=2Þ and so on, their contribution vanishes at
z ! 1, while the goal of introducing additional terms was
decreasing the field with the increase of jZj – the additional
terms should have cancel the contribution of term
k=2ðz2 � x2=2� y2=2Þ. Therefore, the terms of this kind were
omitted. Regarding using a bigger number of terms of type
Al0rlYl0, we tended to minimize the number of terms making
them sufficient for a qualitative analysis of ion cloud behavior.

Presence of terms A30k
L 3zr2 and A40k

L2 24z2r2 in the trapping
electrostatic potential also causes the Z–motion and the
radial motion to stop being independent which in turn causes
the Z–oscillations to depend on the trajectories of ion
revolution around the central electrode. Since ion trajectories
are scattered to some extent by ellipticity, this in combina-
tion with the Z–amplitude scattering will cause initially

Figure 4. Evolution of ion clouds at various values of term kA40
L2 8z4 � 24z2r2 þ 3r4ð Þ of the practical trap potential and

m=z ¼ 500, z ¼ 1e , 103 ions. The non-harmonicity of the trapping electric potential causes decay of the signal due to ion cloud
de-phasing along the Z axis. Loss of phase is proportional to the term A40
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synchronous ion clouds to lose ions’ Z–phase coherence in
potentials of the type (15). The computer simulation that we
performed let us determine the value of coefficient A40

leading to the signal decay speed corresponding to frequency
resolution 105 at m ¼ 500 Da and charge state 1e.

So far, such a field composition has been abstract due to
the absence of qualitative correspondence between the
expansion coefficients and measurable characteristics. To
provide such a qualitative correspondence, we remember
that the field is Z-symmetric and thus we perform variation
of the lowest symmetric coefficient of the real field

inharmonicity – A40. Specifically, we vary it to arrive at
such a decaying signal, which gives us resolution of at least
105. Figure 4 illustrates this adjustment: assuming that the
simulation region’s length L ¼ 3:81 cm, for mass 500 Da
and charge state 1 different decays resulting in different
levels of resolution R ¼ f =2�f are produced by different
values of A40: 10�4, 3� 10�5, and 10�5. We were aiming
at resolution 105 to obtain the field approximately
corresponding to the real instruments. One can see that at
A40¼ 10�5 we obtain the resolution (R ¼ f =2df ) slightly
greater than 105. Longer signals and greater target resolution

Figure 5. Cloud dynamics at various amplitudes of 20 spindle surface defects defined as deviations from the "ideal" profile

zðr1;2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
2 �

R2
1;2

2 þ R2
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r

q
in the XY -plane. (a), (b), (c), deviation amplitudes 0.075188, 0.11278, and 0.15038 mm, respectively
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were not available because the corresponding simulations
would have exceeded available computational resource.

Additionally, the quality of machining the electrodes
affects the smoothness of the electric field (7). If we
represent machining defects by the maximum deviation d
of R1 and the number of n deviation segments where
k 6¼ const as a result of R1 þ "i and "i 2 ½0; d	, then the latter
factor can be mimicked by piecewise approximation of (7)
preserving the gradient of potential (see Appendix 2). Local
electrostatic field inhomogeneities cause ions to deviate from
their ideal orbits on a bigger “radius” leading to ion loss on
the outer electrodes and increased signal decay. The result of
non-smoothness of φ on the signal is presented in Figure 5.
Ellipticity of the trajectories increases with the number of
deformations. As we see, the signal decay is caused by the
instability in the orbital ion motion, in the regions where the
ions leave the (stable) orbit. However, there is no dephasing
of the ion clouds in the Z direction in this case. Increased
signal decay with the increase of the amplitude of deviations
from the ideal surface.

Frequency Shifts

One of the factors that compromises mass measurement
accuracy in the orbital trap is a systematic deviation of the
observable frequency of charged particle oscillations in the
axial potential gap from the theoretic frequency w even for a
single ion cloud. Therefore, improving the instrument’s mass
accuracy requires understanding all the processes behind
such a systematic deviation in order to fix the latter by
means of a calibration formula. A preliminary analysis of
phase-dependent frequency shifts was done by the authors in
[17].

Consider an application of the above theory to the analysis
of oscillations in real i.e. finite-sized traps. In reality electro-
static potential of the type (1) cannot be created, therefore let's
consider an approximation (15). The presence of new terms
will significantly complicate the ion motion. Summands
A30k
L 2z3 and A40k

L2 8z4 will make Z–oscillations to become non-
linear and anharmonic which can be described by a motion
equation

€zþ q

m
kzþ q

m
k
6A30

L
z2 þ q

m
k
32A40

L2
z3 ¼ 0 ð16Þ

and solved via the method of successive approximations for
the case when the contribution of term A30k

L 2z3 is greater than
A40k
L2 8z4 [18]. Thus, if we ignore the terms related to
combination oscillations, we get z ¼ acoswt where
w ¼ w0 1þ 12A40

L2 � 15A2
30

L2

� �
a2

h i
and w2

0 ¼ q
m k. An important

property of such an anharmonic motion is a dependence of
the frequency of oscillations on their amplitude which
applied to the ion motion will cause frequency shifts for
ions of different oscillation amplitudes. In the Figure 3 we

see that Z-oscillation amplitudes grow with the ion popula-
tion, eventually causing measurable frequency shifts.

From our simulation results for 104, 105, 106, 2� 106,
3� 106, 4� 106, 5� 106, and 6� 106 charged particles for
the standard Orbitrap geometry, frequency shifts were
observed for the detection time of about 0.002 s, which
corresponds to 105 steps of motion integration. Each step’s
duration was calculated the way that a single revolution
around the spindle would correspond to 100 steps. Figure 6
presents the results, from which we can conclude that
frequency shifts for an Orbitrap having trapping field of
the form (15) can be approximated as

f ½Hz	 ¼ 277839� 0:5N ; forA30 ¼ 0;A40¼ 10�5; L ¼ 3:81cm

f ½Hz	 ¼ 277822� N ; forA30 ¼ 0;A40¼ 10�4; L ¼ 3:81cm

This shows that the shifts can be approximated with
expressions of the kind f ½Hz	 ¼ C1 � C2N , which corre-
sponds to calibration law m=z � C3

f 2 � C4N
f 3 , while the approx-

imated based on the experimantal data [19], gives

m=z � C5
f 2 � C6

f 2

ffiffiffiffi
N

p
. Regarding the magnitude of shift,

Gorshkov et al. ([19], Figure 1, peptide [M+2H]2þ

DNYDEGFGHR) report the frequency shift of about
4 ppm based on the change in the AGC reading from 0 to
5� 105 ions of m/z � 600. In our case, we have a linear
dependency: 1 ppm for A40¼ 10�5 and 2 ppm for A40¼ 10�4

in the relative change of the measured frequency, which
is quite comparable to the former up to the order of
magnitude.

Figure 6. Space charge effect as an independent factor
behind frequency shifts in Orbitrap with R1 ¼ 6 mm,

R2 ¼ 15 mm, Rm � R2

ffiffiffi
2

p
, U ¼ 3500V , L ¼ 3:81cm for 104,

105, 106, 2 � 106; 3 � 106; 4 � 106; 5 � 106; 6 � 106

elementary charges in the cloud of m=z ¼ 500, z ¼ 10e
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Conclusion
We present a study of the mechanism and perturbing effects of
electrostatic potential inharmonicity, electrode surface irregu-
larity, and collocation cloud population on performance of the
Orbitrap mass analyzer based on the theoretical Kingdon trap
potential in both ideal and finite-size geometries. The obtained
theoretical results are illustrated via numerical experiments on
various calibration samples and a complex ion mixture of the
cytochrome c isotope cluster. A series of variations of the
analytical trap field were performed to test the effect of its
inharmonicity and manufacturing deviations on the frequency
shifts, signal quality, and dynamic range of the mass analyzer.
Specifically, we characterized shifts of frequencies of axial
oscillations caused by ion–ion interactions for a range of
populations of ion clouds and proposed a calibration expres-
sionm=z � C3

f 2 � C4N
f 3 as the calibration equation accounting for

the shifts. Unlike in the idealized theoretical Kingdon trap
geometry, to account for the signal decay caused by the ion
loss, the finite axial length of the orbital trap can be adequately
described by additional non-harmonic terms polynomial in the
coordinate. We show that the non-ideal field of a real
instrument is the biggest factor behind the loss of phase
coherence in ion clouds which in turn limits the resolving
power of Orbitrap based mass analyzers. We also examine
another significant factor behind dephasing, which gets worse
with the increase of ion population trapped in a non-ideal field.
Particularly, we found that the adverse influence of shortened
ends of a real instrument is adequately described by

φðr; zÞ ¼ k
2 z2 � r2

2

� �
þ R2

mln
r
Rm

h i
þ kA30

L 2z3 � 3zr2ð Þ þ kA40
L2 8z4�ð

24z2r2 þ 3r4Þ þ C. Additionally, small deviations in local field

curvature cause faster decay of the signal.
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Appendix 1
The Filter Diagonalization Method

Consider a time series X ¼ x1; x2; ::: produced by some
parametric process

xn ¼
XK
k¼1

dke
�intwk : ð17Þ

where t is the time step, n - step number, dk and wk - k-th
complex amplitude and frequency, respectively, and K is the
number of spectral elements. Two major approaches to
spectrum estimation are used: non-parametric (e.g., the Fourier
transform where only time series’ observations are used and
parametric), which is based on some assumption about the
underlying process (e.g., that the series’ observations were
generated by some linear dynamical system like an autore-
gression of order n). The motivation of the latter is availability
of expansions in the basis of exponentially decaying harmon-
ics. The common idea of many parametric methods is obtaining
the power spectrum of a series based on the knowledge of
spectrum of a generating process’ evolution operator H .
Statistically, such an inference is consistent due to the Szego
theorem. Let RðkÞ ¼ E½xixiþk 	 be the autocorrelation function
(ACF) of X and its Fourier transform is

SðwÞ ¼
X1

m¼�1
RðmÞe�imw;�p G w 
 p:

Then the distribution of eigenvalues of matrix

R ¼

r0 rm�1 ::: r2 r1
r1 r0 ::: r3 r2
::: ::: ::: ::: :::
rm�2 rm�3 ::: r0 rm�1

rm�1 rm�2 ::: r1 r0

0
BBBB@

1
CCCCA

comprised of the ACF's elements converges to the power
spectrum of X as n ! 1:

lim
n!1

1

n

Xn�1

i¼0

GðtÞ ¼
Z 1

2

�1
2

G SðwÞ½ 	dw

where G - a continuous function.Mandelshtam and Taylor [20]
proposed to treat X as an output of a linear dynamical system

Fn ¼ HnF0

whose autocorrelation matrix is used as an approximation of
its evolution operator H with an unknown initial state �0,
which is known to form the Krylov subspace of some linear
manifold. The result is Equation (18)

Hiþ1Bk ¼ hkH
iBk ð18Þ

Bk , an eigenvector (a complex amplitude) and hk , an eigenvalue
(a complex frequency) corresponding to the generalized
eigenvalue problem. By solving it we obtain the eigenvalues

hk ¼ e�iwkt ; ð19Þ
determining positions of spectrum elements, and eigenvectors
Bk determining the amplitudes and initial phases. The
eigenvalue problem can be found via matrix diagonalization
and, thus, in general, one can find the frequencies wk . The
amplitudes dk can then be found from (17) by solving the least-
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squares equation. However, this straightforward approach is
quite expensive computationally and requires a significant
amount of memory because rankðHiþ1Þ is determined by the
length of the time series n while the computational complexity
of this method isOðn3Þ. Apart from this problem, the spectrum
produced this way contains a certain amount of noise elements.
There are a number of workarounds to this issue, so let’s
consider the most popular one, where one avoids the global fit
of calculating the Krylov basis, but rather solving the problem
in multiple subsequent windows. To do this, we represent each
Krylov basis function by a superposition of a small number of
functions from the Fourier basis:

Yj ¼
X
k

e�ikφjFk ð20Þ

where Yj is a function in the new "local" basis. We perform
it in a narrow frequency window to make the size of matrix
Hiþ1 in (18) significantly smaller. Note that the "local" basis
Yj will contain only spectral elements from the global basis.
(18) is then being solved subsequently for each window and the
spectra produced are merged into the resulting spectrum. Also,
the noise elements are thus evenly distributed among frequency
windows and can be efficiently suppressed via the singular
value decomposition procedure [21] Hi ¼ UDV � (where U
and V are unitary matrices and D is the diagonal of ordered
singular values l1l2:::ln > 0 and V � is the conjugate transpose
of V ) with truncating diagonal elements of D below a certain
threshold. Programmatically, our FDM implementation is
based on the guidelines by O’Connor and Aizikov [22].

Appendix 2
Simulating a Field of Deformed Central Electrode

We have N deviations zi; di; i ¼ ð1;NÞ of the spindle
from its ideal profile

zðrÞ1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

2
� R2

1;2

2
þ R2

mln
R1;2

r

s
;

and the task is to find φðz; rÞ induced by the electrode having
such a profile. The idealization consists in a choice of
specific approximation of the profile with deviations on it to
mimic the typical real-world case. Although we can
calculate fðz; rÞ for any profile using numerical methods,
we can do that analytically by choosing a profile that
provides for the agreement with the Laplace equation

r2φðz; r þ dðzÞÞ ¼ 0:

Following the general principle of constructing spline
approximators, we'll be looking for a piecewise representa-
tion of the function rðzÞ of the spindle profile in the form

r ¼ f ðzÞ ¼ aþ bzþ cz2 þ dz3

subject to common constraints:

f 0ðziÞ ¼ f 0ðziþ1Þ
and

f 00ðzi�1Þ ¼ f 00ðziþ1Þ
given f 0ðz0Þ ¼ s0 and f 0ðzn�1 ¼ snÞ where 0 – some initial
slope on the ends, and a special constraintrφðz; rÞ ¼ 0 due to
the fact that the profile rðz; r þ dðzÞÞ is the contour of φ at
distance d ! 0. After re-expressing r in a polynomial form as

r ¼ f ðziÞ ¼ ai þ bizþ ciz
2 þ diz

2

we have

f 0i ðzÞ ¼ bi þ 2cizþ 3diz
2

and

bi � biþ1 þ 2ciz� 2ciþ1zþ 3diz
2 � 3diþ1z

2 ¼ 0:

Accordingly,

f 00ðzÞ ¼ 2ci þ 6diz

and

2ci � 2ciþ1 þ 6diz� 6diþ1z ¼ 0:

However, the interpolant should meet a certain conserva-
tion law to be used as an electrostatic potential, specifically,
the Laplace equation rf 2 ¼ 0,which we should provide for
in the form of an additional constraint. As we know, its
solutions minimize the Dirichlet energy integral

R
A rfj j2dA,

the integrated square of the gradient resulting in the
smoothest possible solution over domain A. If we only use
values from the evenly spaced z0:::zn domain for fitting the
interpolant, we can use a finite difference approximation of
the Laplace equation via the discrete version of the mean-
value theorem for harmonic functions: denoting f ðz1Þ as a
central point and f ðz0Þ and f ðz2Þ as its left and right
Cartesian neighbors, we have

� f ðz0Þ
2

þ f ðz1Þ � f ðz2Þ
2

¼ 0:

Or, in terms of our cubic representation,

� a0 þ b0z0 þ c0z20 þ d0z30
2

þ a1 þ b1z1 þ c1z
2
1 þ d1z

3
1

� a2 þ b2z2 þ c2z22 þ d2z32
2

¼ 0:
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Finally,

0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 z1 z21 z31 0 0 0 0 0 0 0 0
0 1 2z1 3z21 0 0 0 0 0 0 0 0
0 0 2 6z1 0 0 �2 �6z1 0 0 0 0
0 0 0 0 1 z1 z21 z31 0 0 0 0
0 0 0 0 1 z2 z22 z32 0 0 0 0
0 0 0 0 0 1 2z2 z22 0 �1 �2z3 �z23
0 0 0 0 0 0 2 6z2 0 0 �2 �6z3
0 0 0 0 0 0 0 0 1 z3 z23 z33
0 0 0 0 0 0 0 0 1 z4 z24 z34
0 0 0 0 0 0 0 0 0 1 z4 z24�1
2

�1
2z0

�1
2z20

�1
2z30

1 z1 z21 z31
�1
2

�1
2z2

�1
2z22

�1
2z32

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

a0
b0
c0
d0
a1
b1
c1
d1
a2
b2
c2
d2

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

¼

y0ðz0Þ
yðz0Þ
yðz1Þ
0
0

yðz1Þ
yðz2Þ
0
0

yðz3Þ
yðz4Þ
y0ðz4Þ
0

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

or

Ax ¼ y:

The system of equations is over-determined, requiring a
least-squares solution for the best fit of A minimizing the
Euclidian norm of the error Ax� yk k2. Note that the
resulting spline will cause the set of points specified as
initial deviation values to be adjusted to reflect the required
compliance with the Laplacian regularizer. The MATLAB
implementation of the singular value decomposition method
was used for this.
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