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Abstract Drought has become more frequent in Central
Europe causing large losses in cereal yields, especially of
spring crops. The development of new varieties with increased
tolerance to drought is a key tool for improvement of agricul-
tural productivity. Material for the study consisted of 100 bar-
ley recombinant inbred lines (RILs) (LCam) derived from the
cross between Syrian and European parents. The RILs and
parental genotypes were examined in greenhouse experiments
under well-watered and water-deficit conditions. During veg-
etation the date of heading, yield and yield-related traits were
measured. RIL population was genotyped with microsatellite
and single nucleotide polymorphism markers. This popula-
tion, together with two other populations, was the basis for
the consensus map construction, which was used for identifi-
cation of quantitative trait loci (QTLs) affecting the traits. The
studied lines showed a large variability in heading date. It was
noted that drought-treatment negatively affected the yield and
its components, especially when applied at the flag leaf stage.
In total, 60 QTLs were detected on all the barley chromo-
somes. The largest number of QTLs was found on

chromosome 2H. The main QTL associated with heading,
located on chromosome 2H (Q.HD.LC-2H), was identified
at SNP marker 5880–2547, in the vicinity of Ppd-H1 gene.
SNP 5880–2547 was also the closest marker to QTLs associ-
ated with plant architecture, spike morphology and grain
yield. The present study showed that the earliness allele from
the Syrian parent, as introduced into the genome of an
European variety could result in an improvement of barley
yield performance under drought conditions.
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Introduction

Barley (Hordeum vulgare L.) is not only one of the most
important crops from an economic point of view (FAOSTAT
2014), but it is also an excellent species for genome mapping
and map-based analyses (Costa et al. 2001; Mansour et al.
2014). Its diploid nature, low chromosome number and a high
degree of self-fertility mean that barley is a common subject
for genetic studies examining drought resistance of crops
(Tondelli et al. 2006; Talamè et al. 2007).

Several genetic maps based upon different genetic marker
techniques have been published (Wenzl et al. 2006; Zhou et al.
2015). Among various types of DNA markers, microsatellites
(SSR) and single nucleotide polymorphism (SNP) have been
widely used for genome analyses (Cockram et al. 2010;
Cuesta-Marcos et al. 2010; Honsdorf et al. 2014; Varshney
et al. 2007). The first high-density gene map based on SNP
markers contained 2.943 SNP loci in 975 marker bins and
covered a genetic distance of 1099 cM (Close et al. 2009).
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The availability of high-throughput SNP genotyping has fa-
cilitated the genetic studies of agronomically important traits
(Close et al. 2004; Wang et al. 2010b). Recently, research
containing a detailed overview of the functional portions of
the barley genome has been published (International Barley
Genome Sequencing Consortium 2012). This highly resoluted
genetic map together with the sequence data has a tremendous
potential for candidate gene discovery using conservation of
the grass genome synteny (Mayer et al. 2009).

Abiotic stresses reduce average yields for most crops
(Boyer 1982; Bray 1997). Among the stresses, water deficit
is the most devastating on a global scale (Zhao and Runnings
2009). Aspinall et al. (1964) and Samarah (2005) have report-
ed stage-specific drought responses in the crops. Appropriate
irrigation conditions during the stem elongation phase are in-
dispensable for the formation of fertile florets at anthesis as the
final number of grains is determined during this period
(Miralles and Slafer 1995). Water deprivation in this critical
developmental stage affects numerous aspects of plant metab-
olism leading to impairment of many biochemical pathways
(Moran et al. 1994; Loggini et al. 1999; Farooq et al. 2009).

The simplest solution to survive in dry environments is an
escape from drought (Passioura 1996; Richards 1996). The
short life cycle of crop plants might be considered as an im-
portant trait related to water deficit adaptation (Araus et al.
2002). The majority of barley cultivars vary significantly in
their response to water scarcity (Zare 2012). Sources of
drought tolerance can be found in landraces from geographi-
cal regions with challenging climates close to their domesti-
cation origin (Ellis et al. 2000; Górny 2001; Nevo and Chen
2010).

Heading date in barley depends on vernalisation require-
ments (Takahashi and Yasuda 1956; Sasani et al. 2012), pho-
toperiodic response (Roberts et al. 1988; Laurie et al. 1995)
and earliness per se genes (Gallagher et al. 1991; Sameri et al.
2006). Quantitative trait loci (QTLs) associated with heading
date have been mapped on all barley chromosomes (e.g.
Hayes et al. 1993; Laurie et al. 1995; Tinker et al. 1996;
Bezant et al. 1997; Qi et al. 1998; Pillen et al. 2003) and many
allele-specific markers for some candidate genes controlling
these processes are known (Turner et al. 2005; Faure et al.
2007; Szűcs et al. 2007).

The major photoperiod response locus has been identified
by RFLP analysis on the short arm of chromosome 2H.
Dominant alleles at Ppd-H1 accelerate flowering under long
day conditions, whereas no effect has been detected under
short day conditions. Laurie et al. (1995) and Turner et al.
(2005) have shown that the late-flowering allele is recessive.
Two main single nucleotide polymorphisms have been detect-
ed which differentiate alleles involved in the plant sensitivity
to day length. Non-synonymous (G – Ppd-H1/ A – ppd-h1)
SNP within the CCT domain has been suggested as an expla-
nation for recessive form of the allelic variation (Turner et al.

2005). Another study revealed that a polymorphism in the
photoperiodic response in barley varieties might be associated
with the SNP48 situated in the exon 6 of the Ppd-H1 coding
region) (Jones et al. 2008). A second major photoperiodic
response locus (Ppd-H2) has beenmapped to the chromosome
1H (Laurie et al. 1995). The Ppd-H2 affects the flowering time
under short day conditions. A candidate gene (HvFT3) for this
locus has been proposed by Faure et al. (2007).

The vernalisation and photoperiodic pathways correspond
to each other to promote flowering in crops (Distelfeld et al.
2009). A study conducted using barley spring crosses revealed
loci for flowering time in the regions connected with
vernalisation response (Bezant et al. 1997). Three genes,
Vrn-H1, Vrn-H2 and Vrn-H3, located on the chromosomes
5H, 4H and 7H, respectively, have been proposed as the major
vernalisation response genes (Cockram et al. 2007).

The aim of the present study was to detect QTLs determin-
ing yield and yield-forming traits in a recombinant inbred line
(RIL) population developed from a hybrid between European
and Syrian genotypes (adapted to dry environments) under
optimal and water stress conditions, with special attention
being paid to earliness.

Materials and methods

Plant material

Material for the study covered RIL population of spring barley
(Hordeum vulagre L.) derived from the cross Lubuski × Cam/
B1/CI08887//CI05761. The parent Cam/B1/CI08887//
CI05761 (hereafter referred as CamB) is the Syrian breeding
line supplied to Dr. A. Górny by Drs S. Grando and S.
Ceccarelli from ICARDA in Aleppo and Lubuski is an old
Polish cultivar derived from a Heines-Haisa/Skrzeszowicki
hybrid. The examined population was developed by means
of the single seed descent (SSD) technique (up to F8)
(Goulden 1939) associated with in vitro culture of immature
embryos (Surma et al. 2013). Out of 150 developed RILs 100
were randomly chosen for the present experiments.

Greenhouse experiments

The greenhouse experiments with the Lubuski × CamB pop-
ulation were conducted (was grown in three replicates) in two
growing seasons (2012, 2013) during April–August. In both
years, three water regimes were applied: (1) C – optimal water
supply for the whole vegetation period, (2) DI – drought stress
beginning at the three-leaf stage (13 in the BBCH scale) and
maintained for 10 days, (3) DII – drought stress beginning at
the flag leaf stage (37 in the BBCH scale) and maintained for
14 days, which created six environments denoted as: C 2012,
C 2013, DI 2012, DI 2013, DII 2012 and DII 2013. Ten plants
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were grown in pots containing 9 kg of soil. Air moisture and
temperature were monitored by special device (LOG32 -
Temperature-humidity logger with integrated USB-interface
and automatic PDF-creation). Control of the soil moisture
was provided by a hand-held device (FOM/mts) designed
for field measurements of the soil moisture and temperature
(Malicki et al. 1996). The weighing method was used as an
additional control of the irrigation system. The soil moisture
was kept at 2.2 and 3.2 pF in optimal and drought conditions,
respectively (ESM 1). Three groups of traits were observed:
associated with morphology of the main and lateral spikes
(grain weight per main spike - GWSm, number of grains per
main spike - NGSm, number of spikelets per main spike -
NSSm, length of main spike - LSm, grain weight per lateral
spike - GWSl, number of grains per lateral spike - NGSl,
number of spikelets per lateral spike- NSSl, length of lateral
spike - LSl), with plant architecture (length ofmain stem - LSt,
number of productive tillers per plant - NPT), and with grain
yield (1000-grain weight - TGW, Grain weight per plant -
GWP). Duration of the vegetative growth period was
expressed as the number of days from sowing to heading
(heading date - HD). The measured traits are listed in ESM 2.

Genotyping

In the present studies consensus map constructed by
Mikołajczak et al. (2016) was used for QTL analysis.
Briefly: A set of 78 barley SSR markers developed by
Varshney et al. (2007) was used in the experiment. SNP
genotyping was carried out at the Southern California
Consortium using the Illumina GoldenGate array 1 (Illumina
Inc., San Diego, CA) that analyses 1.536 genome-wide single
nucleotide polymorphisms; details of this array (BOPA - bar-
ley oligo pool assays) are described by Close et al. (2009).

JoinMap 3.0 software (Van Ooijen and Voorrips 2001) was
used for the map construction. Once the individual genetic
map was obtained, the consensus map was constructed. The
complete dataset consisted of 819 markers mapped in the
Maresi × CamB (MCam), Lubuski × CamB (LCam) and
Georgie × Harmal (GH) populations. Details on the develop-
ment of the map construction are given in Mikołajczak et al.
(2016).

Statistical analysis

Observations for RILs were processed by analysis of variance
in a mixed model with fixed effects for year, drought and
year × drought interaction, and with random effects for line
and interaction of line with year and/or drought treatment.
The residual maximum likelihood (REML) algorithm was
used to estimate variance components for random effects
and the F-statistic was computed to assess the significance
of the fixed effects. Ordinary, mean values computed for

RILs in all specific (years × drought) - combinations were
used for construction of principal component biplots.
Pearson correlation coefficients between all the analysed traits
were calculated. QTL analysis was performed for the consen-
sus linkage map (Mikołajczak et al. 2016) with the mixed-
model approach described by Malosetti et al. (2013), includ-
ing optimal genetic correlation structure selection and the sig-
nificance threshold estimation. The interval mapping was con-
ductedwith a step size of 2 cM by selecting the QTL candidate
and then using them iteratively as cofactors until the list of
QTL was not changed. The threshold for the − log10(P-value)
statistic was computed by the method of Li and Ji (2005) to
ensure the genome-wide error rate was less than 0.01. The
windows for not selecting two close QTLs and for exclusion
of cofactors were set at 10 and 30 cM, respectively. Selection
of the set of QTL effects in the final model was performed at
P< 0.05; the P-values for the Wald test were computed as the
mean from the values obtained by adding and dropping the
QTL main and interaction effects in the model. All the above
computations were performed in Genstat 16 (VSN Int. 2013).

QTL annotation

All SNP sequences taken from Close et al. (2009)
(Supplementary material file BOPA1 SNP 1471-2164-
10-582-S19.xls) were mapped using NCBI Blast for
Windows to barley genomic space in Ensembl Plants
v e r. 2 . 28 ( r e f e r ence r epea t masked s equence
Hordeum_vulgare.082214v1.28.dna_rm.toplevel.fa, maxi-
mum EValue = 1e-060, minimum 95 % identity of the
SNP sequence). The SNP mapping positions were used
to obtain a projection of two LOD QTL support intervals
(see Xu 2010) onto the genomic sequence; all genes lo-
cated in projected intervals were listed and annotated
using Gene Ontology (GO) terms. For QTL interpretation,
we applied a method similar to the one implemented by
Cantalapiedra et al. (2015).

Early and late heading subgroups of plants

According to SNP 5880–2547 segregation (Mansour et al.
2014; Muñoz-Amatriaín et al. 2011), RILs were divided into
two subgroups—early heading (group A – allele from CamB)
and late heading plants (group B – allele from Lubuski).

Results

Phenotypic evaluation

The average heading dates and the mean values of mor-
phological traits for parental cultivars and RILs in the six
environments are presented in ESM 3a and ESM 3b as
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supplementary material, respectively. Parental genotypes
are classified as early (CamB) and late (Lubuski) accord-
ing to the large differences between their heading dates
in all experiments. The heading (HD) of the Syrian ge-
notype grown under well-watered conditions was about
15–19 days earlier than of the European one. The HD for
parents increased both in DI conditions (by about 3 -
6 days) and in DII conditions (by about 1 - 6 days) as
compared to the well-watered conditions. The data anal-
ysis across two years showed highly significant differ-
ences among lines for HD. RILs with longer vegetation
periods than the late-heading parent were noticed among
the studied population in all environments. For all stud-
ied traits, Lubuski showed significantly higher values
under well-watered conditions compared to CamB (with
the exception of LSt in 2012, 2013 and NPT in 2013).
The Syrian cultivar showed higher values for TGW than
the European parent in DI over the two years. On the
other hand, Lubuski showed higher GWP in all environ-
ments. The comparison of the parental genotypes for
traits connected with the plant architecture showed that
CamB formed more productive tillers under water-stress
conditions applied at the three-leaf stage.

In RILs, NPT increased both under drought I and drought II
conditions. For all observed traits (with the exceptions: HD
and NPT), greater decrease were noticed under drought II.

Lines of the LCam population were significantly dif-
ferentiated in terms of all analysed traits (Table 1). In all
case, the variance components for al l types of

interactions were smaller than that for lines. For HD,
variance components were significant for all types of
interaction (i.e. for line × year, line × water regimes,
line × year × water regimes). On the other hand, no inter-
action component was significant for NGSm and LSl.

As shown in biplots (Fig. 1), RIL plants grown in drought
II were affected more than in drought I, as they are further
away from control plants superior—in both years—by spike
morphology traits and LSt.

Correlations of all traits with HD were significant
(P < 0.001) in at least one environment, with no correlation
significant in DII 2012 (Table 2). The highest correlation co-
efficient was found for NSSl in drought I in 2012 (r = 0.762),
whereas the correlation between HD and NGSl (DII 2013)
was the weakest (r = 0.236). Significant negative correlations
between HD and NPT, revealed also in 2013 biplot, were
observed across three environments (DI 2012, DI 2013, C
2013) which indicates that early heading lines developed more
productive tillers, especially in DI conditions. No significant
association was found between days to heading and 1000-
grain weight, except for the control conditions in 2012 (neg-
ative correlation). Positive and significant correlations were
recorded between HD and spike traits: GWSm, NGSm,
NSSm, LSm, GWSl, NGSl, NSSl in both years in DI and C
conditions. This indicates that late heading lines developed
longer spikes with more spikelets and—as a consequence—
more grains. Moreover, a positive correlation was found be-
tween GWP and heading stage, which indicates that early
heading lines were characterised by lower yield.

Table 1 ANOVA results and variance components estimates for agronomic traits observed in LCam population

Trait (abbrev.) P-values for significance
of effects of

Variance components and std. errors for

years (Y) treatment (D) Y ×D
interaction

lines s.e. interaction
line x year

s.e. interaction line
x treatment

s.e. interaction line
x year x treatment

s.e.

HD <0.001 < 0.001 < 0.001 11.8878* 2.4091 1.8182* 0.5891 8.3332* 1.1899 6.0901* 0.6216

TGW < 0.001 < 0.001 < 0.001 3.0051* 0.7274 1.4115* 0.4623 0.7955 0.4152 0.0146 0.5255

GWP < 0.001 < 0.001 < 0.001 0.0327* 0.0076 0.0216* 0.005 0.0013 0.0028 0.0005 0.004

LSt < 0.001 < 0.001 < 0.001 18.5399* 3.3819 5.0418* 1.3247 0.7975 0.8817 1.3372 1.2274

NPT < 0.001 < 0.001 < 0.001 0.0817* 0.0193 0.0075 0.01 0.0476* 0.0154 0.0228 0.0167

GWSm < 0.001 < 0.001 < 0.001 0.0073* 0.0013 0.0007 0.0003 0.0018* 0.0004 0.0008 0.0004

NGSm < 0.001 < 0.001 < 0.001 4.2621* 0.665 0.1455 0.0939 0.3227 0.1172 0.2625 0.1393

NSSm < 0.001 < 0.001 < 0.001 5.1929* 0.7881 0.1276 0.0845 0.2369 0.1022 0.387* 0.1242

LSm < 0.001 < 0.001 < 0.001 0.4565* 0.0709 0.0121 0.0097 0.0326 0.0126 0.06* 0.0147

GWSl < 0.001 < 0.001 < 0.001 0.0031* 0.0007 0.0013* 0.0004 0 0.0003 0.0008 0.0004

NGSl < 0.001 < 0.001 < 0.001 1.6608* 0.365 1.0565* 0.2214 0.0386 0.1002 0.2787 0.1471

NSSl < 0.001 < 0.001 < 0.001 3.3928* 0.5479 0.4478* 0.1179 0.1225 0.0816 0.0809 0.1104

LSl < 0.001 < 0.001 < 0.001 0.31* 0.0494 0.0223 0.0092 0.0191 0.0093 0.0173 0.0116

* variance component at least three times greater than its standard error

s.e.- standard error
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QTL analyses

A total of 60 QTLs were detected on all chromosomes
(Table 3). The largest number of QTLs were found on chro-
mosome 2H (23 QTLs). Only three QTLs were detected on
chromosome 1H. The largest number of QTLs were found for
NGSm and LSm (nine QTLs). The lowest number of QTLs
were found for GWP (one QTL). The QTL × E interaction
was found for 68 % of QTLs detected. All QTLs for HD
and NSSm showed QTL × E interaction (ESM 4).

QTLs for earliness and yield-forming traits

Four QTLs for heading date (HD) were found on chromo-
somes 2H (Q.HD.LC-2H), 3H (Q.HD.LC-3H.1), 5H
(Q.HD.LC-5H.3) and 7H (Q.HD.LC-7H.2). In the vicinity
of the Q.HD.LC-2H, 12 QTLs for plant architecture, spike
morphology and grain yield were detected (Q.GWSl.LC-2H-
1, Q.GWSm.LC-2H-1, Q.GWP.LC-2H, Q.HD.LC-2H,
Q.LSl.LC-2H, Q.LSm.LC-2H-1, Q.NGSl.LC-2H-1,
Q.NGSm.LC-2H-1, Q.NPT.LC-2H-1, Q.NSSl.LC-2H,
Q.NSSm.LC-2H-1 and Q.LSt.LC-2H) for the region on the
short arm of chromosome 2H, whereas one QTL (Q.HD.LC-
3H.1) was found for the region detected on chromosome 3H.
On chromosome 5H, close to the Q.HD.LC-5H.3, were found
QLSm.LC-5H.3, QLSl.LC-5H.3 and QGWSm.LC-5H.3 and
also three QTLs were identified in the vicinity of the
Q.HD.LC-7H.2: Q.LSm.LC-7H.2, Q.LSl.LC-7H.2 and
Q.TGW.LC-7H.2.

For HD the major was QTL on chromosome 2H, which
showed the most significant effect and explained a large pro-
portion of the phenotypic variation. This QTL was mapped at
the marker 5880–2547 at the position of 10.74 cM (Fig. 2). In
almost all environments the alleles from the Syrian parent
reduced days to heading; DII 2012 was an exception to this
rule, and in this environment the percentage of explained var-
iation was a low (9.55 %).

According to SNP 5880–2547 segregation RILs were di-
vided into two subgroups – early heading (group A – allele
from CamB) and late heading plants (group B – allele from
Lubuski). The different developmental pattern for these sub-
groups was noticed in the stress conditions. An extreme delay
in heading was observed for early heading lines in DII condi-
tions (Fig. 3).

2012 2013

PC1 (34.3%) PC1 (35.0%)

PC
2

(1
5.

6%
)

PC
2

(1
5.

3%
)

Fig. 1 Principal component biplots, with dots corresponding to LCam recombinant inbred lines observed in drought DI (red), drought DII (yellow) and
in control conditions (green), and vectors corresponding to observed traits, made for data obtained in 2012 and 2013

Table 2 Correlation coefficients between HD and yield forming traits
under well-watered and drought conditions

Trait Treatment

DI 2012 DI 2013 DII 2012 DII 2013 C 2012 C 2013

TGW n.s. n.s. n.s. n.s. −0.350 n.s.

GWP 0.520 0.295 n.s. n.s. 0.438 0.296

LSt n.s. 0.296 n.s. n.s. n.s. n.s.

NPT −0.583 −0.444 n.s. n.s. n.s. −0.313
GWSm 0.658 0.523 n.s. n.s. 0.536 0.413

NGSm 0.755 0.618 n.s. n.s. 0.661 0.614

N.S.Sm 0.745 0.593 n.s. n.s. 0.656 0.581

LSm 0.630 0.426 n.s. n.s. 0.467 0.251

GWSl 0.627 0.357 n.s. n.s. 0.326 0.299

NGSl 0.717 0.461 n.s. 0.236 0.548 0.456

NSSl 0.762 0.572 n.s. 0.321 0.534 0.575

LSl 0.597 0.490 n.s. 0.287 n.s. 0.402

n.s.- not significant

Correlations shown are significant at the P < 0.001 level

J Appl Genetics (2017) 58:49–65 53



T
ab

le
3

Q
T
L
s
id
en
tif
ie
d
in

th
e
L
C
am

po
pu
la
tio

n
fo
r
th
e
ob
se
rv
ed

tr
ai
ts

T
ra
it

Q
T
L
ID

L
in
ka
ge

gr
ou
p

P
os
iti
on

(c
M
)

M
ar
ke
r

Sy
no
ni
m

B
O
PA

1
−L

og
10

(P
-v
al
ue
)

d
)

Sh
if
t

fr
om

m
ar
ke
r

to
Q
T
L

po
si
tio

n
(c
M
)

Q
T
L

x
E
(a
)

A
dd
iti
ve

ef
fe
ct
(b
)

P
er
ce
nt

of
va
ri
an
ce

ex
pl
ai
ne
d
by

Q
T
L
in

ye
ar
s
(%

)
(c
)

D
I

D
II

C
D
I

D
II

C
D
I

D
II

C
D
I

D
II

C
20
12

20
12

20
12

20
13

20
13

20
13

20
12

20
12

20
12

20
13

20
13

20
13

H
ea
di
ng

da
te

Q
.H
D
.L
C
-2
H

2H
10
.7
4

58
80
-2
54
7

11
_2
10
15

57
.3
3

0.
00

1
−6

.3
2

0.
81

−6
.4
1

−6
.1
8

−0
.9
9

−5
.4
0

99
.0
2

9.
55

75
.8
4

10
2.
96

25
.7
7

11
2.
57

Q
.H
D
.L
C
-3
H
.1

3H
.1

47
.5
6

10
35
3-
11
9

11
_1
00
11

3.
54

0.
00

1
1.
03

n.
s.

2.
01

n.
s.

n.
s.

n.
s.

2.
64

–
7.
42

–
–

–
Q
.H
D
.L
C
-5
H
.3

5H
.3

59
.0
3

31
4-
55
9

11
_2
04
87

6.
23

0.
00

1
0.
77

1.
18

1.
62

n.
s.

n.
s.

n.
s.

1.
48

20
.2
8

4.
84

–
–

–
Q
.H
D
.L
C
-7
H
.2

7H
.2

15
.9
7

12
13
-1
95
9

11
_1
00
56

7.
31

0.
00

1
n.
s.

−1
.2
9

−1
.0
9

n.
s.

n.
s.

n.
s.

–
24
.1
1

2.
19

–
–

–
10
00
-g
ra
in

w
ei
gh
t

Q
.T
G
W
.L
C
-2
H

2H
47
.9
3

63
84
-8
66

11
_2
10
96

3.
87

0.
00

1
−1

.2
2

−1
.1
5

−0
.5
5

n.
s.

n.
s.

n.
s.

11
.0
6

12
.7
3

3.
81

–
–

–
Q
.T
G
W
.L
C
-

5H
.3

5H
.3

66
.9
7

A
B
C
04
35
2-

pH
v1
08
-

01

11
_1
10
92

3.
17

0.
00

0
−0

.6
8

−0
.6
8

−0
.6
8

−0
.6
8

−0
.6
8

−0
.6
8

3.
47

4.
48

5.
86

4.
54

7.
45

3.
42

Q
.T
G
W
.L
C
-6
H

6H
48
.0
8

42
58
-1
49
8

11
_2
07
20

3.
12

0.
00

0
0.
70

0.
70

0.
70

0.
70

0.
70

0.
70

3.
63

4.
70

6.
14

4.
76

7.
81

3.
58

Q
.T
G
W
.L
C
-

7H
.2

7H
.2

15
.9
7

12
13
-1
95
9

11
_1
00
56

4.
03

0.
00

1
0.
75

n.
s.

0.
90

n.
s.

n.
s.

n.
s.

4.
23

–
10
.1
2

–
–

–

gr
ai
n
w
ei
gh
t

pe
r
pl
an
t

Q
.G
W
P.
L
C
-2
H

2H
10
.7
4

58
80
-2
54
7

11
_2
10
15

8.
00

0.
00

1
−0

.2
1

−0
.1
5

−0
.1
7

−0
.0
9

−0
.0
7

−0
.1
3

41
.0
4

31
.7
1

28
.6
3

13
.5
6

8.
98

14
.7
7

L
en
gt
h
of

m
ai
n
st
em

Q
.L
St
.L
C
-1
H
.2

1H
.2

32
.5
9

50
48
-1
68
5

11
_1
07
29

6.
73

0.
00

0
−1

.8
8

−1
.8
8

−1
.8
8

−1
.8
8

−1
.8
8

−1
.8
8

9.
40

15
.9
5

7.
03

10
.3
9

14
.1
6

8.
23

Q
.L
St
.L
C
-2
H

2H
14
.7
8

77
47
-1
05
6

11
_2
12
61

10
.1
4

1.
90

1
−2

.0
0

n.
s.

n.
s.

−3
.3
6

−2
.7
0

n.
s.

10
.7
1

–
–

33
.2
6

29
.2
5

–
Q
.L
St
.L
C
-3
H
.1

3H
.2

36
.5
7

23
46
-3
18

11
_1
02
83

3.
60

0.
00

1
n.
s.

1.
26

n.
s.

n.
s.

n.
s.

2.
62

–
7.
16

–
–

–
16
.1
0

N
um

be
r
of

pr
od
uc
tiv

e
til
le
rs
pe
r

pl
an
t

Q
.N
PT

.L
C
-2
H
-1

2H
10
.7
4

58
80
-2
54
7

11
_2
10
15

13
.9
0

0.
00

1
0.
45

−0
.1
5

0.
13

0.
29

n.
s.

0.
10

45
.5
2

6.
55

7.
26

30
.4
7

–
4.
71

Q
.N
PT

.L
C
-2
H
-2

2H
74
.4
2

61
17
-1
50
7

11
_1
08
23

3.
47

1.
90

1
n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

−0
.1
7

–
–

–
–

–
13
.8
2

Q
.N
PT

.L
C
-2
H
-3

2H
10
9.
05

50
88
-5
9

11
_1
07
31

4.
47

0.
00

0
−0

.1
5

−0
.1
5

−0
.1
5

−0
.1
5

−0
.1
5

−0
.1
5

5.
02

6.
26

9.
29

7.
86

14
.4
9

11
.0
0

Q
.N
PT

.L
C
-5
H
.3

5H
.3

72
.0
1

13
06
-4
08

11
_1
00
80

5.
71

0.
00

0
0.
17

0.
17

0.
17

0.
17

0.
17

0.
17

6.
83

8.
52

12
.6
3

10
.6
8

19
.7
0

14
.9
5

Q
.N
PT

.L
C
-6
H

6H
41
.2
1

41
91
-2
68

11
_2
07
07

2.
50

0.
00

0
0.
10

0.
10

0.
10

0.
10

0.
10

0.
10

2.
22

2.
76

4.
10

3.
47

6.
39

4.
85

G
ra
in

w
ei
gh
t

pe
r
m
ai
n

sp
ik
e

Q
.G
W
Sm

.L
C
-

2H
-1

2H
10
.7
4

58
80
-2
54
7

11
_2
10
15

14
.0
8

0.
00

1
−0

.1
0

−0
.0
6

−0
.1
1

−0
.1
1

−0
.0
5

−0
.0
7

61
.2
3

38
.7
2

63
.9
6

71
.9
8

49
.7
1

26
.5
5

Q
.G
W
Sm

.L
C
-

2H
-2

2H
11
3.
18

30
00
-1
07
4

11
_1
04
04

2.
40

0.
00

1
0.
03

n.
s.

0.
03

n.
s.

n.
s.

0.
03

5.
08

1.
32

5.
53

–
–

4.
42

Q
.G
W
Sm

.L
C
-

2H
-3

2H
13
8.
98

13
44
-9
30

11
_1
00
85

3.
99

−5
.9
2

1
n.
s.

n.
s.

n.
s.

n.
s.

−0
.0
3

n.
s.

–
–

–
–

17
.3
0

–

Q
.G
W
Sm

.L
C
-

4H
4H

45
.0
8

31
27
-2
73

11
_2
04
82

2.
44

0.
00

0
0.
02

0.
02

0.
02

0.
02

0.
02

0.
02

2.
24

4.
45

2.
03

2.
14

8.
88

1.
79

Q
.G
W
Sm

.L
C
-

5H
.3

5H
.3

61
.5
4

C
on
se
ns
us

G
B
S
01

38
-2

11
_1
14
48

3.
96

0.
00

0
−0

.0
2

−0
.0
2

−0
.0
2

−0
.0
2

−0
.0
2

−0
.0
2

3.
39

6.
73

3.
07

3.
24

13
.4
4

2.
70

N
um

be
r
of

gr
ai
ns

pe
r

m
ai
n
sp
ik
e

Q
.N
G
Sm

.L
C
-

2H
-1

2H
10
.7
4

58
80
-2
54
7

11
_2
10
15

23
.6
6

0.
00

1
−2

.5
5

−1
.9
2

−2
.3
1

−2
.9
8

−1
.1
4

−2
.0
4

84
.4
1

70
.0
6

77
.1
0

10
7.
03

66
.7
6

56
.8
5

Q
.N
G
Sm

.L
C
-

2H
-2

2H
14
0.
95

13
44
-9
30

11
_1
00
85

4.
14

−3
.9
5

1
n.
s.

n.
s.

n.
s.

n.
s.

−0
.5
1

0.
48

–
–

–
–

13
.6
1

3.
14

Q
.N
G
Sm

.L
C
-

4H
-1

4H
5.
91

25
33
-7
73

11
_1
03
19

4.
99

−1
.4
4

1
n.
s.

−0
.6
1

−0
.5
6

−0
.5
3

n.
s.

n.
s.

–
7.
15

4.
50

3.
44

–
–

Q
.N
G
Sm

.L
C
-

4H
-2

4H
28
.7
9

14
76
5-
38
8

11
_2
01
80

3.
92

−1
.6
6

1
n.
s.

n.
s.

n.
s.

n.
s.

−0
.2
7

0.
41

–
–

–
–

3.
64

2.
33

Q
.N
G
Sm

.L
C
-

4H
-3

4H
45
.0
8

31
27
-2
73

11
_2
04
82

4.
19

0.
00

0
0.
47

0.
47

0.
47

0.
47

0.
47

0.
47

2.
87

4.
23

3.
19

2.
67

11
.3
9

3.
03

Q
.N
G
Sm

.L
C
-

4H
-4

4H
76
.4
8

52
45
-3
04

11
_1
07
51

5.
37

0.
00

1
n.
s.

n.
s.

−0
.6
6

−0
.6
5

n.
s.

−0
.6
4

–
–

6.
21

5.
09

1.
03

5.
63

Q
.N
G
Sm

.L
C
-

5H
.3

5H
.3

70
.2
5

C
on
se
ns
us

G
B
S
00

86
-5

11
_1
14
41

2.
03

−1
.2
5

1
−0

.9
6

n.
s.

−0
.7
6

−0
.7
7

n.
s.

−0
.8
3

11
.8
4

–
8.
43

7.
15

–
9.
45

54 J Appl Genetics (2017) 58:49–65



T
ab

le
3

(c
on
tin

ue
d)

T
ra
it

Q
T
L
ID

L
in
ka
ge

gr
ou
p

P
os
iti
on

(c
M
)

M
ar
ke
r

Sy
no
ni
m

B
O
PA

1
−L

og
10

(P
-v
al
ue
)

d
)

Sh
if
t

fr
om

m
ar
ke
r

to
Q
T
L

po
si
tio

n
(c
M
)

Q
T
L

x
E
(a
)

A
dd
iti
ve

ef
fe
ct
(b
)

P
er
ce
nt

of
va
ri
an
ce

ex
pl
ai
ne
d
by

Q
T
L
in

ye
ar
s
(%

)
(c
)

D
I

D
II

C
D
I

D
II

C
D
I

D
II

C
D
I

D
II

C
20
12

20
12

20
12

20
13

20
13

20
13

20
12

20
12

20
12

20
13

20
13

20
13

Q
.N
G
Sm

.L
C
-

6H
-1

6H
38
.4
6

21
76
-8
91

11
_1
02
44

6.
63

0.
00

1
−1

.0
1

−0
.6
2

−1
.0
9

−0
.8
5

−0
.3
4

−1
.2
6

13
.2
4

7.
30

17
.2
3

8.
79

5.
98

21
.7
2

Q
.N
G
Sm

.L
C
-

6H
-2

6H
60
.0
9

37
73
-7
56

11
_2
06
20

4.
51

0.
00

1
0.
47

0.
82

0.
47

0.
85

0.
27

0.
89

2.
90

12
.8
2

3.
24

8.
70

3.
77

10
.7
5

N
um

be
r
of

sp
ik
el
et
s

pe
r
m
ai
n

sp
ik
e

Q
.N
SS

m
.L
C
-

2H
-1

2H
10
.7
4

58
80
-2
54
7

11
_2
10
15

23
.1
8

0.
00

1
−2

.5
6

−2
.0
3

−2
.2
1

−3
.2
9

−1
.5
4

−2
.5
5

80
.1
2

65
.4
8

74
.2
8

11
4.
08

82
.4
7

80
.7
7

Q
.N
SS

m
.L
C
-

2H
-2

2H
14
0.
95

13
44
-9
30

11
_1
00
85

3.
43

−3
.9
5

1
n.
s.

n.
s.

n.
s.

n.
s.

−0
.6
1

n.
s.

–
–

–
–

13
.1
2

–

Q
.N
SS

m
.L
C
-

5H
.3
-1

5H
.3

23
.5
8

10
66
9-
18
8

11
_1
00
24

4.
00

−3
.7
0

1
−0

.6
6

−0
.9
2

n.
s.

−0
.9
3

−0
.4
8

−1
.3
4

5.
30

13
.4
8

–
9.
04

7.
85

22
.3
1

Q
.N
SS

m
.L
C
-

5H
.3
-3

5H
.3

71
.5

C
on
se
ns
us

G
B
S
00

86
-5

11
_1
14
41

1.
40

0.
00

1
−0

.7
5

n.
s.

−0
.7
3

n.
s.

n.
s.

−0
.6
1

6.
92

–
8.
03

–
–

4.
68

Q
.N
SS

m
.L
C
-6
H

6H
38
.4
6

21
76
-8
91

11
_1
02
44

7.
07

0.
00

1
−1

.0
8

−0
.5
4

−0
.9
2

−0
.6
4

n.
s.

−0
.7
6

14
.3
3

4.
67

12
.9
2

4.
35

–
7.
27

L
en
gt
h
of

m
ai
n
sp
ik
e

Q
.L
Sm

.L
C
-2
H
-1

2H
10
.7
4

58
80
-2
54
7

11
_2
10
15

24
.7
3

0.
00

1
−0

.8
6

−0
.5
6

−0
.7
8

−1
.0
0

−0
. 3
4

−0
.7
6

10
1.
39

64
.3
1

95
.6
9

99
.2
9

38
.2
0

64
.7
8

Q
.L
Sm

.L
C
-2
H
-2

2H
11
3.
18

30
00
-1
07
4

11
_1
04
04

2.
65

0.
00

0
−0

.1
1

−0
.1
1

−0
.1
1

−0
.1
1

−0
.1
1

−0
.1
1

1.
82

2.
66

2.
09

1.
31

4.
37

1.
48

Q
.L
Sm

.L
C
-3
H
.1

3H
.1

5.
68

59
45
-7
48

11
_2
10
27

2.
09

−1
.8
9

0
0.
26

0.
26

0.
26

0.
26

0.
26

0.
26

9.
02

13
.2
2

10
.3
9

6.
53

21
.7
2

7.
36

Q
.L
Sm

.L
C
-4
H

4H
45
.0
8

31
27
-2
73

11
_2
04
82

4.
67

0.
00

0
0.
17

0.
17

0.
17

0.
17

0.
17

0.
17

4.
02

5.
89

4.
63

2.
91

9.
68

3.
28

Q
.L
Sm

.L
C
-5
H
.3

5H
.3

59
.0
3

31
4-
55
9

11
_2
04
87

14
.8
0

0.
00

1
−0

.1
9

−0
.2
1

−0
.2
5

−0
.4
6

n.
s.

−0
.5
5

4.
77

8.
67

9.
59

21
.3
2

–
34
.4
4

Q
.L
Sm

.L
C
-6
H
-1

6H
30
.0
2

15
88
-5
37

11
_1
01
29

6.
70

0.
00

1
−0

.1
4

n.
s.

n.
s.

−0
.1
6

0.
09

−0
.2
5

2.
75

–
–

2.
55

2.
61

6.
79

Q
.L
Sm

.L
C
-6
H
-2

6H
60
.0
9

37
73
-7
56

11
_2
06
20

4.
92

0.
00

1
0.
13

0.
19

0.
16

0.
23

0.
10

0.
31

2.
31

7.
40

3.
85

5.
25

3.
53

10
.5
8

Q
.L
Sm

.L
C
-6
H
-3

6H
72
.8
3

29
68
-1
06
6

11
_1
04
00

4.
13

0.
00

0
0.
24

0.
24

0.
24

0.
24

0.
24

0.
24

8.
11

11
.8
9

9.
35

5.
87

19
.5
4

6.
62

Q
.L
Sm

.L
C
-7
H
.2

7H
.2

15
.9
7

12
13
-1
95
9

11
_1
00
56

6.
61

0.
00

0
−0

.2
1

−0
.2
1

−0
.2
1

−0
.2
1

−0
.2
1

−0
.2
1

5.
81

8.
51

6.
69

4.
20

13
.9
9

4.
74

G
ra
in

w
ei
gh
t

pe
r
la
te
ra
l

sp
ik
e

Q
.G
W
Sl
.L
C
-

1H
.2
-1

1H
.2

27
.7
6

37
86
-2
20
4

11
_2
06
25

1.
01

0.
00

0
0.
02

0.
02

0.
02

0.
02

0.
02

0.
02

4.
88

8.
33

5.
40

10
.2
5

12
.4
0

3.
99

Q
.G
W
Sl
.L
C
-

1H
.2
-2

1H
.2

32
.5
9

50
48
-1
68
5

11
_1
07
29

5.
52

0.
00

1
−0

.0
5

−0
.0
5

−0
.0
4

n.
s.

n.
s.

n.
s.

19
.8
9

32
.1
8

12
.8
0

–
–

–

Q
.G
W
Sl
.L
C
-

2H
-1

2H
10
.7
4

58
80
-2
54
7

11
_2
10
15

13
.0
5

0.
00

1
−0

.0
8

−0
.0
4

−0
.0
5

−0
.0
3

−0
.0
2

−0
.0
4

60
.4
1

30
.8
3

30
.5
9

23
.1
1

10
.0
0

12
.6
0

Q
.G
W
Sl
.L
C
-

2H
-2

2H
12
4.
23

42
41
-4
45

11
_2
07
15

4.
35

1.
46

1
0.
03

0.
03

0.
03

n.
s.

n.
s.

n.
s.

10
.5
5

13
.4
4

10
.1
1

–
–

–

N
um

be
r
of

gr
ai
ns

pe
r

la
te
ra
l

sp
ik
e

Q
.N
G
Sl
.L
C
-

2H
-1

2H
10
.7
4

58
80
-2
54
7

11
_2
10
15

19
.0
3

0.
00

1
−2

.1
6

−1
. 3
1

−1
.5
4

−1
.4
8

−0
.9
4

−1
.4
3

73
.1
2

44
.5
5

64
.4
1

58
.5
3

35
.2
8

39
.4
2

Q
.N
G
Sl
.L
C
-

2H
-2

2H
12
4.
23

42
41
-4
45

11
_2
07
15

3.
98

1.
46

1
0.
54

0.
78

0.
43

n.
s.

n.
s.

n.
s.

4.
61

15
.8
8

5.
08

–
–

–

Q
.N
G
Sl
.L
C
-

2H
-3

2H
14
0.
95

13
44
-9
30

11
_1
00
85

3.
12

−3
.9
5

0
−0

.5
5

−0
.5
5

−0
.5
5

−0
.5
5

−0
.5
5

−0
.5
5

4.
68

7.
72

8.
12

8.
02

11
.8
2

5.
80

Q
.N
G
Sl
.L
C
-

3H
.1

3H
.1

28
.1
6

45
93
-2
00
7

11
_1
06
72

2.
24

−1
.7
4

1
0.
68

0.
70

0.
60

n.
s.

n.
s.

n.
s.

7.
20

12
.6
4

9.
91

–
–

–

N
um

be
r
of

sp
ik
el
et
s

pe
r
la
te
ra
l

sp
ik
e

Q
.N
SS

l.L
C

-2
H

2H
10
.7
4

58
80
-2
54
7

11
_2
10
15

19
.6
9

0.
00

1
−2

.0
8

−1
.2
8

−1
.3
4

−1
.8
2

−1
.1
9

−1
.6
3

64
.6
1

35
.5
1

46
.9
5

58
.1
0

41
.5
0

41
.7
1

Q
.N
SS

l.L
C
-

6H
-1

6H
38
.4
6

21
76
-8
91

11
_1
02
44

2.
06

0.
00

0
−0

.5
3

−0
.5
3

−0
.5
3

−0
.5
3

−0
.5
3

−0
.5
3

4.
13

5.
98

7.
24

4.
88

8.
14

4.
33

Q
.N
SS

l.L
C
-

6H
-2

6H
59
.6
5

51
87
-7
52

11
_2
08
92

5.
46

0.
00

1
0.
36

0.
70

0.
54

0.
67

n.
s.

0.
73

1.
94

10
.6
8

7.
56

7.
90

–
8.
37

Q
.L
Sl
.L
C
-

2H
2H

10
.7
4

58
80
-2
54
7

11
_2
10
15

20
.6
8

0.
00

1
−0

.6
8

−0
.4
3

−0
.4
1

−0
.8
2

−0
.5
0

−0
.6
8

84
.3
3

58
.6
1

42
.8
3

99
.5
6

73
.1
1

81
.4
3

J Appl Genetics (2017) 58:49–65 55



In the region of Q.HD.LC-2H, marked by SNP 5880–2547
(10.14 cM) and 7747–1056 (14.78 cM), QTLs for all yield-
related traits, except TGW, were found (Fig. 2). In all cases
they appeared to be the most significant QTLs for a particular
trait, with the LogP statistic ranging from 8.00 for GWP to
24.73 for LSm. All of them showed a significant interaction
with environment, but the sign of the allelic effects was con-
sistent over environments. For yield-forming traits, except
NPT, alleles contributed by Lubuski increased the traits.

Q.HD.LC-3H.1 on chromosome 3H at SNP 10353–119
showed a minor positive effect contributed by a Syrian parent
allele. That QTL explained only 2.64–7.42 % of phenotypic
variance, and its additive effect was significant only in DI
2012 and C 2012. No QTL associated with other traits was
found in this region (Table 3).

The Q.HD.LC-5H.3 located on the linkage group 5H.3 at
SNP 314–559 with CamB allele causing later heading was
significant only in 2012. In the region of this QTL, marked
by SNP 314-559 and ConsensusGBS0138-2, QTLs for LSm,
GWSm and LSl were also found, with alleles from Lubuski
increasing the trait values, and the variance explained from 0.5
to 34.4 % (Table 3).

The Q.HD.LC-7H.2 was detected on chromosome 7H at
SNP 1213–1959. It explained from 2.19 to 24.11 % of the
phenotypic variation, with the Lubuski allele increasing the
number of days from sowing to heading. Effect of that QTL
was significant only in 2012 in DII and C conditions. At the
same position QTL for TGW (Q.TGW.LC-7H.2) was local-
ised and significant also only in 2012. That QTL explained
4.23-10.12 % of the phenotypic variance and allele contribut-
ed by Lubuski reduced the TGW. Near Q.HD.LC-7H.2 the
QTLs for LSm and LSl were also found. These QTLs
(Q.LSm.LC-7H.2 and Q.LSl.LC-7H.2, both with stabile ef-
fects) explained 4.20–13.99 % and 5.62–12.17 % of the phe-
notypic variation, respectively. Both QTLs were characterised
by Lubuski alleles increasing the traits (Table 3).

Functional annotation of QTLs

For a biological interpretation of the QTL regions identified
on the basis of linkage analysis, we refer to the annotation of
SNP using the Ensembl Plants barley gene space according
with the approach used inMikołajczak et al. (2016). The anal-
ysis revealed two of the main GO biological processes (de-
fense response and protein ubiquitination) overrepresented in
the annotation genes for traits: grain weight per main spike,
grain weight per plant and length of main spike (Table 4). The
largest number of genes (15) annotated with the previously
mentioned terms was noticed for Bprotein ubiquitination^.
Functional annotation analysis also showed six other biolog-
ical processes overrepresented in the annotation of genes oc-
curring in the QTL regions (defense response, lipid transport,
metabolic process, oxidation-reduction process, proteinT
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Fig. 2 QTLs identified in Bhot spot^ region on chromosome 2H

Number of days from sowing

DI 2012

DI 2013

DII 2012

DII 2013

C 2012

C 2013

group A group B

Fig. 3 Schematic representation
of mean heading dates observed
for two subgroups of RILs in
different water regimes and years.
Groups A, B –homozygotes G/G
(CamB) and A/A (Lubuski) at
SNP 5880-2547 located in
linkage group 2H at 10.74 cM
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phosphorylation, protein ubiquitination, response to oxidative
stress, transmembrane transport (Table 5).

Discussion

The present study examined the mapping population derived
from the cross Lubuski × Cam/B1/CI08887//CI05761 and
special attention was given to earliness. The Syrian genotype,
when compared to the European cultivar, was generally
characterised by earlier heading and lower yield. Drought
stress conditions caused the reduction of the studied traits
(with the exceptions: HD and NPT). Grain yield was the most
decreased under drought stress applied at the flag leaf stage.
This was due to reduced spikelets and grain numbers per
spike. These results are in agreement with the results
reported by Zinselmeier et al. (1999) and Samarah et al.

(2009) who demonstrated the impact of drought during the
flowering period on grain yield.

The effect of water scarcity on yield varies depending on
the plant development stage. This is why we noted different
mean values for traits observed in drought I and drought II. It
is noteworthy that in DI and DII treatments plants were ob-
served to have more tillers than in the well-watered condi-
tions. It may be explained by the emergence of new tillers
during re-watering period. A similar phenomenon has also
been noticed in other works, e.g. by Aspinall et al. (1964)
and Loss and Siddique (1994), but in most studies a signifi-
cant decrease of the number of productive tillers under
drought conditions has been observed (Samarah 2005;
Shirazi et al. 2010; Tsenov et al. 2015).

In our study, stress conditions caused a delay in heading.
These findings are in agreement with other studies (Winkel
et al. 1997; Wopereis et al. 1996; Farooq et al. 2011) but, on
the other hand, our results are also in contrast to the results

Table 4 GO biological process
terms over represented in the
annotation of genes occurring in
the QTL regions for a trait

GO term Trait QTL ID No. of
genes

List of genes (MLOC)

Defense response grain weight per
main spike

Q.GWSm.LC-2H-2 7 MLOC_14076

Q.GWSm.LC-2H-2 MLOC_76088

Q.GWSm.LC-2H-2 MLOC_5583

Q.GWSm.LC-2H-2 MLOC_69392

Q.GWSm.LC-2H-2 MLOC_25677

Q.GWSm.LC-2H-2 MLOC_16581

Q.GWSm.LC-5H.3 MLOC_77713

Defense response grain weight per
plant

Q.GWP.LC-2H 1 MLOC_69399

Protein ubiquitination length of main
spike

Q.LSm.LC-2H-2 15 MLOC_40031

Q.LSm.LC-2H-2 MLOC_54978

Q.LSm.LC-2H-2 MLOC_679

Q.LSm.LC-2H-2 MLOC_60024

Q.LSm.LC-2H-2 MLOC_8581

Q.LSm.LC-2H-2 MLOC_81408

Q.LSm.LC-2H-2 MLOC_63051

Q.LSm.LC-2H-2 MLOC_39480

Q.LSm.LC-2H-2 MLOC_63511

Q.LSm.LC-2H-2 MLOC_38436

Q.LSm.LC-3H.1 MLOC_69418

Q.LSm.LC-3H.1 MLOC_68550

Q.LSm.LC-3H.1 MLOC_68553

Q.LSm.LC-3H.1 MLOC_64722

Q.LSm.LC-3H.1 MLOC_3103

Q.LSm.LC-3H.1 MLOC_6570

Q.LSm.LC-5H.3 MLOC_4665

Q.LSm.LC-6H-1 MLOC_58751

Q.LSm.LC-6H-1 MLOC_68356
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showed by Desclaux and Romet (1996), Slafer et al. (2005)
and Richards (2006), where the drought conditions caused an
acceleration of plant growth and development. In the present
studies the highest delay in the appearance of the heading was
triggered by drought stress conditions II, especially for early
heading lines. This phenomenon can be associated with the
survival strategies of this group of plants, which were, in gen-
eral, at an advanced stage of development at the time of stress
application. The results of the study confirmed the assumption
that the drought escape can be an effective strategy only when
a plant has completed its life cycle before the environment
conditions become unfavourable.

QTLs for earliness

Earliness affects the plant adaptation to the environmental
changes and it is a trait affected by numerous QTLs (Yano
et al. 2000; Sameri et al. 2011). In our study, four QTLs for
earliness were detected on chromosomes 2H, 3H, 5H and 7H.
The localisation of these QTLs on barley chromosomes is
consistent with previously identified QTLs (Hayes et al.
1993; Laurie et al. 1995; Thomas et al. 1995; Bezant et al.

1996; Tinker et al. 1996; Qi et al. 1998; Pillen et al. 2003).
Some of them were found in genomic regions that have been
reported to harbour genes involved in flowering time regula-
tion. In our study, the main effects were shown by QTL de-
tected on chromosome 2H at SNP 5880–2547 (11_21015).
On the short arm of that chromosome the major photoperiod
response locus (Ppd-H1) which causes early flowering under
day length has been mapped (Laurie et al. 1995). The 2HS
region association with the earliness was also observed in
numerous other studies. Ren et al. (2010) identified three
QTLs determining the heading date on chromosomes 2H
(and also on 3H and 7H), which is in agreement with our
results. QTL analysis of the Steptoe/ Morex population con-
ducted byMansour et al. (2014) revealed the QTL also located
at SNP 11_21015. All these findings support the notion that
the region on the short arm of chromosome 2H is tightly
associated with heading date. SNP 11_21015 has been
mapped close to markers 12_30871 and 12_30872 (Muñoz-
Amatriaín et al. 2011) which are SNPs in Ppd-H1. Borrás-
Gelonch et al. (2012), following a series of experiments in-
volving environments with artificially extended photoperiod,
reported the two QTLs affected earliness on chromosome 2H.

Table 5 GO biological process terms over represented in the annotation of genes occurring in the regions of QTLs

GO biological
process term

QTL ID Total number
of genes in
the QTL region

Number of genes
annotated with
the term

List of genes (MLOC)

Defense response Q.GWSm.LC-2H-2 246 6 MLOC_14076, MLOC_76088, MLOC_5583,
MLOC_69392, MLOC_25677, MLOC_16581

Q.NGSm.LC-2H-2 147 2 MLOC_63489, MLOC_20004

Lipid transport Q.LSt.LC-1H.2 227 5 MLOC_70721, MLOC_52372, MLOC_55993,
MLOC_64544, MLOC_46285

Q.NPT.LC-5H.3 77 2 MLOC_42618, MLOC_16268

Q.NGSm.LC-5H.3 162 3 MLOC_42618, MLOC_57612, MLOC_38396

Metabolic process Q.HD.LC-2H 47 4 MLOC_44360, MLOC_12202, MLOC_51066,
MLOC_25950

Q.LSt.LC-1H.2 227 8 MLOC_70129, MLOC_70743, MLOC_70745,
MLOC_17987, MLOC_5359, MLOC_62584,
MLOC_67176, MLOC_14711

Oxidation-reduction process Q.NGSm.LC-2H-1 47 3 MLOC_52158, MLOC_44360, MLOC_25950

Protein phosphorylation Q.GWSm.LC-2H-1 47 5 MLOC_39533, MLOC_61989, MLOC_38009,
MLOC_80756, MLOC_63818

Q.LSm.LC-3H.1 86 13 MLOC_55753, MLOC_55752, MLOC_36868,
MLOC_36867, MLOC_10272, MLOC_40282,
MLOC_6370, MLOC_67657, MLOC_55684,
MLOC_66868, MLOC_73709, MLOC_14788,
MLOC_42962

Protein ubiquitination Q.LSm.LC-2H-2 246 9 MLOC_40031, MLOC_54978, MLOC_679,
MLOC_60024, MLOC_8581, MLOC_81408,
MLOC_63051, MLOC_39480, MLOC_63511

Response to oxidative stress Q.NSSm.LC-2H-2 147 5 MLOC_54892, MLOC_54893, MLOC_65477,
MLOC_72076, MLOC_57664

Transmembrane transport Q.LSl.LC-7H.2 71 6 MLOC_2098, MLOC_76366, MLOC_36691,
MLOC_12388, MLOC_44081, MLOC_9846
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The regions on 2Hwere also themain determinants of heading
date in autumn-sown experiments conducted using mapping
populations grown under Mediterranean conditions (Moralejo
et al. 2004; Cuesta-Marcos et al. 2008). Comadran et al.
(2011) reported five QTLs for heading date (located on 1H,
2H, 3H and 5H). Their research revealed that the highest effect
was shown by two QTLs detected in the centromeric region of
2H, where another major gene affecting heading date (eam6)
had previously been reported (Cuesta-Marcos et al. 2009).

Although our study was based on the analysis of a popula-
tion derived from spring barley parents, QTL analysis re-
vealed some associations with chromosome regions
harbouring genes related to vernalisation requirements.
Vernalisation response has been shown to be strongly influ-
enced by photoperiod (Roberts et al. 1988; Wang et al.
2010b). Epistatic interaction among major loci of
vernalisation response, photoperiod reaction and earliness
per se may be responsible for the fact that a large number of
genomic regions have been identified as determinants of head-
ing date (Karsai et al. 2001). In our study Q.HD.LC-3H.1 was
detected on chromosome 3H at SNP 10353–119 and in the
vicinity (0.24 cM) of microsatellite Bmag603. Wang et al.
(2010b) revealed that a flowering time candidate gene
(HvFT2) had been located 3 cM from this SSR marker.
Another locus connected with heading date was found in our
study on chromosome 5H at SNP 314–559 positioned at
59.03 cM (Q.HD.LC-5H.3). This QTL was located in a sim-
ilar position as QTL for heading date reported by Marquez-
Cedillo et al. (2001) and Thomas et al. (1995) and the
vernalisation response gene (Vrn-H1) found by Laurie et al.
(1995). According to Muñoz-Amatriaín et al. (2011), Vrn-H1
contains SNP 12_30883 and is mapped on the long arm of
chromosome 5H between SNPs 11_21247 (7639-122) and
11_11080 (ABC03900-1-2-406), the latter being located in
the consensus map used in our studies in the distance of
0.6 cM from SNP 314-559. Our data also showed that in the
vicinity of SNP 314–559 another SNP 7523–440 (11_21241)
was located, whichwas linked to the locusVrn-H1 in the study
conducted by Malosetti et al. (2011).

QTLs for agronomic traits

Several yield-related QTLs have beenmapped to the short arm
of chromosome 2H, including plant height (Karsai et al.
1997), kernel weight (Han and Ullrich 1993), number of seeds
per spike (Kjaer et al. 1991) and tiller number (Eshghi et al.
2011). In the present study, QTLs with large effects for yield,
plant height, number of productive tillers, length of spike,
spikelet number and number and weight of grain were found
near SNP 5880–2547 on chromosome 2H. Results obtained in
numerous studies have shown that loci associated with the
length of spikes are placed on all the barley chromosomes
(Hori et al. 2003; Sameri et al. 2006; Baghizadeh et al.

2007; Wang et al. 2010a, b). The localisation of the QTL for
earliness on chromosome 2H coincided with QTLs for spike
morphology. The QTL for the length of the main spike (LSm)
was discovered in genomic regions associated with earliness,
except the one which was found on chromosome 3H.
Interestingly, the QTL for LSm was found in our study both
on chromosome 5H (Q.LSm.LC-5H.3) and on chromosome
7H (Q.LSm.LC-7H.2), where were identified regions related
to heading stage. In the present study, the QTL for number of
grains per main spike was mapped at the marker 5880–2547
on chromosome 2H. The QTLs affecting the number of grains
per spike on chromosome 2H have been reported by
Mohammadi and Baum (2008) and Mehravaran et al.
(2014), and in our investigation, SNP 5880–2547 was also
the nearest marker for QTLs related to grain weight per
main and lateral spike and grain weight per plant. These
results are in agreement with the findings of Peighambari
et al. (2005) who found the QTL for grain yield on chromo-
some 2H. In other studies QTLs for grain yield were identified
on almost all the barley chromosomes (Cuesta-Marcos et al.
2009; Mansour et al. 2014; Mehravaran et al. 2014). Stem
length is an important morphological character directly linked
with the productive potential of barley plants. In the present
study, we did not detect any QTL for the length of stem close
to SNP 5880–2547 associated with earliness. However, the
QTL analysis revealed Q.LSt.LC-2H at SNP 7747-1056,
2.2 cM shifted from from SNP 5880–2547. In the region of
QTL for HD detected on 3H no QTL for stem length was
found. It should be noted that on 3H sdw1/denso locus causing
reduction of plant height was localized and several studies
revealed that this locus may also be associated with flowering
time (Barua et al. 1993; Laurie et al. 1994; Bezant et al. 1996;
Kuczyńska et al. 2013, 2014).

In our experiment, two QTLs associated with the numbers
of spikelets per spikes (Q.NSSm.LC-2H and Q.NSSl.LC-2H)
were found on chromosome 2H at the SNP 5880–2547. These
results are in agreement with the QTL localisation previously
reported by Li et al. (2005) and Baghizadeh et al. (2007).
Additionally, these authors revealed QTLs for these traits also
on chromosomes 1H, 5H and 7H.

In the current study, we have identified locus associ-
ated with the number of productive tillers on 2H
(Q.NPT.LC-2H) at the same position as the main QTL
for heading date — position 10.7 cM). Tiller number is a
key component of barley grain yield (Sakamoto and
Matsuoka 2004). Fertile tillers contribute significantly
to grain yield improvement, but those tillers without fer-
tile spikes decrease the harvest index (Mäkelä and
Muurinen 2011). In our study we noticed an increase in
the number of productive tillers triggered by drought
conditions which could be explained by the secondary
tiller development process, commonly observed in the
field conditions (Aspinall et al. 1964).
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QTLs related to drought

A recent study revealed that QTLs related to drought stress
tolerances were placed on chromosome 2H and 5H (Fan et al.
2015). The pivotal importance of the genomic regions for
drought tolerance was also reported by Mehravaran et al.
(2014) on chromosomes 2H, 5H and 7H. The authors sug-
gested that these regions may be used as an important target
for improving drought tolerance of barley.

The association of heading date and drought tolerance has
been reported by Xu et al. (2005), Araus et al. (2002), Kigel
et al. (2011), Schmalenbach et al. (2014). Similar results were
obtained in the present studies. We identified QTLs related to
heading date on chromosomes 2H, 5H and 7H, where QTLs
for drought tolerance have been reported in other studies.
QTLs connected with yield structure were found near QTLs
identified for earliness, which is also in agreement with other
studies (Wang et al. 2010a; Honsdorf et al. 2014; Mansour
et al. 2014; Mehravaran et al. 2014).

In the present study, early heading barley plants did not
realise the drought escape strategy, and other mechanisms also
associated with water scarcity tolerance appeared to be inef-
fective. On the other hand, we observed an increase in pro-
ductive tillers forming after drought during re-watering, espe-
cially in the Syrian parent. As early heading lines tend to have
low quality yield, the enhancement of productive tillers seems
to be a promising strategy.

Functional annotations

The overrepresentation of genes annotated as Bdefense
response^ for traits: grain weight per main spike and grain
weight per plant did not allow for an unambiguous inter-
pretation. This GO term was descript by QuickGO
(http://www.ebi.ac.uk/QuickGO) as Breactions, triggered
in response to the presence of a foreign body or the
occurrence of an injury, which result in restriction of
damage to the organism attacked or prevention/recovery
from the infection caused by the attack^, which can be
assigned to a every type of plant reaction associated with
biotic or abiotic stresses. Noteworthy, the second type of
overrepresented GO term was related to protein
ubiquitination as Bthe process in which one or more ubiq-
uitin groups are added to a protein^. Ubiquitin is well
established as the major modifier of signalling in eukary-
otes. The main characteristic of ubiquitination is the con-
jugation of ubiquitin onto lysine residues of acceptor pro-
teins (Stone and Callis 2007). In most cases, the targeted
protein is degraded by the 26S proteasome, the major
proteolysis machinery in eukaryotic cells. The ubiquitin–
proteasome system is responsible for removing most ab-
normal peptides and short-lived cellular regulators. This
allows cells to respond rapidly to intracellular signals and

changing environmental conditions. These types of bio-
logical processes are crucial to sustain cellular functions
under drought. In Arabidopsis thaliana more than 1400
genes encode components of the ubiquitin/26S protea-
some (Ub/26S) pathway (Smalle and Vierstra 2004).
Approximately 90 % of these genes encode subunits of
the E3 ubiquitin ligases, which confer substrate specificity
to the pathway. This mechanism can be observed in the
gibberellin-dependent signalling pathway that regulates
the flowering process (Cheng et al. 2004). Gibberellins
(GAs), one kind of endogenous growth regulator, play
an essential role not only in reproductive development
of plants but also in stem and spike growth regulation
(Kumar et al. 2003; Tyagi and Singh 2006; Janowska
and Andrzejak 2010). Moreover, treatment of GA causes
stem elongation, expansion and proliferation and cell wall
thickening increased cell division and cell elongation
(Taiz and Zeiger 1998). Similar processes may be ob-
served in spike growth and development. Our plant mate-
rial was differential in terms of spike length both in well-
watered and drought conditions, which may suggest that
the effect of GA can be a major factor related to spike
growth irrespective of irrigation conditions.

The annotation of QTL regions by genes occurring in the
projected support intervals showed the six other biological
processes, one of which may play a key role in the drought
stress. BResponse to oxidative stress^ was annotated for five
genes occurring in the regions of identified QTLs. Prolonged
drought stress results in oxidative damage due to the over
production of reactive oxygen species (ROS) (Smirnoff
1993). ROS seem to have a dual effect under drought stress
conditions that depend on their overall cellular amount. If kept
at relatively low levels they are likely to function as compo-
nents of a stress-signalling pathway, triggering stress defense/
acclimation responses. However, when reaching a certain lev-
el of phytotoxicity, ROS become damaging, initiating unwell-
watered led oxidative cascades that harm cellular membranes
and other cellular components resulting in oxidative stress and
eventually cell death (Dat et al. 2000) and—as a conse-
quence—the wilting process noticed in water scarcity
conditions.

Conclusions

Four QTLs for HD were detected on chromosomes 2H, 3H,
5H and 7H. Hence, the major was QTL located on the short
arm of 2H chromosome at SNP marker 5880–2547, in the
vicinity of Ppd-H1 gene. In the region of SNP 5880–2547
QTLs associated with plant architecture, spike morphology
and grain yield were localised. The present study showed that
the earliness allele from the Syrian parent, as introduced into
the genome of a European variety could result in an
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improvement of barley yield performance under drought con-
ditions. Screening barley cultivars for growth duration under
terminal drought stress is needed to evaluate drought escape in
barley grown under such conditions. In order to use these
QTLs for improvement of agronomic traits, further comple-
mentary studies in different environments and genetic con-
texts should be performed.
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