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Abstract
The management of existing civil infrastructure is challenging due to evolving functional requirements, aging and climate 
change. Civil infrastructure often has hidden reserve capacity because of conservative approaches used in design and dur-
ing construction. Information collected through sensor measurements has the potential to improve knowledge of structural 
behavior, leading to better decisions related to asset management. In this situation, the design of the monitoring system is an 
important task since it directly affects the quality of the information that is collected. Design of optimal measurement sys-
tems depends on the choice of behavior-model parameters to identify using monitoring data and non-parametric uncertainty 
sources. A model that contains a representation of these parameters as variables is called a model class. Selection of the 
most appropriate model class is often difficult prior to acquisition of information regarding the structural behavior, and this 
leads to suboptimal sensor placement. This study presents strategies to efficiently design measurement systems when multi-
ple model classes are plausible. This methodology supports the selection of a sensor configuration that provides significant 
information gain for each model class using a minimum number of sensors. A full-scale bridge, The Powder Mill Bridge 
(USA), and an illustrative beam example are used to compare methodologies. A modification of the hierarchical algorithm 
for sensor placement has led to design of configurations that have fewer sensors than previously proposed strategies without 
compromising information gain.

Keywords  Structural identification · Sensor placement · Model-class selection · Error domain model falsification · Joint 
entropy

1  Introduction

The global annual expenditure of the construction economy 
was recently evaluated at more than $10 trillion [1] and 
30% of this is spent on civil infrastructure. As economic, 
environmental and material resources become increasingly 
scarce, more sustainable solutions for asset management 
are required. Fortunately, infrastructure often has reserve 
capacity due to safe construction and design practices. An 
accurate assessment of bridge reserve capacity requires pre-
dictions of structural behavior under actions. This behavior 

is influenced by several parameters, such as material proper-
ties and support conditions, that are difficult to estimate as 
characteristic values are not appropriate to assess existing 
structures [2].

The task of using field measurements to improve struc-
tural-model predictions is called structural identification 
[3]. Field measurements, collected through monitoring, help 
engineers improve reserve-capacity assessments of existing 
structures [4]. A model-based approach is usually necessary 
to compare aging-structure behavior with code-based load-
carrying requirements [5]. Model-free approaches are only 
suitable to perform behavior interpolation and the emer-
gence of anomalies such as structural damage [6].

The task of building behavior models, such as finite-ele-
ment (FE) models, requires numerous assumptions, lead-
ing to several sources of uncertainties. Prior to measure-
ments, engineers must select an appropriate model class 
that requires the selection of primary model parameters 
and the quantification of non-parametric uncertainties. 
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Due to the computational time to generate model predic-
tions with a unique set of parameter values, the number of 
primary parameters used in the model class is limited [7]. 
Simple model classes, defined by few model parameters, 
often provide acceptable data interpretation [8]. Tradition-
ally, primary-parameter selection has been carried out using 
sensitivity analysis based on linear-regression models [9, 
10]. However, civil-infrastructure responses may not have a 
linear relationship with model parameters such as boundary 
conditions [11]. Recently, methods based on shrinkage [12] 
and clustering [13] have been introduced. A comprehensive 
review of feature-selection methods used in structural iden-
tification has been presented in [14].

Once the numerical model is built and the model class 
is selected, a data-interpretation methodology is needed to 
compare model predictions with field measurements. Most 
studies in the literature have chosen either a residual-min-
imization strategy or a Bayesian model updating (BMU) 
approach, see [15, 16] amongst others. Use of these methods 
usually requires the assumption that uncertainties have zero-
mean independent Gaussian forms [17–19]. However, this 
hypothesis is usually not valid for civil infrastructure since 
several modelling assumptions, such as idealized boundary 
conditions and model fidelity, imply systematic uncertainties 
[20]. Although modifications to traditional implementations 
of BMU have been proposed to meet this challenge, they 
lead to complex formulations that are difficult to validate 
[21, 22]. A new structural-identification methodology called 
error-domain model falsification (EDMF) has been proposed 
that is easy to use for engineers [23]. This methodology is 
based on the concept of falsification by Popper [24], where 
scientific hypotheses cannot be verified with data; they can 
only be refuted. EDMF has been shown empirically and 
theoretically to be equivalent to a modified Bayesian model 
updating methodology where the likelihood function is 
defined by a L∞-norm-based Gaussian function [22].

In EDMF, a set of model instances with unique param-
eter values are first generated using a finite-element model. 
Then model-instance predictions are compared with field 
measurements (sensor data). Model instances are falsified 
if discrepancies between predictions and sensor data cannot 
be explained by uncertainties given a level of confidence. 
Deciding upon levels of confidence at the beginning is 
standard engineering practice for evaluation of critical limit 
states. For example, this is how safety factors are fixed.

When a model instance is falsified, this means that its 
combination of parameter values is not possible, while all 
accepted model instances are assigned an equivalent prob-
ability of having the true parameter values. By falsifying 
model instances, information is thus gained, and ranges of 
plausible parameter values are reduced.

Systematic uncertainties are explicitly represented in a 
way that is compatible with practical engineering knowledge 

[25], as no blackbox tools and complex statistical knowledge 
are required. While practicing engineers do typically have 
an idea of bounds on variable values, they usually do not 
know what the values are for mean and standard deviation. 
Furthermore, for some important sources of uncertainty, 
such as model fidelity and boundary conditions, a normal 
distribution cannot be justified [5]. EDMF has been shown 
to provide accurate (avoiding wrong identification) model-
parameter identification when compared with traditional 
BMU [25] in the presence of systematic bias. Identifica-
tion with EDMF is often less precise as parameter values 
are identified through bounds of model-parameter values. 
A uniform distribution is typically assumed between these 
bounds [23].

The performance of structural identification depends on 
the choice of the measurement system, which is composed 
of a sensor configuration and excitations [26]. The meas-
urement system is usually designed using only engineering 
judgement along with basic metrics such as signal-to-noise 
ratio [27]. The quantitative design of measurement systems 
has recently attracted much research interest. Optimization 
strategies used for measurement-system design require the 
selection of an objective function to assess sensor locations 
and an optimization strategy to ensure reasonable compu-
tational times [28]. Since the computational complexity of 
the general sensor-placement algorithm is exponential with 
respect to the number of sensors [29], researchers have used 
greedy algorithms (sequential search) to reduce the compu-
tational effort of sensor placement [30].

Most recent studies have focused on the best objective 
function for measurement-system design. Several approaches 
that involve either minimizing the information entropy in 
posterior model-parameter distributions [26, 31] or maxi-
mizing information entropy in multiple-model predictions 
have been proposed [32, 33]. In these approaches, sensor 
locations have been ranked based on their ability to assess 
model-parameter values. Other researchers have used modal 
properties to estimate sensor utility for structural identifica-
tion based on Fisher Information Matrix [34], modal assur-
ance criterion [35], frequency–response functions [36] and a 
combination of above-mentioned criteria [37]. Nevertheless, 
these metrics can only be used for dynamic load testing, 
while entropy-based metrics, such as the approach used in 
this paper, are also applicable to static load tests.

Once the first sensor location has been selected, the 
redundancy of information gain between sensors during 
optimization has often been neglected in studies involving 
entropy-based metrics for measurement-system design, lead-
ing to sensor clustering issues [38]. To meet this challenge, 
information-entropy values of neighboring sensors have 
been arbitrarily reduced [39]. Another strategy has been to 
use global-search algorithms, such as Genetic algorithms 
[40–42] and Particle Swarm Optimization [43, 44]. However, 
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these strategies have required large amounts of computa-
tional time to determine optimal sensor configurations.

Joint entropy has been introduced as an objective func-
tion for measurement-system design to explicitly account for 
mutual information between sensors [45]. The hierarchical 
algorithm, that combines a greedy search with the joint-
entropy objective function, has successfully been applied 
to studies of wind around buildings [46]. This algorithm 
has also been adapted for structural identification to include 
mutual information among static load tests [47] and dynamic 
load tests [48]. For structural identification, the hierarchical 
algorithm has shown to find near-optimal solutions while 
reducing significantly the computational time compared with 
global-search approaches [49].

Several researchers (for example, [32, 38, 50]) have 
observed that the optimal measurement system depends on 
the choice of model parameters for identification and non-
parametric uncertainty sources. A model that contains a 
representation of these parameters as variables is called a 
model class. A model class must thus be selected prior to 
monitoring to design effectively the measurement system 
[51]. However, structural identification has been shown to 
be an iterative rather than linear process [52]. This means 
that often, the appropriate model class is known only after 
sensor data have been collected. In such situations, the initial 
design of measurement systems is often suboptimal, limiting 
the potential for information gain. When engineers consider 
several plausible model classes prior to monitoring, this 
information should be included in the measurement-system 
design.

Papadimitriou [53] proposed a methodology that selects 
sensor locations based on a Pareto optimization between 
model classes. As this methodology uses information 
entropy (not joint entropy) as a sensor-placement objective 
function, a lack of shared-information analyses may lead to 
sensor clustering. No methodology is available to design 
measurement systems when multiple model classes are 
plausible that explicitly accounts for the mutual informa-
tion between sensors.

This paper proposes and compares two methodologies 
to design measurement systems for multiple model classes. 
In the first method, referred to as the traditional approach, 
the measurement system is designed for each model class 
independently. Then the final configuration includes sen-
sors that are useful for at least one model class. The second 
methodology introduces a modification of the hierarchical 
algorithm to find the optimal sensor configuration based on 
the information from all model classes. Using the second 
methodology, configurations with fewer sensors are obtained 
without compromising the potential for information gain.

The paper is organized as follows. First, background 
methodologies are presented in Sect. 2. Then two meth-
odologies are introduced in Sect. 3 to design measurement 

systems when multiple model classes are plausible. Two case 
studies, a theoretical beam example and the Powder Mill 
Bridge are used to compare these methodologies (Sect. 4).

2 � Background

In this section, background methodologies, that are neces-
sary for understanding this study, are presented. First, the 
structural-identification methodology, called error-domain 
model falsification, is introduced. Then the hierarchical 
algorithm is described for a given model class.

2.1 � Structural identification: error‑domain model 
falsification

2.1.1 � Presentation

Error-domain model falsification (EDMF) is a methodol-
ogy for structural identification [23]. EDMF utilises a model 
class that includes parameters having the most important 
sources of uncertainties. They are quantified as random 
variables with a uniform prior probability density function 
(PDF). The posterior PDFs of these model parameters are 
found by comparing sensor measurement data with model 
predictions. Due to inherent lack of complete knowledge of 
uncertainties all solutions obtained with EDMF are assumed 
to be equally likely. These approximations are compatible 
with the quality of information that is typically available in 
real situations.

First, the model class is chosen. The model class usu-
ally involves a finite-element parametric model that includes 
characteristics such as material properties, geometry, bound-
ary conditions and excitations as well as the quantification 
of non-parametric-model ( Ui,gk

 ) and measurement ( Ui,y ) 
uncertainties. Additionally, a set of critical model-parameter 
values that can be identified are selected and possible ranges 
(uniform prior distributions) of parameter values are esti-
mated. Then, a population of model instances is generated, 
where each instance has a unique combination of model-
parameter values. By comparing model-instance predictions 
with each field measurement independently (without corre-
lation assumptions), EDMF helps identify plausible model 
instances among the initial population.

In EDMF, a model instance is falsified if its prediction 
lies outside threshold bounds for at least a sensor location. 
This methodology is robust to wrong estimations of correla-
tion between sensor data as EDMF uses hyper-rectangular 
projections for threshold values [23]. The solutions (candi-
dates) of EDMF define the posterior PDF of these model 
parameters. Due to inherent lack of complete knowledge of 
uncertainties affecting the inverse task, all solutions obtained 
with EDMF are assumed to be equally likely. Therefore, 
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uniform distributions between model-parameter bounds are 
typically assumed.

2.1.2 � Mathematical framework

Model-instance predictions gi
(
Θk

)
 at sensor location i are 

generated by assigning a unique set of parameter values Θk 
for the model class k. The true structural response Ri , that is 
unknown in practice, is linked to the field measurements yi 
and model prediction gi

(
Θk

)
 using Eq. (1), where ny is the 

number of monitored sensor locations.

Using Monte Carlo sampling, model Ui,gk
 and measure-

ment Ui,y uncertainties are combined in a unique source of 
combined uncertainty Ui,c. Following [54], Eq. (1) is then 
transformed to Eq. (2). The residual ri quantifies the discrep-
ancy between the model prediction and the field measure-
ment at sensor location i.

In EDMF, plausible instances are selected by falsifying 
models that have residuals larger than defined threshold 
bounds. These thresholds are calculated using combined-
uncertainty distributions and a target reliability of identifi-
cation � . Traditionally, this target � equals to 95% [23] and 
the Šidák correction [55] is used to maintain a constant level 
of confidence when multiple comparisons are performed 
between field measurements and model-instance predictions 
(several sensor locations). Then threshold bounds, ti,low and 
ti,high, are evaluated (Eq. 3). These bounds are calculated as 
the shortest intervals through the PDF of combined uncer-
tainties fUi

(
ui
)
 at sensor location i.

The candidate model set (CMS)Ω��

k
 , defined using Eq. (4), 

is built of non-falsified model instances.

These instances are assumed to be equivalent since lit-
tle information is usually available to describe the com-
bined-uncertainty distribution [54]. They are thus assigned 
an equal probability, while falsified model instances are 
assigned a null probability.

In the case that all model instances are falsified, model 
predictions are incompatible with measurements given the 
estimations of non-parametric uncertainty sources. There-
fore, the current model class is not compatible with the true 
structural behavior. In such cases, data interpretation using 

(1)gi
(
Θk

)
+ Ui,gk

= Ri = yi + Ui,y∀i ∈
{
1,… , ny

}
.

(2)gk
(
i,Θk

)
− yi = Ui,c = ri.

(3)∀i = 1,… , ny ∶
1∕ny = ∫

ui,high

ui,low

fUi

(
ui
)
dui.

(4)
Ω

��

k
=
{
�k ∈ Ωk

||∀i ∈ {1,… , ny}ti,low ≤ gk
(
i,Θk

)
− ŷi ≤ ti,high

}
.

EDMF leads to re-evaluation of assumptions related to the 
choice of model class and uncertainty quantification. This 
situation highlights an important advantage of EDMF com-
pared with other structural-identification approaches [52]. 
These approaches, such as BMU or residual minimization, 
may yield updated parameter values even when incorrect 
assumptions are made prior to the structural identification, 
leading to wrong identification [25].

2.2 � Hierarchical algorithm

A measurement-system-design framework is used to ration-
ally select the appropriate measurement system to maximize 
information gain. This information gain is evaluated by the 
ability of a measurement system to discriminate model 
instances based on their predictions at sensor locations. The 
aim is to find the measurement that will maximize the num-
ber of falsified model instances to reduce parameter-value 
ranges after monitoring.

Due to the large number of possible combinations of 
sensor configurations, sensor placement is an optimization 
task, where a greedy-search algorithm is typically used [26]. 
Information entropy has been introduced as the variable in a 
sensor-placement objective function for system identification 
in posterior parameter distributions [31] and model-instance 
prediction distributions [32]. In EDMF context, this objec-
tive function measures the variability of model-instance pre-
dictions at sensor locations and aims to find the location that 
maximizes the discrimination of model instances.

To evaluate this variability, a prediction histogram is gen-
erated at each sensor location i. The range of model-instance 
predictions are subdivided into NI,i intervals where the inter-
val width is given by combined uncertainty Ui,c (Eq. 2). The 
probability that the model-instance prediction gi,j falls inside 
the jth interval is equal to P

�
gi,j

�
= mi,j∕

∑
mi,j with mi,j the 

number of model instances falling inside this specific inter-
val. The information entropy H

(
gi
)
 of sensor location i is 

then evaluated using the following equation:

As information entropy measures the disorder in pre-
dictions, sensor locations associated with large informa-
tion-entropy values represent a high potential for model-
instance discrimination. Therefore, they are attractive sensor 
locations.

When systems of elements, such as bridges, are moni-
tored, measurements between sensor locations are typically 
correlated. Therefore, selecting locations only based on their 
information-entropy values leads to redundant measurement 
systems [47]. To account for the mutual information between 
locations, joint entropy has been introduced as a new vari-
able in the objective function for sensor placement [45]. 

(5)H
(
gi
)
= −

∑NI,i

j=1
P
(
gi,j

)
log2P

(
gi,j

)
.
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Joint entropy H
(
gi,i+1

)
 evaluates the information entropy 

amongst sets of predictions at sensor locations. For a set of 
two sensors, joint entropy is calculated using Eq. (6), where 
P
(
gi,j, gi+1,k

)
 is the joint probability that model-instance pre-

dictions fall inside the jth interval at sensor i and the kth 
interval at sensor i + 1. In this equation,k ∈

{
1,… ,NI,i+1

}
 

and NI,i+1 is the maximum number of prediction intervals at 
the i + 1 location and i + 1 ∈

{
1,… , ns

}
 with the number of 

potential sensor locations ns.

Due to the redundancy in information gain between sen-
sors, the joint entropy is less than or equal to the sum of 
the individual information entropies at sensors i and i + 1. 
Equation (6) can be changed to Eq. (7), where I

(
gi,i+1

)
 is 

the shared information between sensor locations i and i + 1.

The sensor-placement algorithm that uses this variable 
has been adapted to structural identification to take into 
account mutual information between static load tests [47] 
as well as dynamic data [48]. Additionally, a measurement-
system-design strategy has been proposed following a 
multi-criteria decision analysis where the information-gain 
is evaluated using joint entropy [51].

3 � Measurement‑system design 
when multiple model classes are plausible

In this section, two methodologies are introduced to design 
measurement systems when multiple model classes are plau-
sible. The first approach involves an independent measure-
ment-system design for each model class and then a combi-
nation of these independent sensor configurations. Although 
this approach has not been yet formalized, it is referred to in 
this paper as the traditional approach to design measurement 
systems for multiple model classes. The second methodol-
ogy involves a modification of the hierarchical algorithm 
(Sect. 2.2) to account for the information gain for all model 
classes.

3.1 � Traditional approach

3.1.1 � Methodology

In this section, the traditional methodology to design meas-
urement systems for multiple model classes is developed. 
This methodology involves a combination of the optimal 
measurement system for each model class.

(6)
H
(
gi,i+1

)
= −

∑NI,i+1

k=1

∑NI,i

j=1
P
(
gi,j, gi+1,k

)
log2P

(
gi,j, gi+1,k

)
.

(7)H
(
gi,i+1

)
= H

(
gi
)
+ H

(
gi+1

)
− I

(
gi,i+1

)
.

Figure 1 presents the flowchart of the traditional approach 
for measurement-system design when multiple model classes 
are plausible. First, the numerical model of the structure is 
built based on available information and site investigation. 
Possible monitoring systems, such as possible sensor types 
and locations and possible load tests, are defined. Then, the 
model class must be selected, including a small set of model 
parameters than can be identified using sensor data during 
load testing and the non-parametric uncertainties associated 
with this choice. This choice is usually not trivial and often 
it appears that the initial model class is incorrect, leading to 
an iterative process of structural identification [52]. In this 
study, it is assumed that engineers are unable to select one 
model class; several model classes (MCi) are possible.

In Fig. 1, although three classes are included in the flow-
chart as an example, the methodology can be used with any 
number of model classes. The optimal measurement system 
for each model class is then defined. For each model class, 
the hierarchical algorithm (Sect. 2.2) is run to obtain an opti-
mal sensor configuration. This task is described in detail 
below. Finally, the optimal sensor configuration for multiple 
model classes is taken as the union of all sensor configura-
tions. Thus, sensor locations that are at least useful for one 
model class are included in the final sensor configuration.

3.1.2 � Optimal sensor configuration for a given model class

For a given model class, the optimal sensor configuration 
is obtained using the hierarchical algorithm. The model-
instance predictions at possible sensor locations are used 
to find locations that maximize the joint entropy (Eq. 6). A 
ranking of sensor locations is thus obtained and an evalua-
tion of the information gain (joint entropy) is provided with 
respect to the number of sensors, as shown in Fig. 2 for two 
model classes. According to user preferences, a target of 
information gain is set for each model class, for example 
80% or 100%. The optimal number of sensors is then found 
for each model class. The selected configuration is defined 
according to the sensor-location ranking of the hierarchical 
algorithm. A higher target leads to a larger number of sen-
sors in configurations and thus more expensive monitoring 
systems. As the cost of monitoring and information gain 
metrics are typically conflicting, the ultimate choice is based 
on preferences as well as characteristics of the optimal solu-
tions [51].

Joint-entropy curves for various model classes may be 
significantly different and thus, the optimal number of sen-
sors as well as their locations may vary (Fig. 2a, b). If these 
sensor configurations are simply combined through taking 
the union of the two sensor sets, a large number of sensors 
are included in the configuration. Since many sensors may 
provide similar information, the risk of information redun-
dancy is high due to mutual information gain.



320	 Journal of Civil Structural Health Monitoring (2021) 11:315–336

123

Fig. 1   Flowchart of the traditional approach for measurement-system design when multiple model classes are plausible
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3.2 � Modified hierarchical algorithm for multiple 
model classes

The second methodology involves a modification of the 
hierarchical algorithm (Sect. 2.2) to account for information 
related to use of multiple model classes for sensor place-
ment. First, the flowchart of the methodology is presented. 
Then, the modification of the joint-entropy objective func-
tion (Eq. 7) is introduced and the definition of the optimal 
sensor configuration is described.

3.2.1 � Flowchart

Figure 3 is a flowchart of the modified hierarchical algo-
rithm for multiple model classes. First, the numerical model 
of the structure is built and possible monitoring systems 
are defined. In a similarly way to the traditional approach 
(Fig. 1), possible model classes are selected. The main dif-
ference from the previous method is that the measurement 
system is designed based on information from all model 
classes to find sensor locations that maximize the mean 
information gain in each model class. This part of the flow-
chart is discussed in Sect. 3.2.2. Using a target for the total 
information gain chosen by asset managers, the optimal sen-
sor configuration is defined. Then, a verification is made 
to guarantee that the selected sensor configuration provides 
the required information gain for each model class indepen-
dently. When this verification is not satisfied, an additional 
sensor is added to the sensor configuration following the 
hierarchical algorithm (Sect. 2.2). When the target of infor-
mation gain is reached for each model class, the optimal 
sensor configuration for multiple model classes is obtained.

3.2.2 � Modification of the hierarchical algorithm

In this section, the modification of the hierarchical algorithm 
is introduced. The improvement with respect to the original 
hierarchical algorithm (Sect. 2.2) and this algorithm is the 
objective function. The aim of this modification is to account 
for the information gain of sensor locations in all model 
classes for sensor placement. Joint entropy is simultane-
ously evaluated in both model classes and the location that 
has the largest mean value is selected. This sensor location 
thus provides the largest additional information gain in both 
model classes.

The joint-entropy function of the hierarchical algorithm 
(Eq. 6) is modified to account for the mean information gain 
of a sensor location in both model classes. Equation (8) pre-
sents the new joint-entropy objective function, where Ĥj

(
gi
)
 

is the normalized joint entropy of location i for the model 
class j and j ∈

{
1,… ,NMC

}
 with NMC is the number of 

model classes under consideration.

Figure 4 presents an illustrative example of sensor place-
ment using the modified hierarchical algorithm. This exam-
ple involves three possible locations and two plausible model 
classes, called MC1 and MC2. In the first iteration, all loca-
tions are evaluated for both model classes independently and 
mean values are computed. In this example, sensor location 
2 has the largest mean entropy value ( 

−

H2 = 0.8 ). Due to the 
greedy search strategy used by the hierarchical algorithm, 
only sensor configurations that include sensor location 2 

(8)
−

Hi=

NMC∑

1

Ĥj

(
gi
)
.
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Fig. 2   Example of joint-entropy evaluation as a function of the number of sensors for two model classes. a Model class 1; b model class 2
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Model-class definition
Selection of the most-influent model parameters
Quantification of non-parametric uncertainties

Task definition
Input – load test

Number of trucks
Truck weights and model

Input – Sensors
Sensor types
Possible sensor locations

Model class 1 (MC1)
Model-instance predictions
at sensor locations

Model class 2 (MC2)
Model-instance predictions
at sensor locations

Model class 3 (MC3)
Model-instance predictions
at sensor locations

Optimal sensor configuration
– multiple model classes

Information gain assessment
Modification of the hierarchical algorithm
Account for the averaged information gain
in all model classes in the sensor placement

Is the minimum
target of information gain

for each model class
reached?

Sensor-configuration selection

YES

NO

Add the next most-useful sensor
in the sensor configuration

Fig. 3   Flowchart of the modified hierarchical algorithm for multiple model classes
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are re-evaluated in the second iteration. This means that the 
global optimum may not be found as the combination of 
sensor locations 1 and 3 is not assessed. Nevertheless, this 
sequential search significantly reduces computational time. 
The results approach the global optimum as the number of 
sensors increases. Finally, a good solution is ensured since 
the best individual sensor location is always included [56].

3.2.3 � Optimal sensor configuration

Once the sensor ranking is obtained using the modified 
hierarchical algorithm, the optimal sensor configuration is 
defined to reach a target such as a minimum information gain 
(joint entropy). As the sensor-location ranking is known, the 
mean information gain with respect to the number of sensors 
can be easily obtained using Eq. (8) without normalizing 
joint-entropy values. The sensor configuration with the mini-
mal number of sensors that satisfies the information-gain tar-
get is selected. Then a verification is made to ensure that this 
minimal information gain is obtained for each model class. If 
this verification is satisfied, the optimal sensor configuration 
is obtained. If the verification fails, additional sensors are 
added to the configuration following the ranking provided 
by the modified hierarchical algorithm (Fig. 4), until the 
target of information gain is reached for each model class 
independently.

4 � Case study

Two case studies are introduced to illustrate scenarios 
when multiple model classes are plausible. In the simple-
beam example (Sect. 4.1), the influence of the uncertainty 

quantification is presented, while in the Powder Mill Bridge, 
(Sect. 4.2) several model-parameter sets are introduced.

4.1 � Theoretical example: simple beam

A theoretical example of a simple beam, similar to [25], 
is used to illustrate the influence of the non-parametric 
uncertainty quantification on the expected information 
gain of sensor configurations. Several model classes are 
proposed that differ in uncertainty magnitudes. Results are 
presented in terms of individual sensor performance, joint-
entropy values of sensor configurations and sensor-loca-
tion rankings. Expected performance scores of individual 
sensor locations and sensor configurations are compared 
with the information gain after simulated field measure-
ments using EDMF (Sect. 2.1).

This example involves a simply supported prestressed 
concrete beam that is partially fixed on the left side by a 
rotational spring under a distributed load (s = 5kN/m) as 
presented in Fig. 5. This beam has a squared cross sec-
tion of height h = 500 mm with a moment of inertia I and 
length L = 10,000 mm. Two characteristics are unknown 
prior to monitoring: the Young’s modulus E and the spring 
rotational stiffness K. The monitoring goal is thus to iden-
tify as precisely as possible both parameter values.

Potential strain-gauge locations are uniformly distrib-
uted on the beam, starting at 1000 mm from the left side. 
The change in tensile strain at the bottom of the beam due 
to loading at the coordinate x is calculated using the fol-
lowing equation:

In this example, the aim of measurement-system design 
is to select sensor locations that maximize the information 

(9)�(x) = −
s(L − x)[KL(L − 4x) − 12EIx]

8EI(3EI + KL)
h∕2.

Fig. 4   Example of the sensor-location selection using the modified hierarchical algorithm
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gain evaluated through the reduction of initial parameter 
ranges.

4.1.1 � Model parameters

Table 1 presents the initial parameter ranges of both param-
eters as well as their true values (unknown in practice). True 
parameter values are assumed to simulate measurements at 
possible sensor locations. In this 2-parameter space, 961 
model instances are generated using grid-based sampling. 
This initial population constitutes the input required for the 
sensor-placement algorithms as well as the initial model-
instance set for falsification.

Figure  6 presents model-instance predictions with 
respect to the distance from the left-side support of the 
beam. Extreme and mean values are shown as well as the 
simulated measurements at possible sensor locations due 
to the assumed parameter values where no uncertainties in 
the measurements have been included. Results show that 
parameter values significantly influence model-instance pre-
dictions. The aim of sensor placement is to optimize the sen-
sor configuration to maximize the discrimination of model 
instances.

4.1.2 � Model classes

In this section, several possible model classes are intro-
duced. These model classes differ in the magnitude level 
of the distributed load applied on the beam. Table 2 con-
tains four scenarios of uncertainty levels. The first scenario, 
called “no-uncertainty”, involves a perfectly known loading 
level, while the high-uncertainty scenario includes loading 
uncertainties up to 50%. These scenarios are used to evaluate 
the influence of the uncertainty level on the optimal meas-
urement system. Non-parametric model uncertainties are 
typically not centred on zero due to the nature of the model 
bias. For example, model simplifications such as boundary 
conditions and connections between structural elements are 
intended to be conservative rather than accurate [5]. In this 
beam example, uncertainty scenarios are thus chosen to be 
not centred on zero in a similar way to the full-scale case 
study, the Powder Mill Bridge (Sect. 4.2). These uncertain-
ties are assumed to have uniform distributions between 
upper and lower bounds (U[lower, upper]).

Fig. 5   Beam configuration with 
nine potential measurement 
locations ( n

S
= 9)

Table 1   Initial parameter ranges and ground-truth values

Young’s modulus
E [GPa]

Rotational 
stiffness
K 
[log(Nmm/
rad)]

Initial parameter range 25–40 8–12
Ground truth 29 11.2

Fig. 6   Model-instance predictions at sensor locations with simulated 
measurements according to the beam parameter values

Table 2   Load-magnitude uncertainty scenario

Scenario Distribution

No-uncertainty [%] U[0; 0.1]
Normal uncertainty [%] U[− 2; 5]
Large uncertainty [%] U[− 5; 15]
Very large uncertainty [%] U[− 25; 50]
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Table 3 presents additional modelling and measurement 
uncertainty sources involved in this example. These sources 
also have uniform distributions between the two bounds. 
Uncertainty sources on geometric properties are assumed 
to affect model-instance predictions by ± 1%. Additionally, 
strain gauges have sensor accuracies of ± 2 με. These uncer-
tainties are applied to all model-class scenarios.

4.1.3 � Expected information gain and identification for each 
model class

The expected information gain of individual sensors and 
sensor configurations is compared with the falsification per-
formance using the ground-truth parameter values (Table 1) 
using the EDMF framework (Sect. 2.1) for data interpre-
tation. The falsification performance is calculated as the 
ratio of falsified model instances over the total number of 
instances.

Figure  7 presents the sensor performance for each 
model-class scenario. The sensor performance is signifi-
cantly influenced by its location. S1 presents the highest 
expected information gain for all model classes for the 
no-uncertainty scenario (Fig. 7a). This result shows that 
the variability of model predictions is more important 

than the signal-to-noise ratio (obtainable from Fig. 6). 
Higher uncertainty magnitudes significantly reduce indi-
vidual sensor performance and this trend is observed for 
all sensor locations. These results are corroborated by the 
individual falsification performance of sensor location 
(Fig. 7b) using ground-truth parameter values.

Figure 8 presents the information gain with respect of 
the number of sensors in the sensor configuration for each 
model-class scenario based on the sensor-location rank-
ings obtained with the hierarchical algorithm (Sect. 2.2). 
The expected information gain is significantly influenced 
by the model-class scenario (Fig. 8a) as higher uncer-
tainty-level magnitudes drastically reduce the model-
instance discrimination (Fig. 8b). Additionally, the num-
ber of sensors to reach the maximum joint-entropy values 
varies from 1 sensor for the very high uncertainty scenario 
to 9 sensors to the no-uncertainty scenario. This result 
shows that the choice of the model class may lead to a 
various optimal measurement systems. However, the num-
ber of useful sensors in terms of falsification performance 
is bounded between 1 and 5 depending on the model class 
(Fig. 8b).

Figure 9 presents the sensor-location ranking for each 
model class independently. Results are presented as a his-
togram with polar coordinates from the first sensor loca-
tion selected to the last one. Sensor rankings significantly 
differ with the model class selected. For example, S7 is 
ranked as the third-best location for the no-uncertainty and 
very large uncertainty scenarios and as the worst location 
for the normal and large uncertainty scenarios. This result 
shows once more that the optimal sensor configuration is 
influenced by the model class.

Table 3   Non-parametric uncertainty sources—simple-beam example

Source Distribution

Beam inertia I [%] U[− 1;1]
Beam length L [%] U[− 1;1]
Sensor accuracy [με] U[− 2;2]

Fig. 7   Comparison of information gain and identification performance of individual sensors for the four model classes. a Information entropy; b 
falsification performance
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Fig. 8   Comparison of information gain and identification performance with respect to the number of sensors for the four model classes for the 
simple-beam example. a Joint entropy; b falsification performance

Fig. 9   Sensor-location ranking 
from best to worst for each 
model class for the simple-beam 
example. a No-uncertainty 
scenario; b normal-uncertainty 
scenario; c large-uncertainty 
scenario; d very large-uncer-
tainty scenario
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4.1.4 � Optimal sensor configuration for multiple model 
classes

In this section, the two methodologies are compared when 
multiple model classes are plausible. First, a target must be 
defined for the minimum information gain required for each 
model class. In this example, although the target is set to 
80%, similar results can be found for values such as 70 or 
90%.

4.1.4.1  Traditional approach  In the union strategy (Fig. 1), 
the measurement-system design is performed for each 
model class independently as presented in Sect. 4.1.2. Then 
the sensor configuration required to reach the target of infor-
mation gain is defined for each model class. Table 4 presents 
the sensor selected for each model class to reach 80% of 
the maximum information gain. These sensor configura-
tions differ by the number of sensors required and selected 
sensors. In the traditional approach, each sensor that is at 
least useful for one model class is included in the final sen-
sor configuration. Following this methodology, five sensors 

(S1, S2, S4, S6, S7) are thus necessary to reach at least 80% 
of information gain for each model class.

4.1.4.2  Modified hierarchical algorithm  The modified hier-
archical algorithm (Fig. 3) is modified to design measure-
ment systems for multiple model classes. In this methodol-
ogy, sensor locations are selected sequentially based on their 
mean joint-entropy values for all model classes. Figure 10a 
presents the information gain with respect to the number 
of sensors. Following this methodology, four sensors are 
required to reach the 80% target on information gain. Fig-
ure 10b shows the sensor-location ranking using the modi-
fied hierarchical algorithm. Four sensors are necessary (S1; 
S2; S3; S5) to reach 80% of the mean information gain for 
all model classes. Therefore, compared with the traditional 
approach, a smaller sensor configuration is required follow-
ing the modified hierarchical algorithm.

Confirmation is needed to verify that 80% of informa-
tion gain is reached for each model class independently. 
Table 5 shows the information gain for each model class 
using the sensor configuration selected by the modified 

Table 4   Sensors selected to reach 80% of the maximum information 
gain for each model class of the simple-beam example

This maximum varies with model class

Model class Sensors selected

No uncertainty S1 S2 S6 S7
Normal uncertainty S1 S2 S4 S6
Large uncertainty S1 S2 S4 –
Very large uncertainty S1 – – –

Fig. 10   a Joint entropy as a function of the number of sensors for the hierarchical algorithm using multiple model classes. b Sensor-location 
ranking

Table 5   Verification that 80% of the maximum information gain is 
reached for each model class of the simple-beam example

Model class Total info. gain 80% threshold Modified hierar-
chical algorithm

No uncertainty 6.77 5.41 5.42
Normal uncer-

tainty
5.12 4.10 4.27

Large uncertainty 3.48 2.78 3.13
Very large uncer-

tainty
0.56 0.44 0.56
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hierarchical algorithm (Fig. 10) as well as 80% targets. 
This requirement is fulfilled for each model class. There-
fore, this sensor configuration is validated.

4.1.5 � Result corroboration: comparison of falsification 
performance

The falsification performance of selected sensor configura-
tions by the two methodologies (Sect. 4.1.3) is compared. 
The falsification performance when all possible sensors are 
included in the configuration is presented as a benchmark 
in Table 6. For all model classes, results are very similar 
amongst sensor configurations. The sensor configuration 
selected by the modified hierarchical algorithm provides a 
similar information gain of each model class and involves 
fewer sensors (4 sensors) than the traditional approach (5 
sensors). The modified hierarchical algorithm is thus rec-
ommended as measurement-system-design methodology 
when multiple model classes are plausible. This result is 
verified with a full-scale case study in the next section.

4.2 � Field application: the powder mill bridge

4.2.1 � Bridge and monitoring‑system presentation

The Powder Mill Bridge (PMB) (Fig. 11) [57], previously 
known as the Vernon Avenue Bridge [58], is a steel–concrete 
bridge located over the Powder Mill pond in Barre (Massa-
chusetts, USA). Built in 2009, the bridge connects the state 
highway with a depot road that services mainly truck traffic.

The PMB has been monitored since its construction. Dur-
ing the construction, strain gauges, tiltmeters and acceler-
ometers have been installed [58]. The aim of this monitoring 
was to develop new load-rating procedures for bridge model 
calibration [57, 59] and to introduce damage-identification 
methodologies [60, 61]. In 2010 and 2011, dynamic load 
testing using ambient vibration data has been performed for 
the purpose of bridge model calibration using a residual-
minimization approach [62] and remaining fatigue-life pre-
dictions [63].

A quasi-static load test has also been performed in 2011 
using a truck of 33 tons that is driven across the bridge at 
a speed of 3 km/h, which is slow enough to avoid dynamic 
amplification effects. This data set has not been used in 
previous studies. The aim of this study is to apply EDMF 
(Sect.  2.1) and methodologies for measurement-system 
design (Sect. 3) to the PMB based on this static-test data.

Figure 12 presents the bridge characteristics. PMB is a 
three-span steel–concrete bridge with a total span of 47 m 
(Fig. 12a). The concrete deck is supported by six I-section 
steel girders (Gi) (Fig. 12b). The measurement system and 
the truck location are shown in Fig. 12c. 20 strain gauges 
(Si) have been installed on the bottom flange of steel gird-
ers to record the structural response during the quasi-
static load test and these locations were selected based 
on engineering judgement. The strain-gauge model is 

Table 6   Comparison of the falsification performance for the proposed 
sensor configurations of the simple-beam example

Model class Falsification performance

Traditional 
approach
5 sensors

Modified hierar-
chical algorithm
4 sensors

All sensors
9 sensors

No uncertainty 0.96 0.95 0.96
Normal uncertainty 0.90 0.90 0.90
Large uncertainty 0.80 0.79 0.80
Very large uncertainty 0.20 0.20 0.20

Fig. 11   Powder Mill Bridge (PMB) located in Massachusetts, USA



329Journal of Civil Structural Health Monitoring (2021) 11:315–336	

123

KFG-5-120-C1-11L3M3R from the manufacturer Omega 
[64]. Strain measurements have been recorded at a sampling 
rate of 200 Hz. Data recorded in the sensors are stored in 
data loggers installed on the bridge.

The truck position that maximizes strain measurements 
is considered as the static load test (Fig. 12b, c). Therefore, 
for each strain gauge, one measurement is used in this study 
for a total of 20 sensor measurements. The aim of the meas-
urement-system design is thus to evaluate which sensors are 
useful for model-parameter identification.

4.2.2 � Model class selection

A 3D finite-element model is built to interpret strain data. 
In the numerical model, the concrete deck and steel girders 

are modelled as homogeneous using shell elements. The 
footpath on the bridge and the railings have been included 
to reduce uncertainties.

Table 7 presents the parameters included in the numeri-
cal model as well as initial plausible ranges estimated using 
engineering judgement. The Young’s moduli of concrete and 
steel are parametrized as well as the deck thickness. As the 
stiffness of the connection between the concrete deck and 
railings is unknown, the thicknesses of the deck and railing 
at the edge of the bridge are included as model parameters. 
Connections between the steel girders and the concrete deck 
are modelled using zero-length spring elements in both 
transversal and longitudinal directions. Bridge supports are 
modelled with zero-length spring elements with parameter-
ized stiffness in longitudinal and vertical directions.

Fig. 12   Schematic drawings of Powder Mill Bridge including installed sensor configuration
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While 14 parameters have been included in the numerical 
model, a reduced model-parameter set is needed to cover 
efficiently the parameter domain with model instances [7]. 
Typically, 1000 model instances are used for measurement-
system design [47]. Two methodologies are used to select 
the appropriate model class. The development of new meth-
odologies for model-class selection is beyond the scope of 
this study. Typical methodologies are briefly described 
below. More details can be found in [13].

The first method involves a traditional sensitivity analysis 
of model predictions to various parameters conducted using 
linear regression. As the model-response sensitivity differs 
between sensor locations, averaged relative influence of each 
model parameter over the sensor configuration is calculated. 
Then a practical threshold of 5% is used to select most influ-
ent model parameters.

In the second method, called clustering and classification, 
model responses at sensor locations are first clustered using 
k-means clustering to understand underlying trends in model 
response [65]. Clusters are then used to train a support-vec-
tor-machine classifier. Parameter selection for the classifier 
is carried out using forward variable selection. The result of 
this sequential search is a trade-off plot of classification error 
as a function of parameters used to train the classifier. This 
trade-off plot helps determine the model parameters that are 
informative of structural behavior.

Table 8 presents model parameters selected by both meth-
odologies. The difference between the two model classes is 
either the absence or presence of the steel Young’s modulus. 
The aim of this paper is not to judge which model class is the 
most appropriate but rather to consider both as plausible and 
find the optimal measurement system. The inclusion of this 
additional parameter can significantly influence the predic-
tion ranges at sensor locations and thus the optimal sensor 

configuration. Both model classes are taken to be equally 
likely to be the best model class.

Table 9 presents uncertainty sources considered in the 
PMB bridge case study. These sources have been estimated 
based on engineering judgement, sensitivity analysis and 
literature review [13]. Measurement uncertainties have been 
estimated on sensor-supplier information and this source has 
a normal distribution. Load uncertainties are related to truck 
weight and position. Model bias is larger close to the support 
due to the simplification in the numerical model at supports 
that may affect the accuracy of predictions. The secondary-
parameter uncertainty is influenced by the model class used. 
Uncertainties from these sources are then combined using 
Monte Carlo sampling.

Table 7   Parametric sources of 
uncertainty in the model and 
their range

Index Parameter Variable Range

1 Young’s modulus of concrete [GPa] EC 20–55
2 Young’s modulus of steel [GPa] Es 195–210
3 Height of deck slab [mm] Hd 200–210
4 Height of deck slab [mm] Hr 300–500
5 Deck-girder connection stiffness, transversal [log N/mm] Kdg,x 2–6
6 Deck-girder connection stiffness, longitudinal [log N/mm] Kdg,z 4–10
7 Vertical stiffness of support A [log N/mm] K

1,y 4–7
8 Horizontal stiffness of support A [log N/mm] K

1,z 2–5
9 Vertical stiffness of support B [log N/mm] K

2,y 4–7
10 Horizontal stiffness of support B [log N/mm] K

2,z 2–5
11 Vertical stiffness of support C [log N/mm] K

3,y 4–7
12 Horizontal stiffness of support C [log N/mm] K

3,z 2–5
13 Vertical stiffness of support D [log N/mm] K

4,y 4–7
14 Horizontal stiffness of support D [log N/mm] K

4,z 2–5

Table 8   Selected model class using linear regression and clustering 
and classification methods

Model class Method Included parameters

Model class 1
(MC1)

Linear regression EC , Es , Hr , Kdg,z , K2,y,K3,y

Model class 2
(MC2)

Clustering and classifica-
tion

EC , Hr , Kdg,z , K2,y,K3,y

Table 9   Non-parametric uncertainty sources – Powder Mill bridge

Source Distribution

Measurement [%] N[0; 5]
Load [%] U[− 5; 5]
Model bias at sensors near supports [%] U[− 15; 5]
Model bias at sensors near mid-span [%] U[− 7; 5]
Secondary parameters—model class 1 U[− 17; 20]
Secondary parameters—model class 2 U[− 25; 20]
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4.2.3 � Measurement‑system design for multiple model 
classes

In this section, the two methodologies for measurement-
system design when multiple model classes are plausible 
are applied to the PMB bridge. Results in terms of joint 
entropy with respect to the number of sensors and sensor 
rankings are presented.

Figure 13a presents the joint entropy as a function of 
the number of sensors for each model class independently. 
Results show that sensor configurations have similar 
expected information gain for both model classes. Never-
theless, these sensor configurations may differ in terms of 
selected sensor locations. To reach the 80% target on infor-
mation gain, ten sensors are needed for both model classes. 
As this study has been performed after monitoring, the fal-
sification performance using the field measurements col-
lected during monitoring is shown in Fig. 13b with respect 
to the number of sensors. S11 and S15 have provided suspi-
cious measurements during monitoring and have thus been 
removed from the analysis in Fig. 13b. Most model instances 
have been falsified using the first ten sensors, as predicted 
by the hierarchical algorithm. However, the comparison 
between predicted and observed sensor performance is not 
straightforward since all possible measurement outcomes 
are taken into account by the hierarchical algorithm [27]. 
Sensor configurations are thus assessed statistically by the 
joint-entropy metric while they are evaluated using the true 
set of measurements by the falsification performance.

Figure 14 presents the sensor-location ranking when each 
model class is assessed independently. For each model class, 
results are presented as a histogram with polar coordinates 

from the first sensor location selected to the last one. For 
clarity purposes, only the first 10 selected sensors are pre-
sented. Most selected sensor locations are the same in the 
two model classes, for example, S1, S3 or S14. However, 
rankings differ significantly. Additionally, some locations are 
only useful for one model class, such as S12 for MC1 or S7 
for MC2. This result shows the optimal sensor configuration 
depends on the model class.

Figure 15a presents the information gain with respect to 
the number of sensors using the modified hierarchical algo-
rithm and information from both model classes. Following 
this methodology, eight sensors are required to reach the 
80% level of information gain. Figure 15b shows the sensor-
location ranking using this methodology. When compared 
to the traditional approach (Fig. 14), the selected sensor 
locations are similar while the ranking differs, showing that 
accounting for mutual information between model classes 
leads to a unique sensor configuration.

Table 10 presents the selected sensor locations using the 
traditional approach and the modified hierarchical algorithm 
to reach a target of information gain fixed at 80%. The same 
sensor locations are chosen, except that the modified hier-
archical algorithm does not select S7 and S10, leading to a 
smaller monitoring system. This result shows that although 
the traditional approach selects good sensor locations, it 
leads to measurement systems with mutual information 
between sensors. A comparison of these measurement sys-
tems in terms of falsification performance is carried out in 
the next section.

Figure  16 presents the optimal sensor configuration 
according to the modified hierarchical algorithm. This 
configuration involves 8 of the 20 possible sensors. Some 

Fig. 13   Comparison of information gain and identification performance with respect to the number of sensors for the two model classes for the 
PMB bridge. a Joint entropy; b falsification performance based on field measurements
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Fig. 14   Sensor-location ranking from best to worst for each model class for the PMB bridge. a Linear-regression method (MC1); b clustering 
and classification method (MC2)

Fig. 15   a Joint entropy as a function of the number of sensors for the hierarchical algorithm using multiple model classes. b Sensor-location 
ranking

Table 10   Sensors selected by 
the two methodologies to reach 
80% of the information gain for 
each model class of the PMB 
ridge

Methodology Sensor locations selected

Traditional 
approach 
(MC1)

S1 S3 S5 S7 S10 S12 S13 S14 S19 S20

Modified hier-
archical algo-
rithm (MC2)

S1 S3 S5 S12 S13 S14 S19 S20
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locations correspond to where the signal-to-noise ratio is 
the highest (S13, S12) but sensors have also been spread 
over the bridge, such as S1 or S5, showing that the modified 
hierarchical algorithm does not lead to sensor clustering.

4.2.4 � Result corroboration using field measurements

In this section, the falsification performance using field 
measurements is compared for the sensor configurations that 
are selected by the two methodologies given multiple model 
classes (Table 10). Results are presented in Table 11, where 
the falsification performance when all 18 possible sensors 
are included in the configuration is included as a benchmark. 
For all model classes, all sensor configurations lead to simi-
lar results. The sensor configuration selected by the modified 
hierarchical algorithm provides a similar information gain of 
each model class and involves less sensors (8 sensors) than 
the union strategy (10 sensors). The modified hierarchical 
algorithm is thus a better measurement-system-design meth-
odology when multiple model classes are plausible and these 
results confirm the results that were found for the simple-
beam example (Sect. 4.1.4).

5 � Discussion

When multiple model classes are plausible, it may occur that 
some model classes are more likely than others. A strategy 
to account for this information is to weight sensor entropy 

values in Eq. (8) in each model class using the probability 
that this model class is the correct one.

In this study, a target of information gain for each model 
class is fixed at 80% of the total feasible information gain. 
This choice has been made as a tradeoff between sufficient 
information gain and the minimum cost of monitoring. Sev-
eral target levels (instead of 80%) have been assessed and 
they lead to the same conclusion that the modified hierarchi-
cal algorithm requires fewer sensors to reach the same target 
level of information gain than required by the traditional 
approach. Higher target values obviously lead to monitoring 
systems that include more sensors.

The target used in this paper has been fixed as a percent-
age of the total information gain. This type of target has been 
chosen since it can be simply included in a multi-objective 
approach for measurement-system design, for example [51]. 
Other types of targets, such as a minimal incremental of the 
joint entropy are possible without significantly modifying 
the methodology presented in this study. Although the joint 
entropy is a monotonic increasing function with respect to 
the number of sensors, incremental targets may be difficult 
to define as significant information may be gained by small 
individual-sensor increments, see for example [49].

The number of sensors that are selected must be sufficient 
to guarantee that the information gain is sufficient in case 
of sensor failure. This criterion is not explicitly included in 
this study. Previous work on single-span bridges [51] shows 
that typically 5 to 7 sensors in the configuration provide 
enough mutual information between them to guarantee suf-
ficient information gain even when the most-informative 
sensor fails.

The following limitations of the work are recognized. The 
quality of sensor-performance predictions depends upon the 
quality of the numerical model even though model simplifi-
cations can be covered by increased model uncertainty. The 
reliability of model assumptions must be verified by visual 
inspection prior to monitoring. Additionally, the inclusion of 
non-structural elements, such as barriers and asphalt pave-
ment, explicitly in models is recommended to increase the 
accuracy of model predictions.

The selection of the most relevant model class is a non-
trivial task and is an on-going theme of research in many 
fields. The influence of all relevant parameters on model 
predictions should be estimated to properly evaluate model 

Fig. 16   Optimal solution of the measurement-system design accord-
ing to the modified hierarchical algorithm

Table 11   Comparison of the 
falsification performance using 
field measurements for the 
proposed sensor configurations 
on the Powder Mill Bridge

Model class Falsification performance

Traditional 
approach
10 sensors

Modified hierarchical 
algorithm
8 sensors

All sensors
18 sensors

Linear regression (MC1) 0.96 0.96 0.96
Clustering and classification (MC2) 0.83 0.84 0.89
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uncertainties. In this study, the goal is not to define the sin-
gle most appropriate model class. Instead, a methodology 
that accommodates multiple plausible model classes for 
measurement-system design is proposed.

The hierarchical algorithm uses a greedy search to reduce 
the computational time required for obtaining optimal sen-
sor placement solutions. As sensor locations are selected 
sequentially, the global optimum may not be obtained, espe-
cially when the selected number of sensors is low. Moreo-
ver, the sampling strategy used to generate the population 
of model predictions may influence the result of the meas-
urement-system design.

Future work includes development of a sensor-placement 
methodology that requires fewer model-instance predictions 
without reducing the effectiveness of the measurement-sys-
tem design.

6 � Conclusions

A new methodology is proposed to design measurement 
systems when multiple model classes are plausible prior to 
monitoring. This methodology involves a modification of 
the hierarchical algorithm to account for the information 
gain of sensor locations over all model classes in the sensor 
placement. This methodology outperforms the traditional 
approach on both an illustrative example and a full-scale 
bridge case study (Powder Mill Bridge, previously known 
as the Vernon Avenue Bridge). Specific conclusions are the 
following:

•	 The optimal configuration depends on the model class 
chosen by engineers. The proposed strategies help engi-
neers in the design of the optimal measurement systems 
when multiple model classes are plausible.

•	 The modified hierarchical algorithm for multiple model 
classes supports the selection of a sensor configuration 
that provides significant information gain for each plau-
sible model class.

•	 This methodology helps reduce the required number of 
sensors without compromising the precision of model-
parameter-value identification after monitoring.
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