Skip to main content
Log in

Methods to determine wood moisture content and their applicability in monitoring concepts

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

The reaction of wood to moisture forms an integral part of any task in connection with this natural and renewable building material. Changes in wood moisture content lead to changes of virtually all physical and mechanical properties (e.g. strength and stiffness properties) of wood. Another effect of changes of the wood moisture content is the associated shrinkage or swelling of the material. The existence of high moisture content can initiate decay or growth of fungi. The correct estimation of timber moisture content and the subsequent initiation of potentially necessary measures are therefore essential tasks during the planning, execution and maintenance of buildings built with wood or wood-based products. This is supported by the high amount of damages on structural timber elements that can be attributed to ignorance of the reaction of wood to moisture. Also supported by this fact, the in situ monitoring of moisture content of structural timber elements has recently received considerable interest and growth. This paper describes common methods to determine wood moisture content and evaluates them with respect to their applicability for monitoring concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Kollmann F, Coté WA (1968) Principles of wood science and technology I: solid wood. Springer, Berlin

  2. Niemz P (2003) Physik des Holzes und der Holzwerkstoffe. DRW-Verlag, Leinfelden-Echterdingen

    Google Scholar 

  3. Skaar C (1988) Wood–water relations. Springer, Berlin

    Book  Google Scholar 

  4. Siau JF (1984) Transport processes in wood. Springer, New York

    Book  Google Scholar 

  5. EN 1995-1-1:2004 (2004) Eurocode 5: design of timber structures—part 1-1: general—common rules and rules for buildings. European Committee for Standardization CEN, Brussels

  6. Hawley LF (1931) Wood–liquid relations, Technical Bulletin Nr. 248, United States Department of Agriculture, Washington, DC

  7. Keylwerth R (1949) Einfache Kontrollmessung bei der Holztrocknung. Holz-Zentralblatt 75:307–309

    Google Scholar 

  8. Stamm AJ, Harris EE (1953) Chemical processing of wood. Chem. Publ. Co., Inc., New York

    Google Scholar 

  9. EN 13183-1:2002 (2002) Moisture content of a piece of sawn timber—part 1: determination by oven dry method; European Committee for Standardization CEN, Brussels

  10. Villari E (1886) Annalen der Physik und Chemie—Untersuchungen über einige Eigenschaften des mit seinen Fasern parallel oder transversal durchschnittenen Holzes, Bd. CXXXIII, Leipzig

  11. Keylwerth R, Noack D (1956) Über den Einfluß höherer Temperaturen auf die elektrische Holzfeuchtigkeitsmessung nach dem Widerstandsprinzip. Holz als Roh- und Werkstoff 14(5):162–172

    Article  Google Scholar 

  12. Ugolev B (1986) Holzkunde und Grundlagen der Holzwarenkunde, Lesnaja Prom, Moskau

  13. Herrmann M (2009) Innovationen der Holzfeuchtemessung, Diploma Thesis, Chair for Timber Structures and Building Construction, Technische Universität München

  14. EN 13183-2:2002 (2002) Moisture content of a piece of sawn timber—part 2: estimation by electrical resistance method; European Committee for Standardization CEN, Brussels

  15. EN 13183-3:2005 (2005) Moisture content of a piece of sawn timber—part 3: estimation by capacitance method; European Committee for Standardization CEN, Brussels

  16. Evans F, Kleppe O, Dyken T (2006) Monitoring of timber bridges in Norway—results, Report, Norsk Treteknisk Institut, Oslo

  17. Gamper A, Dietsch P, Merk M, Winter S (2012) Building climate—long-term measurements to determine the effect on the moisture gradient in timber structures, Final Report. Lehrstuhl für Holzbau und Baukonstruktion, Technische Universität München

  18. Gamper A, Dietsch P, Merk M, Winter S (2014) Building climate—validation of long-term measurements to determine the effect on the moisture gradient in timber structures, Final Report. Lehrstuhl für Holzbau und Baukonstruktion, Technische Universität München

  19. Franke B, Müller A, Vogel M, Tannert T (2012) Langzeitmessung der Holzfeuchte und Dimensionsänderung an Brücken aus blockverleimten Brettschichtholz, Research report, Bern University of Applied Sciences, Switzerland

  20. Dietsch P, Gamper A, Merk M, Winter S (2014) Monitoring building climate and timber moisture gradient in large-span timber structures. J Civil Struct Health Monit. doi:10.1007/s13349-014-0083-6

  21. Franke S, Franke B, Müller A (2014) Case study—long term monitoring of timber bridges (this issue)

  22. Franke B, Widmann R, Müller A, Tannert T (2013) Assessment and monitoring of the moisture content of timber bridges. In: Proceedings international conference on timber bridges, Las Vegas

  23. Brischke C, Rapp AO (2007) Untersuchung des langfristigen Holzfeuchteverlaufs an ausgewählten Bauteilen der Fußgängerbrücke in Essing. Report Bundesforschungsanstalt für Forst- und Holzwirtschaft, Hamburg

    Google Scholar 

  24. Feldmeier F (2007) Ergebnisse und Schlussfolgerungen aus den Felduntersuchungen einer Eissporthalle. In: Proceedings Ingenieurholzbau—Karlsruher Tage, pp 98–104

  25. Fellmoser P (2012) Langzeitüberwachung von Holztragwerken. In: Proceedings Ingenieurholzbau—Karlsruher Tage, pp 77–87

  26. Schäfer W (2013) Konsequenter Holzschutz macht’s möglich—Grünbrücke Luckenwalde. Bauen mit Holz 9:16–21

    Google Scholar 

  27. Brischke C, Rapp AO, Bayerbach R (2008) Measurement system for long-term recording of wood moisture content with internal conductively glued electrodes. Build Environ 43(10):1566–1574

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Dietsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dietsch, P., Franke, S., Franke, B. et al. Methods to determine wood moisture content and their applicability in monitoring concepts. J Civil Struct Health Monit 5, 115–127 (2015). https://doi.org/10.1007/s13349-014-0082-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-014-0082-7

Keywords

Navigation