ERRATUM

Erratum to: Nonlocal fourth-order Kirchhoff systems with variable growth: low and high energy solutions

Ghasem A. Afrouzi¹ · M. Mirzapour² · Vicențiu D. Rădulescu^{3,4}

Published online: 9 February 2016 © Universitat de Barcelona 2016

Erratum to: Collect. Math. DOI 10.1007/s13348-014-0131-x

The goal of this erratum is to correct a mistake that appears in the assumption (M_2) in the original article. In the correct version, the hypothesis (M_2) should be removed. In such a case, we restate the following assumption:

(M₁) There exist $m_2 \ge m_1 > 0$ and $\alpha > 1$ such that $m_1 t^{\alpha - 1} \le M(t) \le m_2 t^{\alpha - 1}$, for all $t \in \mathbb{R}^+$.

We point out that the original assumption (M_1) implies $\alpha_1 = \alpha_2$, so we rename constant α . In conditions (F_2) and (F_5) , we replace β by α .

The correct statement of Lemma 3.2 is the following.

Vicenţiu D. Rădulescu vicentiu.radulescu@imar.ro

> Ghasem A. Afrouzi afrouzi@umz.ac.ir

M. Mirzapour mirzapour@stu.umz.ac.ir

- ¹ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
- ² Farhangian University, Tehran, Iran
- ³ Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Saudi Arabia
- ⁴ Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania

The online version of the original article can be found under doi:10.1007/s13348-014-0131-x.

Lemma 3.2 Let (u_n, v_n) be a Palais–Smale sequence for the Euler–Lagrange functional J. Assume that conditions (M_1) , (F_2) are satisfied and

$$m_1\theta_1(p^{-})^{\alpha-1} > \alpha m_2, \quad m_1\theta_2(q^{-})^{\alpha-1} > \alpha m_2.$$
 (0.1)

Then the sequence (u_n, v_n) is bounded.

In the proof of Lemma 3.2, by hypotheses (0.1), (M_1) and (F_2) , we can write for *n* large enough

$$c_{7} \geq J(u_{n}, v_{n}) \geq \frac{m_{1}}{\alpha} \left(\int_{\Omega} \frac{1}{p(x)} |\Delta u_{n}|^{p(x)} dx \right)^{\alpha} - \int_{\Omega} \frac{u_{n}}{\theta_{1}} \frac{\partial F}{\partial u}(x, u_{n}, v_{n}) dx + \frac{m_{1}}{\alpha} \left(\int_{\Omega} \frac{1}{q(x)} |\Delta v_{n}|^{q(x)} dx \right)^{\alpha} - \int_{\Omega} \frac{v_{n}}{\theta_{2}} \frac{\partial F}{\partial v}(x, u_{n}, v_{n}) dx - c_{8},$$

where c_8 is a positive constant. Therefore

$$\begin{aligned} c_{7} &\geq J(u_{n}, v_{n}) \\ &\geq \frac{m_{1}}{\alpha} \left(\int_{\Omega} \frac{1}{p(x)} |\Delta u_{n}|^{p(x)} dx \right)^{\alpha} - \frac{m_{2}}{\theta_{1}} \left(\int_{\Omega} \frac{1}{p(x)} |\Delta u_{n}|^{p(x)} dx \right)^{\alpha - 1} \int_{\Omega} |\Delta u_{n}|^{p(x)} dx \\ &+ \frac{1}{\theta_{1}} D_{1} J(u_{n}, v_{n})(u_{n}) \\ &+ \frac{m_{1}}{\alpha} \left(\int_{\Omega} \frac{1}{q(x)} |\Delta v_{n}|^{q(x)} dx \right)^{\alpha} - \frac{m_{2}}{\theta_{2}} \left(\int_{\Omega} \frac{1}{q(x)} |\Delta v_{n}|^{p(x)} dx \right)^{\alpha - 1} \int_{\Omega} |\Delta v_{n}|^{p(x)} dx \\ &+ \frac{1}{\theta_{2}} D_{2} J(u_{n}, v_{n})(v_{n}) - c_{8} \\ &\geq \left(\frac{m_{1}}{\alpha} - \frac{m_{2}}{\theta_{1}(p^{-})^{\alpha - 1}} \right) \left(\int_{\Omega} |\Delta u_{n}|^{p(x)} dx \right)^{\alpha} + \left(\frac{m_{1}}{\alpha} - \frac{m_{2}}{\theta_{2}(q^{-})^{\alpha - 1}} \right) \left(\int_{\Omega} |\Delta v_{n}|^{q(x)} dx \right)^{\alpha} \\ &- \frac{1}{\theta_{1}} \| D_{1} J(u_{n}, v_{n}) \|_{*, p(x)} \| u_{n} \| - \frac{1}{\theta_{2}} \| D_{2} J(u_{n}, v_{n}) \|_{*, q(x)} \| v_{n} \| - c_{8}. \end{aligned}$$

Now, we suppose that the sequence (u_n, v_n) is not bounded. Without loss of generality, we may assume $||u_n||_{p(x)} \ge ||v_n||_{q(x)}$. Therefore, for *n* large enough so that $||u_n||_{p(x)} > 1$, we obtain

$$c_{7} \geq \left(\frac{m_{1}}{\alpha} - \frac{m_{2}}{\theta_{1}(p^{-})^{\alpha-1}}\right) \|u_{n}\|_{p(x)}^{\alpha p^{-}} \\ - \left(\frac{1}{\theta_{1}}\|D_{1}J(u_{n}, v_{n})\|_{*, p} + \frac{1}{\theta_{2}}\|D_{2}J(u_{n}, v_{n})\|_{*, q}\right) \|u_{n}\|_{p(x)}.$$

But this cannot hold since $\alpha p^- > p^- > 1$. Hence, (u_n, v_n) is bounded.

Theorem 3.1 and Lemma 3.3 remain unchanged. However, Theorems 3.4, 4.1, 4.2 and Lemmas 3.2, 3.3 need to be stated without assumption (M_2) . Hypothesis (0.1) should be also added in the statement of Theorems 3.4 and 4.1. The proofs of Theorems 3.4, 4.1 and 4.2 are similar to the original proofs, but replacing β by α .