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Abstract A generalized Cauchy problem for nonlinear hyperbolic functional differential
systems is considered. A theorem on the existence of weak solutions is proved. The initial
problem is transformed into a system of functional integral equations for an unknown function
and for their partial derivatives with respect to spatial variables. The existence of solutions
of this system is proved by using a method of successive approximations. It is shown a result
on the differentiability of solutions with respect to initial functions. This is the main result
of the paper.
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1 Introduction

For any metric spaces U and V we denote by C(U, V ) the class of all continuous functions
from U into V . We will use vectorial inequalities if the same inequalities hold between
corresponding components. Suppose that M ∈ C([0, a],Rn+), a > 0, R+ = [0,+∞), M is
nondecreasing and M(0) = 0[n] where 0[n] = (0, . . . , 0) ∈ R

n . Let E be the Haar pyramid

E = {(t, x) ∈ R
1+n : t ∈ [0, a], −b + M(t) ≤ x ≤ b − M(t)},

where b ∈ R
n and b > M(a). Suppose that b0 ∈ R+ and M−,M+ ∈ C([−b0, 0], Rn),

M− = (M−
1 , . . . ,M−

n ), M+ = (M+
1 , . . . ,M+

n ) and M−(0) = −b, M+(0) = b and
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380 Z. Kamont

M−(t) < M+(t) for t ∈ [−b0, 0]. Set E0 = {(t, x) ∈ R
1+n : t ∈ [−b0, 0],M−(t) ≤

x ≤ M+(t)}. For (t, x) ∈ E we define

D[t, x] = {(τ, y) ∈ R
1+n : τ ≤ 0, (t + τ, x + y) ∈ E0 ∪ E}.

Then D[t, x] = D0[t, x] ∪ D�[t, x) where

D0[t, x] = {(τ, y) ∈ R
1+n : −b0 − t ≤ τ ≤ −t, −x + M−(t + τ) ≤ y ≤ −x

+M+(t + τ)},
D�[t, x] = {(τ, y) : −t ≤ τ ≤ 0, −b − x + M(τ + t) ≤ y ≤ b − x − M(τ + t)}.

Set b− = (b−
1 , . . . , b−

n ), b+ = (b+
1 , . . . , b+

n ) where

b−
i = min{M−

i (t) : t ∈ [−b0, 0]}, b+
i = max{M+

i (t) : t ∈ [−b0, 0]}, 1 ≤ i ≤ n,

and B = [−b0 − a, 0] × [−b + b−, b + b+]. Then D[t, x] ⊂ B for (t, x) ∈ E . Denote by
N the set of natural numbers. Let S be the class of all sequences p = {pk}k∈N where pk ∈ R

for k ∈ N. Write

E0.k = (E0 ∪ E) ∩ ([−b0, ak] × R
n), k ∈ N,

where ak ≥ 0 for k ∈ N and κ = sup{ak : k ∈ N} < a. For a function z : E0 ∪ E → S,
z = {zk}k∈N, and for a point (t, x) ∈ E we define z(t,x) : D[t, x] → S, z(t,x) = {(zk)(t,x)}k∈N,
by

(zk)(t,x)(τ, y) = zk(t + τ, x + y), (τ, y) ∈ D[t, x], k ∈ N.

Then z(t,x) is the restriction of z to the set (E0 ∪ E) ∩ ([−b0, t] × R
n) and this restriction is

shifted to the set D[t, x].
Suppose the φ0 : [0, a] → R and φ : E → R

n , φ = (φ1, . . . , φn) are given functions.
The requirements on φ0 and φ are that 0 ≤ φ0(t) ≤ t and (φ0(t), φ(t, x)) ∈ E for (t, x) ∈ E .
Write ϕ(t, x) = (φ0(t), φ(t, x)) on E . Let l∞ be the class of all sequences p = {pk}k∈N

such that ‖p‖∞ = sup{|pk | : k ∈ N} < ∞. Set � = E × C(B, l∞)× C(B, l∞)× R
n and

suppose that

F : � → S, F = {Fk}k∈N, and ψ = {ψk}k∈N, ψk : E0.k → R for k ∈ N,

are given functions. We will say that F satisfies condition (V ) if for each (t, x, q) ∈ E × R
n

and forv, ṽ, w, w̃ ∈ C(B, l∞) such thatv(τ, y) = ṽ(τ, y) for (τ, y) ∈ D[t, x] andw(τ, y) =
w̄(τ, y) for (τ, y) ∈ D[ϕ(t, x)] we have F(t, x, v, w, q) = F(t, x, ṽ, w̃, q). Note that the
condition (V )means that the values of F at the point (t, x, v, w, q) ∈ � depends on (t, x, q)
and on the restriction of v and w to the sets D[t, x] and D[ϕ(t, x)] only.

Let us denote by z = {zk}k∈N an unknown function of the variables (t, x), x =
(x1, . . . , xn). We consider the system of functional differential equations

∂t zk(t, x) = Fk(t, x, z(t,x), zϕ(t,x), ∂x zk(t, x)), k ∈ N, (1)

with the initial conditions

zk(t, x) = ψk(t, x) on E0.k, k ∈ N, (2)

where ∂x zk = (∂x1 zk, . . . , ∂xn zk), 1 ≤ i ≤ k. We assume that F satisfies the condition (V ).
Write

Et = (E0 ∪ E) ∩ ([−b0, t] × R
n), St = [−b + M(t), b − M(t)], t ∈ [0, a],

Ic.k[x] = {t ∈ [ak, c] : −b + M(t) ≤ x ≤ b − M(t)}, x ∈ [−b, b], k ∈ N,
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Differentiability with respect to initial functions 381

where κ < c ≤ a. We consider weak solutions of initial problems. A function z̃ : Ec → S,
z̃ = {z̃k}k∈N, where κ < c ≤ a, is a solution to (1), (2) provides

(i) z̃(t,x) ∈ C(B, l∞) for (t, x) ∈ Ec, 0 ≤ t ≤ c and ∂x z̃k exist and they are continuous on
E ∩ ([ak, c] × R

n) for k ∈ N,

(ii) for each k ∈ N and x ∈ [−b, b] the function z̃k( · , x) : Ic.k[x] → R is absolutely
continuous,

(iii) for each x ∈ [−b, b] and for k ∈ N, the k-th equation in (1) is satisfied for almost all
t ∈ Ic.k[x] and conditions (2) hold.

System (1) with initial conditions (2) is called a generalized Cauchy problem. If ak = 0
for k ∈ N then (1), (2) reduces to the classical Cauchy problem. The following question is
considered in the paper. We prove that under natural assumptions on given functions there
exists exactly one solution to (1), (2) defined on Ec and we give an estimate of c ∈ (κ, a].
Let us denote by X the class of all ψ = {ψk}k∈N, ψk : E0.k → R for k ∈ N, such that there
exists exactly one solution 
[ψ] : Ec → l∞ to (1), (2). We give a construction of the space
X.We prove that there is Y ⊂ X such that for each ψ ∈ Y there exists the Fréchet derivative
∂
[ψ] of 
 at ψ . Moreover, if ψ ∈ Y and π ∈ X and z̄ = ∂
[ψ]π then z̄ is a solution of
an integral functional system generated by (1), (2).

Until now there have not been any results on the differentiability with respect to initial
functions for solutions of nonlinear hyperbolic functional differential systems. Our theorems
are new also in the case when (1), (2) reduces to a finite functional differential system.

In recent years, a number of papers concerning first order partial functional differential
equations have been published. The following questions were considered: functional differ-
ential inequalities generated by initial or mixed problems and their applications [1,5,6,12],
existence theory of classical or weak solutions of equations or finite systems with initial or
initial boundary conditions [2–4,9,14,22] approximate solutions of functional differential
problems [15–17,25]. Essential extensions of some ideas concerning generalized solution of
Hamilton–Jacobi equations are given in [20,21] where viscosity solutions are considered.

Infinite systems of first order partial functional differential equations were first treated in
[18,19]. The existence result presented in [18] is based on a method of successive approxi-
mations which was introduced by Ważewski [23] for systems without the functional depen-
dence. Existence results for initial problems [11] and for mixed problems [8] related to
infinite systems of nonlinear equations are obtained by a quasilinearization procedure and by
construction of functional integral systems for unknown functions and for their derivatives
with respect to spatial variables. This method was initiated in [7] for nonlinear systems with-
out functional variables. Differential inequalities and suitable comparison results for infinite
systems of hyperbolic functional differential inequalities are given in [13,19].

Information on applications of functional differential equations can be found in [12,24].
The monograph [10] contains results on differentiability with respect to initial functions for
solutions of ordinary functional differential equations.

The paper is organized as follows. In Sect. 2 we transform the generalized Cauchy problem
into a system of integral functional equations. This system is solved in Sect. 3 by the method
of successive approximations. As a consequence we obtain a theorem on the existence of
solution to (1), (2) an on continuous dependence of solutions on initial functions.

A theorem on the differentiability of solutions with respect to initial functions is presented
in Sect. 4. It is the main result of the paper.

Two types of assumptions are needed in theorems on the existence of solutions to initial
or initial boundary value problems related to hyperbolic functional differential systems. The
first type conditions concern the bicharacteristics. The second type assumptions concern the

123



382 Z. Kamont

regularity of given functions. The authors of the papers [2–4,8,9,11,18,22] have assumed
that the partial derivatives of given functions satisfy the Lipschitz condition with respect to
all variables except for t . These conditions are global. Our assumptions on the regularity
of given functions are more general. We assume that the partial derivatives of F satisfy the
Lipschitz condition and suitable estimates are local with respect to all variables. It is clear
that there are differential systems with deviated variables and differential integral systems
such that local estimates hold and global inequalities are not satisfied.

Motivations for investigations of functional differential systems with two functional vari-
ables are given in Remark 2.4. We give examples of functional differential systems which
can be derived from (1) be specializing the operator F .

Example 1.1 Suppose that G : E × l∞ × l∞ × R
n → S, G = {Gk}k∈N, is a given function

and F is defined by

F(t, x, v, w, q) = G(t, x, v(0, 0[n]), w(0, 0[n]), q) on �. (3)

Then (1) reduces to the system of differential equations with deviated variables

∂t zk(t, x) = Gk(t, x, z(t, x), z(ϕ(t, x)), ∂x zk(t, x)), k ∈ N. (4)

Example 1.2 Suppose that b0 > 0 and that there is M̄ ∈ R
n+ such that M(t) = M̄t for

t ∈ [0, a]. Then E is the classical Haar pyramid

E = {(t, x) ∈ R
1+n : t ∈ [0, a], −b + M̄t ≤ x ≤ b − M̄t}. (5)

Set M−(t) = −b + M̄t and M+(t) = b − M̄t for t ∈ [−b0, 0]. Then

E0 = {(t, x) ∈ R
1+n : t ∈ [−b0, 0], −b + M̄t ≤ x ≤ b − M̄t}. (6)

Suppose that 0 < ν < μ ≤ b0 and 0[n] < h ≤ M̄ν. For the above G we put

F(t, x, v, w, q) = G

⎛
⎝t, x,

h∫

−h

v(−μ, y) dy, w(0, 0[n]), q

⎞
⎠ on �. (7)

Then (1) reduces to the differential integral system

∂t zk(t, x) = G

⎛
⎝t, x,

x+h∫

x−h

z(t − μ, y) dy, z(ϕ(t, x)), ∂x zk(t, x)

⎞
⎠ , k ∈ N. (8)

It is clear that more complicated examples of differential functional systems can be derived
from (1).

2 Integral functional equations

Let L([τ, t],Rn+), [τ, t] ⊂ R, be the class of all ω : [τ, t] → R
n+ which are integrable on

[τ, t]. For x ∈ R
n , x = (x1, . . . , xn), we put ‖x‖ = |x1| + . . . + |xn |. We use the symbol

“◦” to denote the scalar product in R
n . We denote by Mn×n be the class of all n × n matrices

with real elements. For A ∈ Mn×n where A = [ai j ]i, j=1,...,n we put

‖A‖n×n = max

⎧⎨
⎩

n∑
j=1

|ai j | : 1 ≤ i ≤ n

⎫⎬
⎭ .
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Let M∞×n be the class of all real matrices B = [bi j ]i∈N, 1≤ j≤n with the finite norm

‖B‖∞×n = sup

⎧⎨
⎩

n∑
j=1

|bi j | : i ∈ N

⎫⎬
⎭ .

We will use the symbol M∞×∞to denote the set of real matrices C = [ci j ]i, j∈N with the
finite norm:

‖C‖∞×∞ = sup

⎧⎨
⎩

∞∑
j=1

|ci j | : i ∈ N

⎫⎬
⎭ .

For the above B ∈ M∞×n and C ∈ M∞×∞ we write b[i] = (bi1, . . . , bin), and c[i] =
(ci1, ci2, . . .), i ∈ N.

We will denote by C L(B,R) the class of all linear and continuous operators defined
on C(B,R) and taking values in R. The norm in the space C L(B,R) generated by the
maximum norm in C(B,R) will be denoted by ‖ · ‖�. Let C L(B,M∞×∞) be the class of
all 
 = [
i j ]i, j∈N such that

‖
‖∞×∞;� = sup{‖
[i]‖∞;� : i ∈ N} < +∞,

where

‖
[i]‖∞;� =
∞∑
j=1

‖
i j‖�, 
[i] = (
i1, 
i2, . . .) for i ∈ N.

Now we define some function spaces. Given c̄ = (c0, c1, c2) ∈ R
3+, we denote by X the set

of all ψ = {ψk}k∈N such that for each k ∈ N we have

(i) ψk ∈ C(E0.k,R), the derivatives ∂xψk = (∂x1ψk, . . . , ∂xnψk) exist on E0.k and ∂xψk ∈
C(E0.k,R

n),
(ii) the estimates

|ψk(t, x)| ≤ c0, ‖∂xψk(t, x)‖ ≤ c1,

‖∂xψk(t, x)− ∂xψk(t, x̄)‖ ≤ c2‖x − x̄‖
are satisfied on E0.k .

Let ψ ∈ X, ψ = {ψk}k∈N, be given and κ < c ≤ a. We denote by Cψ.c the class of all
z ∈ C(Ec, l∞), z = {zk}k∈N, such that zk(t, x) = ψk(t, x) on E0.k for k ∈ N. For the above
ψ and κ < c ≤ a we denote by C∂ψk .c, k ∈ N, the class of all ϑ ∈ C(Ec,R

n) such that
ϑ(t, x) = ∂xψk(t, x) on E0.k .

Write�I = [−b, b]×C(B, l∞)×C(B, l∞)×R
n and�t = St ×C(B, l∞)×C(B, l∞)×

R
n , t ∈ [0, a].

Assumption H0[F]. The function F : � → S satisfies the condition (V) and

1. for each (x, v, w, q) ∈ �I the function F : ( ·, x, v, w, q) : I [x] → S is measurable and
there is α ∈ L([0, a],R+) such that

‖F(t, x, θ, θ, 0[n])‖∞ ≤ α(t) on E

where θ ∈ C(B, l∞) is given by θ(τ, s) = 0l∞ and 0l∞ is the zero in the space l∞,
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384 Z. Kamont

2. for each P = (t, x, v, w, q) ∈ � there exist the derivatives

∂x F(P) = [∂x j Fi (P)]i∈N,1≤ j≤n, ∂q F(P) = [∂q j Fi (P)]i∈N,1≤ j≤n,

and the functions ∂x F( ·, x, v, w, q), ∂q F( ·, x, v, w, q) : I [x] → M∞×n are measurable
and the functions ∂x F(t, ·), ∂q F(t, ·) : �t → M∞×n are continuous,

3. for each P = (t, x, v, w, q) ∈ � there exist the Frechét derivatives

∂vF(P) = [∂v j Fi (P)]i, j∈N, ∂wF(P) = [∂w j Fi (P)]i, j∈N,

and for each w̃ ∈ C(B,R) we have

∂vF( ·, x, v, w, q)w̃, ∂q F( ·, x, v, w, q)w̃ : I [x] → M∞×∞ are measurable

and

∂vF(t, ·)w̃, ∂wF(t, ·)w̃ : �I → M∞×∞ are continuous

where

∂vF(P)w̃ = [∂v j Fi (P)w̃]i, j∈N, ∂wF(P)w̃ = [∂w j Fi (P)w̃]i, j∈N,

4. there are β ∈ L([0, a],R+) and L ∈ L([0, a],Rn+), L = (L1, . . . , Ln), such that for
P = (t, x, v, w, q) ∈ � we have

‖∂x F(P)‖∞×n ≤ β(t), ‖∂vF(P)‖∞×∞;� ≤ β(t), ‖∂wF(P)‖∞×∞;� ≤ β(t),

and

(|∂q1 Fk(P)|, . . . , |∂qn Fk(P)|) ≤ L(t), k ∈ N,

and for t ∈ [0, a] we have

M(t) =
t∫

0

L(ξ) dξ.

Assumption H [ϕ]. The functions φ0 : [0, a] → R, φ : E → R
n , φ = (φ1, . . . , φn), are

continuous and

1. 0 ≤ φ0 ≤ t for t ∈ [0, a] and ϕ(t, x) = (φ0(t), φ(t, x)) ∈ E ,
2. there exist the derivatives

∂xφ(t, x) = [∂x jφi (t, x)]i, j=1,...,n

and ∂xφ ∈ C(E,Mn×n),
3. the constant Q0 ∈ R+ is defined by the relation ‖∂xφ(t, x)‖n×n ≤ Q0 for (t, x) ∈ E and

there is Q ∈ R+ such that

‖∂xφ(t, x)− ∂xφ(t, x̄)‖n×n ≤ Q on E .

Suppose that Assumptions H0[F], H [ϕ] are satisfied and ψ ∈ X, z ∈ Cψ.c, u ∈
C(Ec,M∞×∞) where κ < c ≤ a and

z = {zk}k∈N, u = [ui j ]i∈N,1≤ j≤n,

u[i] = (ui1, . . . , uin), u[i] ∈ C∂ψi .c for i ∈ N.
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Differentiability with respect to initial functions 385

Write S[z, u[k]](τ, x) = (τ, x, z(τ,x), zϕ(t,x), u[k](τ, x)), k ∈ N. We consider the Cauchy
problem

ω′(τ ) = −∂q Fk(S[z, u[k]](τ, ω(τ))), ω(t) = x, (9)

where (t, x) ∈ E , ak ≤ t ≤ a and ∂q Fk = (∂q1 Fk, . . . , ∂qn Fk). Let us denote by
g[k][z, u[k]]( · , t, x) the solution of (9). The function g[k][z, u[k]]( · , t, x) is the k-th bichar-
actersitic of (1) corresponding to (z, u). Write

u(t,x) = [(ui j )(t,x)]i∈N,1≤ j≤n,

(u[k])(t,x) = ((uk1)(t,x), . . . , (ukn)(t,x)), k ∈ N,

and P[z, u[k]](τ, t, x) = S[z, u[k]](τ, g[k][z, u[k]](τ, t, x)), k ∈ N. For P ∈ � and for

w̃ ∈ C(B, l∞), w̃ = {w̃k}k∈N, W̃ ∈ C(B,M∞×n), W̃ = [w̃i j ]i∈N,1≤ j≤n,

we put

∂vFk(p)  w̃ =
∞∑
j=1

∂v j Fk(P)w̃ j ,

∂vFk(P) � W̃ =
⎡
⎣

∞∑
j=1

∂v j Fk(P)w̃ j1, . . . ,

∞∑
j=1

∂v j Fk(P)w̃ jn

⎤
⎦ ,

where k ∈ N. In similar way we define the expressions ∂wFk(P)  w̃, ∂wFk(P) � W̃ for
k ∈ N. Let us denote by F[z, u] = {Fk[z, u]}k∈N the function defined in the following way:

Fk[z, u](t, x) = ψk(t, x) on E0.k

and

Fk[z, u](t, x) = ψk(ak, g[k][z, u[k]](ak, t, x))+
t∫

ak

Fk(P[z, u[k]](τ, t, x)) dτ

−
t∫

ak

∂q Fk(P[z, u[k]](τ, t, x))  u[k](τ, g[k][z, u[k]](τ, t, x)) dτ on E ∩ ([ak, c] × R
n).

Moreover we put

G[z, u] = {Gi j [z, u]}i∈N,1≤ j≤n,

G[k][z, u] = (Gk1[z, u], . . . ,Gkn[z, u]), k ∈ N,

where

G[k][z, u](t, x) = ∂xψk(t, x) on E0.k

and

G[k][z, u](t, x) = ∂xψk(ak, g[k][z, u[k]](ak, t, x))+
t∫

ak

∂x Fk(P[z, u[k]](τ, t, x)) dτ
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+
t∫

ak

∂vFk(P[z, u[k]](τ, t, x)) � u(τ,g[k][z,u[k]](τ,t,x)) dτ

+
t∫

ak

∂wFk(P[z, u[k]](τ, t, x)) �
[
uϕ(τ,g[k][z,u[k]](τ,t,x))∂xφ(τ, g[k][z, u[k]](τ, t, x))

]
dτ

on E∩([ak, c]×R
n).The functions uϕ(τ,y)∂xφ(τ, y) : B → M∞×n , y = g[k][z, u[k]](τ, t, s),

are defined by

uϕ(τ,y)∂xφ(τ, y) =
⎡
⎣

n∑
μ=1

(uiμ)ϕ(τ,y)∂x jφμ(τ, y)

⎤
⎦

i∈N,1≤ j≤n

.

We consider the system of functional integral equations

z = F[z, u], u = G[z, u]. (10)

We show that under natural assumptions on given functions there exists a solution
(z̄, ū) : Ec → l∞ × M∞×n of (10) and there exist the derivatives ∂x z̄k = (∂x1 z̄k, . . . , ∂xn z̄k),
k ∈ N, and ū[k] = ∂x z̄k for k ∈ N.

We first give estimates of solutions to (10). For z ∈ C(Ec, l∞), ϑ ∈ C(Ec,R
n), u ∈

C(Ec,M∞×n) we define the seminorms

‖z‖(t,l∞) = max{‖z(τ, s)‖∞ : (τ, s) ∈ Et },
‖ϑ‖(t,Rn) = max{‖ϑ(τ, s)‖∞ : (τ, s) ∈ Et },
‖v‖(t,M∞×n) = max{‖u(τ, s)‖∞×n : (τ, s) ∈ Et },

where t ∈ [0, c].

Lemma 2.1 Suppose that Assumptions H0[F], H [ϕ] are satisfied and

1. ψ ∈ X and κ < c ≤ a,
2. the functions z̄ : Ec → l∞, ū : Ec → M∞×n satisfy (10) and z̄ ∈ C(Ec, l∞), ū ∈

C(Ec,M∞×n).

Then

‖z̄‖(t,l∞) ≤ ζ(t), ‖ū‖(t,M∞×n) ≤ χ(t) for t ∈ [0, c],
where

χ(t) = c1 exp

⎧⎨
⎩(1 + Q0)

t∫

0

β(ξ) dξ

⎫⎬
⎭ +

t∫

0

β(ξ) exp

⎧⎪⎨
⎪⎩
(1 + Q0)

t∫

ξ

β(τ ) dτ

⎫⎪⎬
⎪⎭

dξ,

ζ(t) = c0 exp

⎧⎨
⎩2

t∫

0

β(ξ) dξ

⎫⎬
⎭ +

t∫

0

γ̄ (ξ) exp

⎧⎪⎨
⎪⎩

2

t∫

ξ

β(τ ) dτ

⎫⎪⎬
⎪⎭

dξ,

γ̄ (t) = α(t)+ (β(t)+ ‖L(t)‖)χ(t).
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Proof Write ζ̄ (t) = ‖z̄‖(t,l∞), χ̄ (t) = ‖ū‖(t,M∞×n), t ∈ [0, c]. It follows from Assumptions
H0[F] and H [ϕ] that the (ζ̄ , χ̄) satisfy the integral inequalities

ζ̄ (t) ≤ c0 +
t∫

0

α(ξ) dξ + 2

t∫

0

β(ξ)ζ̄ (ξ) dξ +
t∫

0

(β(ξ)+ ‖L(ξ)‖)χ̄(ξ) dξ,

χ̄(t) ≤ c1 +
t∫

0

β(ξ) dξ + (1 + Q0)

t∫

0

β(ξ)χ̄(ξ) dξ, t ∈ [0, c].

The functions (ζ, χ) satisfy the integral equations corresponding to the above inequalities.
This proves the lemma.

Suppose that ψ ∈ X, κ < c ≤ a and d0, r0 ∈ R+ and d0 ≥ c1, r0 ≥ c2. We denote by
Cψ.c[ζ, d0] the class of all z ∈ Cψ.c such that

‖z‖(t,l∞) ≤ ζ(t) for t ∈ [0, a]
and

|zk(t, x)− zk(t, x̄)| ≤ d0‖x − x̄‖ for (t, x), (t, x̄) ∈ E ∩ ([ak, a] × R
n), k ∈ N.

Let C∂ψk .c[χ, r0], k ∈ N, be the class of all ϑ ∈ C∂ψk .c satisfying the conditions:

‖ϑ‖(t,Rn) ≤ χ(t) for t ∈ [ak, c]
and

‖ϑ(t, x)− ϑ(t, x̄)‖ ≤ r0‖x − x̄‖ on E ∩ ([ak, c] × R
n).

Write d = ζ(a), r = χ(a) and �[d, r ] = E × KC(B,l∞)[d] × KC(B,l∞)[d] × KRn [r ] where
KC(B,l∞)[d] = {w ∈ C(B, l∞) : ‖w‖B ≤ d}, KRn [r ] = {q ∈ R

n : ‖q‖ ≤ r}.
Assumption H�[F]. The function f : � → S satisfies Assumption H0[F] and there is
γ ∈ L([0, a],R+) such that the terms

‖∂x F(t, x, v, w, q)− ∂x F(t, x̄, v̄, w̄, q̄)‖∞×n, ‖∂q F(t, x, v, w, q)

−∂q F(t, x̄, v̄, w̄, q̄)‖∞×n

and

‖∂vF(t, x, v, w, q)− ∂vF(t, x̄, v̄, w̄, q̄)‖∞×∞;�, ‖∂wF(t, x, v, w, q)

−∂wF(t, x̄, v̄, w̄, q̄)‖∞×∞;�
are bounded from above by γ (t)[‖x − x̄‖ + ‖v− v̄‖B + ‖w− w̄‖B + ‖q − q̄‖] on �[d, r ].
Remark 2.2 It is important in our considerations that we have assumed the Lipschitz con-
dition for ∂x F , ∂vF , ∂wF , ∂q F with respect to (x, v, w, q) and the estimates are local with
respect to all variables. It is clear that there are differential systems with deviated variables
and differential integral systems such that local estimates hold and global inequalities are not
satisfied.

Lemma 2.3 Suppose that Assumptions H�[F], H [ϕ] are satisfied and κ < c ≤ a and

ψ, ψ̄ ∈ X, z ∈ Cψ.c[ζ, d0], z̄ ∈ Cψ̄.c[ζ, d0],
u, ū ∈ C(Ec,M∞×n), u = [ui j ]i∈N,1≤ j≤n, ū = [ūi j ]i∈N,1≤ j≤n,

u[i] = (ui1, . . . , uin), ū[i] = (ūi1, . . . , ūin), i ∈ N,

and u[i] ∈ C∂ψi .c[χ, r0], ū[i] ∈ C∂ψ̄i .c[χ, r0] for i ∈ N.
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388 Z. Kamont

Then for each k ∈ N we have:

(i) the bicharacteristics g[k][z, u[k]]( · , t, x) and g[k][z̄, ū[k]]( · , t, x), (t, x) ∈ E∩([ak, c]×
R

n), exist on intervals [ak,�[z, u[k]](t, x)] and [ak,�[z̄, ū[k]](t, x)] such that for
τ = �[z, u[k]](t, x), τ̄ = �[z̄, ū[k]](t, x) we have (τ, g[k][z, u[k]](τ, t, x)) ∈ ∂Ec,
(τ̄ , g[k][z̄, ū[k]](τ̄ , t, x)) ∈ ∂Ec, where ∂Ec is the boundary of Ec,

(ii) for each k ∈ N the solution of (9) is unique and we have the estimates

‖g[k][z, u[k]](τ, t, x)− g[k][z, u[k]](τ, t̄, x̄)‖

≤
⎡
⎢⎣‖x − x̄‖ +

∣∣∣∣∣∣∣

t̄∫

t

‖L(ξ)‖ dξ

∣∣∣∣∣∣∣

⎤
⎥⎦ exp

⎧⎨
⎩C̄

∣∣∣∣∣∣

t∫

τ

γ (ξ) dξ

∣∣∣∣∣∣

⎫⎬
⎭ , (11)

and

‖g[k][z, u[k]](τ, t, x)− g[k][z̄, ū[k]](τ, t, x)‖

≤
∣∣∣∣∣∣

t∫

τ

γ (ξ)[2‖z − z̄‖(ξ,l∞) + ‖u[k] − ū[k]‖(ξ,Rn)] dξ

∣∣∣∣∣∣
exp

⎧⎨
⎩C̄

∣∣∣∣∣∣

τ∫

t

γ (ξ) dξ

∣∣∣∣∣∣

⎫⎬
⎭, (12)

where (t, x), (t̄, x̄) ∈ E ∩ ([ak, c] × R
n) and C̄ = 1 + d0(1 + Q0)+ r0.

Proof The local existence and uniqueness of the solution to (9) follows from classical theo-
rems on Carethéodory solutions of ordinary differential equations. Suppose that [t0, t] is the
interval on which the bicharacteristic g[k][z, u[k]]( · , t, x) is defined. Then

−L(τ ) ≤ d

dτ
g[k][z, u[k]](τ, t, x) ≤ L(τ ), τ ∈ [t0, t],

and consequently

−b + M(τ ) ≤ g[k][z, u[k]](τ, t, x) ≤ b − M(τ ), τ ∈ [t0, t].
We conclude that (τ, g[k][z, u[k]](τ, t, x)) ∈ Ec for τ ∈ [t0, t] and the bicharacteristic
g[k][z, u[k]]( · , t, x) is defined on [ak, t] and the assertion (i) follows.

Now we prove that for each k ∈ N the function g[k][z, u[k]]( · , t, x)− g[k][z, u[k]]( · , t̄, x̄)
satisfies a linear integral inequality. Note that the functions z(τ,y) and z(τ,ȳ) where
(τ, y), (τ, ȳ) ∈ E ∩ ([0, c]×R

n), y �= ȳ, have different domains. Hence we need the follow-
ing construction. Write B� = [−b0, c] × [−2b + 2b−, 2b + 2b+]. There is z� ∈ C(B�, l∞)
such that

(i) z�(t, x) = z(t, x) on Ec and ‖(z�)(t,x)‖B ≤ d on E ∩ ([0, c] × R
n),

(ii) ‖z�(t, x)− z�(t, x̄)‖∞ ≤ d0‖x − x̄‖ on E ∩ ([0, c] × R
n).

Then the functions (z�)(τ,y) and (z�)(τ,ȳ) where (τ, y), (τ, ȳ) ∈ E ∩ ([0, c]×R
n) are defined

on B. It follows form (9) that

g[k][z, u[k]](τ, t, x)− g[k][z, u[k]](τ, t̄, x̄) = x − x̄

+
t∫

τ

∂q Fk(P[z�, u[k]](ξ, t, x)) dξ −
t̄∫

τ

∂q Fk(P[z�, u[k]](ξ, t̄, x̄)) dξ
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and consequently

‖g[k][z, u[k]](τ, t, x)− g[k][z, u[k]](τ, t̄, x̄)‖

≤‖x − x̄‖+

∣∣∣∣∣∣∣

t̄∫

t

‖L(ξ)‖ dξ

∣∣∣∣∣∣∣
+C̄

∣∣∣∣∣∣

t∫

τ

γ (ξ)‖g[k][z, u[k]](ξ, t, x)− g[k][z, u[k]](ξ, t̄, x̄)‖dξ

∣∣∣∣∣∣
.

From the Gronwall inequality we deduce (11). It follows from Assumptions H [ϕ], H0[F]
and from (9) that

‖g[k][z, u[k]](τ, t, x)− g[k][z̄, ū[k]](τ, t, x)‖

≤
∣∣∣∣∣∣

t∫

τ

γ (ξ)[2‖z − z̄‖(ξ,l∞) + ‖u[k] − ū[k]‖(ξ,Rn)] dξ

∣∣∣∣∣∣

+C̄

∣∣∣∣∣∣

t∫

τ

γ (ξ)‖g[k][z, u[k]](ξ, t, x)− g[k][z̄, ū[k]](ξ, t, x)‖ dξ

∣∣∣∣∣∣
.

Then we obtain (12) form the Gronwall inequality.

Remark 2.4 Set �̄ = E × C(B, l∞)× R
n and suppose that F̄ : �̄ → S, F̄ = {F̄k}k∈N, is a

given function of the variables (t, x, v, q). Let us consider the functional differential system

∂t zk(t, x) = F̄k(t, x, z(t,x), ∂x zk(t, x)), k ∈ N, (13)

which is a particular case of (1).
There are the following motivation for investigations of (1), (2) instead of (13), (2). Differ-

ential equations with deviated variables are obtained from (13) in the following way. Suppose
that G : E × l∞ × l∞ × R

n → S, G = {Gk}k∈N, is a given function. Write

F̄(t, x, v, q) = G(t, x, v(0, 0[n]), v(ϕ(t, x)− (t, x)), q). (14)

Then system (13) is equivalent to (4).
Note that Assumption H0[F] is not satisfied in this case for F̄ given by (14). More

precisely, the derivatives

∂x F̄(t, x, v, q) = [∂x j F̄i (t, x, v, q)]i∈N,1≤ j≤n (15)

do not exist on �̄. It is clear that under natural assumptions on G the function F given by (3)
satisfies Assumption H0[F].

Let us consider the second example. Suppose that E and E0 are given by (5) and (6)
respectively. For the above G we put

F̄(t, x, v, q) = G(t, x,

h∫

−h

v(μ, y) dy, v(ϕ(t, x)− (t, x)), q) on �̄. (16)

Then system (13) is equivalent to (8). Note that Assumption H0[F] is not satisfied for F̄
given by (16) because the derivatives (15) do not exist on �̄. It is clear that under natural
assumptions on G the function F given by (7) satisfies Assumption H0[F].

With the above motivation we have considered problem (1), (2).
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390 Z. Kamont

3 Existence of solutions to initial problems

For ψ ∈ X, ψ = {ψk}k∈N, we put

‖ψk‖E0.k = max{|ψk(t, x)| : (t, x) ∈ E0.k},
‖∂xψk‖E0.k = max{‖∂xψk(t, x)‖ : (t, x) ∈ E0.k}

where k ∈ N and

‖ψ‖X = sup{‖ψk‖E0.k + ‖∂xψk‖E0.k : k ∈ N}.
Write

�̂(t) = c1 + (1 + d0 + d0 Q0)

t∫

0

β(ξ) dξ + rC̄

t∫

0

γ (ξ) dξ + 2r0

t∫

0

‖L(ξ)‖ dξ,

�(t) = �̂(t) exp

⎡
⎣C̄

t∫

0

γ (ξ) dξ

⎤
⎦ ,

�(t) =
⎧⎨
⎩c2 + B0

t∫

0

γ (ξ) dξ + B1

t∫

0

β(ξ) dξ

⎫⎬
⎭ exp

⎡
⎣C̄

t∫

0

γ (ξ) dξ

⎤
⎦ ,

B0 = C̄(1 + r + r Q0), B1 = r0 + r0 Q2
0 + r Q.

Assumption H [F]. The function F : � → S satisfies Assumption H�[F] and the constant
c ∈ (κ, a] is small enough to satisfy the conditions

�(c) ≤ d0, �(c) ≤ r0. (17)

Remark 3.1 If we assume that d0 > c1 and r0 > c2 then there is c ∈ (0, a] such that
condition (17) is satisfied.

Theorem 3.2 If Assumption H [ϕ], H [F] are satisfied andψ ∈ X then there exists a solution
ẑ : Ec → l∞ to (1), (2) and

‖ẑ‖(t,l∞) ≤ d, ‖∂x ẑ‖(t,M∞×n) ≤ r for t ∈ [0, c], (18)

and

‖∂x ẑ(t, x)− ∂x ẑ(t, x̄)‖∞×n ≤ r0‖x − x̄‖ on Ec. (19)

If ψ̃ ∈ X, ψ̃ = {ψ̃k}k∈N, and z̃ : Ec → l∞ is a solution to (1) with the initial conditions

zk(t, x) = ψ̃k(t, x) on E0.k for k ∈ N, (20)

then

‖ẑ − z̃‖(t,l∞) + ‖∂x ẑ − ∂x z̃‖(t,M∞×n) ≤ ‖ψ − ψ̃‖X exp

⎡
⎣

t∫

0

��(τ) dτ

⎤
⎦ , t ∈ [0, c], (21)

where

��(τ) = B�γ (τ )+ 2β(τ)+ 2‖L(τ )‖, B� = 2[�(c)+�(c)+ 1 + r + r Q0].
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Proof We have divided the proof into a sequence of steps. We use a method of successive
approximations.
I. We consider the sequences {z(m)} and {u(m)} where

z(m) : Ec → l∞, u(m) : Ec → M∞×n,

z(m) = {z(m)k }k∈N, u(m) = {u(m)[k] }k∈N, u(m)[k] = (u(m)k1 , . . . , u(m)kn ), k ∈ N.

We put first

z(0)k (t, x) = ψk(t, x) on E0.k and z(0)k = ψk(ak, x) on E ∩ ([ak, c] × R
n) for k ∈ N,

and

u(0)k (t, x) = ∂xψk(ak, x) on E ∩ ([ak, c] × R
n) for k ∈ N.

If z(m) : Ec → l∞ and u(m) : Ec → M∞×n are known functions then for each k ∈ N the
function u(m+1)

[k] is a solution of the equation

ϑ(t, x) = G
(m)
k [ϑ](t, x) (22)

where ϑ = (ϑ1, . . . , ϑn) and G
(m)
k [ϑ] = (G

(m)
k1 [ϑ], . . . ,G(m)kn [ϑ]) and G

(m)
k [ϑ] is defined by

G
(m)
k [ϑ](t, x) = ∂xψk(t, x) on E0.k

and

G
(m)
k [ϑ](t, x) = ∂xψk(ak, g[k][z(m), ϑ](ak, t, x))

+
t∫

ak

∂x Fk(P[z(m), ϑ](τ, t, x)) dτ+
t∫

ak

∂vFk(P[z(m), ϑ](τ, t, x)) � u(m)
(τ,g[k][z(m),ϑ](τ,t,x)) dτ

+
t∫

ak

∂wFk(P[z(m), ϑ](τ, t, x)) � [u(m)
ϕ(τ,g[k][z(m),ϑ](τ,t,x))∂xφ(τ, g[k][z(m), ϑ](τ, t, x))] dτ

(23)

on E ∩ ([ak, c] × R
n). The function z(m+1) is given by

z(m+1)(t, x) = F[z(m), u(m+1)](t, x) on Ec. (24)

II. We prove that
(Am) the sequences {z(m)} and {u(m)} are defined on Ec and for m ≥ 0 we have

z(m) ∈ Cψ.c[ζ, d0], u(m)k ∈ C∂ψk .c[χ, r0] for k ∈ N,

(Bm) there are λ, λ0 ∈ L([0, c],R+) such that for any m ≥ 0 we have

‖z(m)(t, x)−z(m)(t̃, x)‖∞ ≤

∣∣∣∣∣∣∣

t̃∫

t

λ0(τ ) dτ

∣∣∣∣∣∣∣
, ‖u(m)(t, x)−u(m)(t̃, x)‖∞×n ≤

∣∣∣∣∣∣∣

t̃∫

t

λ(τ) dτ

∣∣∣∣∣∣∣
,

where (t, x), (t̃, x) ∈ Ec, 0 ≤ t, t̃ ≤ c,
(Cm) there exists the sequence {∂x z(m)} and for m ≥ 0 we have: ∂x z(m)(t, x) = u(m)(t, x)
on Ec.
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We prove (Am)− (Cm) by induction. It is clear that conditions (A0)− (C0) are satisfied.
Supposed now that (Am) − (Cm) hold for a given m ≥ 0, we will prove that there exists
u(m+1) : Ec → M∞×n and u(m+1)

[k] ∈ C∂ψk .c[χ, r0] for k ∈ N. We first prove that

G
(m)
k : C∂ψk .c[χ, r0] → C∂ψk .c[χ, r0], k ∈ N. (25)

It follows from Assumptions H [ϕ] and H [F] that for ϑ ∈ C∂ψk .c[χ, r0], k ∈ N, we have

‖G
(m)
k [ϑ](t, x)‖ ≤ c1 + (1 + Q0)

t∫

0

β(ξ)χ(ξ) dξ +
t∫

0

β(ξ) dξ = χ(t)

and

‖G
(m)
k [ϑ](t, x)− G

(m)
k [ϑ](t, x̃)‖ ≤ �(t)‖x − x̃‖ ≤ r0‖x − x̃‖ on Ec ∩ ([ak, c] × R

n).

From the above estimates we deduce (25). It follows easily that for ϑ, ϑ̃ ∈ C∂ψk .c[χ, r0] we
have

‖G
(m)
k [ϑ](t, x)− G

(m)
k [ϑ̃](t, x)‖ ≤ �(c)

t∫

ak

γ (ξ)‖ϑ − ϑ̃‖(ξ,Rn) dξ on E ∩ ([ak, c] × R
n).

For the above ϑ, ϑ̃ we put

[|ϑ − ϑ̃ |] = max

⎧⎨
⎩‖ϑ − ϑ̃‖(t,Rn) exp

⎡
⎣−2�(c)

t∫

ak

γ (ξ) dξ

⎤
⎦ : t ∈ [ak, c]

⎫⎬
⎭ .

We deduce from Assumption H [F] that

[|G(m)k [ϑ] − G
(m)
k [ϑ̃]|] ≤ 1

2
[|ϑ − ϑ̃ |].

It follows from the Banach fixed point theorem that for each k ∈ N there exists exactly one
solution of Eq. (22). Then there exists u(m+1) : Ec → M∞×n and u(m+1)

k ∈ C∂ψk .c[χ, r0]
for k ∈ N.

We deduce from Assumption H [ϕ], H [F] and from (24) that

‖z(m+1)‖(t,∞) ≤ c0 +
t∫

0

α(τ) dτ + 2

t∫

0

β(τ)ζ(τ ) dτ + 2

t∫

0

‖L(τ )‖χ(τ) dτ = ζ(t)

where t ∈ [0, c] and

|z(m+1)
k (t, x)− z(m+1)

k (t, x̃)| ≤ �(t)‖x − x̃‖ on E ∩ ([ak, c] × R
n).

The above relations and Assumption H [c] show that z(m+1) ∈ Cψ.c[ζ, d0].
An easy computation shows that condition (Bm+1) is satisfied with

λ0(τ ) = (�(c)+ 2r)‖L(τ )‖ + 2dβ(τ)+ α(τ),

λ(τ) = �(c)‖L(τ )‖ + (1 + r + r Q0)β(τ), τ ∈ [0, c].
Now we prove (Cm+1). Write

Dk(t, x, y) = z(m+1)
k (t, y)− z(m+1)

k (t, x)− u(m+1)
[k] (t, x) ◦ (y − x), k ∈ N,
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where (t, x), (t, y) ∈ E ∩ ([ak, c] × R
n). We prove that there is C� ∈ R+ such that

|Dk(t, x, y)| ≤ C�‖x − y‖2, k ∈ N. (26)

Set g(m)[k] (τ, t, x) = g[k][z(m), u(m+1)
[k] ](τ, t, x). Then we have

Dk(t, x, y) = Fk[z(m), u(m+1)](t, y)− F[z(m), u(m+1)](t, x)− G[k][u(m+1)
[k] ](t, x) ◦ (y − x)

= ψk(ak, g(m)[k] (ak, t, y))− ψk(ak, g(m)[k] (ak, t, x))

+
t∫

ak

[Fk(P[z(m), u(m+1)
[k] ](τ, t, y))− Fk(P[z(m), u(m+1)

[k] ](τ, t, x))] dτ

−
t∫

ak

∂q Fk(P[z(m), u(m+1)
[k] ](τ, t, y)) ◦ u(m+1)

[k] (τ, g(m)[k] (τ, t, y)) dτ

+
t∫

ak

∂q Fk(P[z(m), u(m+1)
[k] ](τ, t, x)) ◦ u(m+1)

[k] (τ, g(m)[k] (τ, t, x)) dτ

− G[k][u(m+1)
[k] ](t, x) ◦ (y − x), k ∈ N.

We transform the above expressions in the following way. We apply the Hadamard mean
value theorem to the differences

Fk(P[z(m), u(m+1)
[k] ](τ, t, y))− Fk(P[z(m), u(m+1)

[k] ](τ, t, x)), k ∈ N,

and we denote by

Q(m)(ξ, τ, t, x, y) = ξ P[z(m), u(m+1)
[k] ](τ, t, y)

+(1 − ξ)P[z(m), u(m+1)
[k] ](τ, t, x), ξ ∈ [0, 1], k ∈ N,

suitable intermediate points. Let us denote by Dk.0(t, x, y), Dk.1(t, x, y), Dk.2(t, x, y),
Dk.3(t, x, y) the expressions defined by

Dk.0(t, x, y) = ψk(ak, g(m)[k] (ak, t, y))− ψk(ak, g(m)[k] (ak, t, x))

− ∂xψk(ak, g(m)[k] (ak, t, x)) ◦ [g(m)[k] (ak, t, y)− g(m)[k] (ak, t, x)],

Dk.1(t, x, y) =
t∫

ak

1∫

0

[
∂x Fk(Q

(m)(ξ, τ, t, x, y))

− ∂x Fk(P[z(m), u(m+1)
[k] ](τ, t, x))

]
◦ [g(m)[k] (τ, t, y)− g(m)[k] (τ, t, x)] dξ dτ

+
t∫

ak

1∫

0

[∂vFk(Q
(m)(ξ, τ, t, x, y))− ∂vFk(P[z(m), u(m+1)

[k] ](τ, t, x))]

�

[
z(m)
(τ,g(m)[k] (τ,t,y))

− z(m)
(τ,g(m)[k] (τ,t,x))

]
dξ dτ

+
t∫

ak

1∫

0

[∂wFk(Q
(m)(ξ, τ, t, x, y))− ∂wFk(P[z(m), u(m+1)

[k] ](τ, t, x))]
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�

[
z(m)
ϕ(τ,g(m)[k] (τ,t,y))

− z(m)
ϕ(τ,g(m)[k] (τ,t,x))

]
dξ dτ

+
t∫

ak

1∫

0

[∂q Fk(Q
(m)(ξ, τ, t, x, y))− ∂q Fk(P[z(m), u(m+1)

[k] ](τ, t, x))]

◦[u(m+1)
[k] (τ, g(m)[k] (τ, t, y))− u(m+1)

[k] (τ, g(m)[k] (τ, t, x))] dξ dτ

and

Dk.2(t, x, y) =
t∫

ak

∂vFk(P[z(m), u(m+1)
[k] ](τ, t, x)) �

[
z(m)
(τ,g(m)[k] (τ,t,y))

− z(m)
(τ,g(m)[k] (τ,t,x))

− (u(m))
(τ,g(m)[k] (τ,t,x))

(g(m)[k] (τ, t, y)− g(m)[k] (τ, t, x))T
]

dτ

+
t∫

ak

∂wFk(P[z(m), u(m+1)
[k] ](τ, t, x)) �

[
z(m)
ϕ(τ,g(m)[k] (τ,t,y))

− z(m)
ϕ(τ,g(m)[k] (τ,t,x))

− (u(m))
ϕ(τ,g(m)[k] (τ,t,x))

∂xφ(τ, g(m)[k] (τ, t, x))(g(m)[k] (τ, t, y)− g(m)[k] (τ, t, x))T
]

dτ.

Moreover we set

Dk.3(t, x, y) = ∂xψk(ak, g(m)[k] (ak, t, x)) ◦ [[g(m)[k] (ak, t, y)− g(m)[k] (ak, t, x)] − (y − x)]

+
t∫

ak

[∂q Fk(P[z(m), u(m+1)
[k] ](τ, t, x))− ∂q Fk(P[z(m), u(m+1)

[k] ](τ, t, y))] ◦ u(m+1)
[k]

×(τ, g(m)[k] (τ, t, y)) dτ

+
t∫

ak

∂x Fk(P[z(m), u(m+1)
[k] ](τ, t, x)) ◦ [[g(m)[k] (τ, t, y)− g(m)[k] (τ, t, x)] − (y − x)] dτ

+
t∫

ak

∂vFk(P[z(m), u(m+1)
[k] ](τ, t, x)) � (u(m))

(τ,g(m)[k] (τ,t,x))
] ◦ [[g(m)[k] (τ, t, y)

− g(m)[k] (τ, t, x)] − (y − x)] dτ

+
t∫

ak

{∂wFk(P[z(m), u(m+1)
[k] ](τ, t, x)) � [(u(m))

ϕ(τ,g(m)[k] (τ,t,x))
∂xφ(τ, g(m)[k] (τ, t, x))]}

◦[[g(m)[k] (τ, t, y)− g(m)[k] (τ, t, x)] − (y − x)] dτ.

We put k ∈ N in the above definitions. Then we have

Dk(t, x, y) = Dk.0(t, x, y)+ Dk.1(t, x, y)+ Dk.2(t, x, y)+ Dk.3(t, x, y), k ∈ N. (27)

Since ψ ∈ X, there is C0 ∈ R+ such that

|Dk.0(t, x, y)| ≤ C0‖x − y‖2, k ∈ N, (28)
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where (t, x), (t, y) ∈ E ∩ ([ak, c] × R
n). It is easily seen that

|Dk.1(t, x, y)| ≤ C1‖x − y‖2, k ∈ N, (29)

where

C1 = (c̃C̄)2
c∫

0

γ (ξ) dξ, c̃ = exp

⎡
⎣C̄

c∫

0

γ (ξ) dξ

⎤
⎦ .

It follows from (Cm) that there is c� ∈ R+ such that

|z(m)k (t, y)− z(m)k (t, x)− u(m)[k] (t, x) ◦ (y − x)| ≤ c�‖x − y‖2, (30)

where (t, x), (t, y) ∈ E ∩ ([ak, c] × R
n).We conclude from Assumptions H [F], H [ϕ] and

from (11), (30) that there is C2 ∈ R+ such that

|Dk.2(t, x, y)| ≤ C2‖x − y‖2, k ∈ N, (31)

where (t, x), (t, y) ∈ E ∩ ([ak, c] × R
n).

We transform the expressions Dk.3(t, x, y), k ∈ N, in the following way. Write

Vk(ξ, τ, t, x, y) =
{
∂x Fk(P[z(m), u(m+1)

[k] ](τ, t, x))

+ ∂vFk(P[z(m), u(m+1)
[k] ](τ, t, x)) � (u(m))

(τ,g(m)[k] (τ,t,x))

+ ∂wFk(P[z(m), u(m+1)
[k] ](τ, t, x)) � [(u(m))

(τ,g(m)[k] (τ,t,x))
∂xφ(τ, g(m)[k] (τ, t, x))]

}

◦[∂q Fk(P[z(m), u(m+1)
[k] ](ξ, t, y))− ∂q Fk(P[z(m), u(m+1)

[k] ](ξ, t, x))]
and

Wk(ξ, t, x) = ∂xψk(ak , g(m)[k] (ak , t, x))

+
ξ∫

ak

[∂x Fk(P[z(m), u(m+1)
[k] ](τ, t, x))+ ∂vFk(P[z(m), u(m+1)

[k] ](τ, t, x))

�(u(m))
(τ,g(m)[k] (τ,t,x))

] dτ

+
ξ∫

ak

∂wFk(P[z(m), u(m+1)
[k] ](τ, t, x)) � [(u(m))

(τ,g(m)[k] (τ,t,x))
∂xφ(τ, g(m)[k] (τ, t, x))] dτ, k ∈N,

and

Dk.4(t, x, y) =
t∫

ak

t∫

τ

Vk(ξ, τ, t, x, y) dξ dτ

+∂xψk(ak, g(m)[k] (ak, t, x)) ◦
t∫

ak

[∂q Fk(P[z(m), u(m+1)
[k] ](ξ, t, y))

−∂q Fk(P[z(m), u(m+1)
[k] ](ξ, t, x))] dξ (32)
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where k ∈ N. Then we have

t∫

ak

t∫

τ

Vk(ξ, τ, t, x, y) dξ dτ =
t∫

ak

ξ∫

ak

Vk(ξ, τ, t, x, y) dτ dξ

and consequently

Dk.4(t, x, y)

=
t∫

ak

Wk(ξ, t, x) ◦ [∂q Fk(P[z(m), u(m+1)
[k] ](ξ, t, y))−∂q Fk(P[z(m), u(m+1)

[k] ](ξ, t, x))] dξ.

(33)

It is clear that the bicharacteristics satisfy the relations

g(m)[k] (τ, ξ, g(m)[k] (ξ, t, x)) = g(m)[k] (τ, t, x), k ∈ N,

where (t, x) ∈ E ∩ ([ak, c] × R
n). This gives

u(m+1)
[k] (ξ, g(m)[k] (ξ, t, x)) = Wk(ξ, t, x), k ∈ N.

We conclude from (32), (33) that

Dk.3(t, x, y) =
t∫

ak

[
∂q Fk(P[z(m), u(m+1)

[k] ](τ, t, x))

−∂q Fk(P[z(m), u(m+1)
[k] ](τ, t, y))

]
◦ [u(m+1)

[k] (τ, g(m)[k] (τ, t, y))

−u(m+1)
[k] (τ, g(m)[k] (τ, t, x))] dτ, k ∈ N.

Hence, there is C3 ∈ R+ such that

|Dk.3(t, x, y)| ≤ C3‖x − y‖2, k ∈ N, (34)

where (t, x), (t, y) ∈ E ∩ ([ak, c] × R
n).

It follows from (27)–(29), (31), (34) that estimates (26) are satisfied with C� = C0 +C1 +
C2 + C3. Hence, for each k ∈ N there exists ∂x z(m+1)(t, x) for (t, x) ∈ E ∩ ([ak, c] × R

n)

and ∂x z(m+1) = u(m+1)
[k] . This proves (Cm+1). Thus (Am)− (Cm) follow by induction.

III. Now we prove that the sequences {z(m)} and {u(m)} are uniformly convergent on Ec. It
follows from Assumptions H [F], H [ϕ] and from (23) that there areϒ0, ϒ1 ∈ L([0, c],R+)
such that

‖u(m+1)
[k] − u(m)[k] ‖(t,Rn) ≤

t∫

0

ϒ0(τ )‖u(m+1)
[k] − u(m)[k] ‖(τ,Rn) dτ

t∫

0

ϒ1(τ )[‖z(m) − z(m−1)‖(τ,Rn) + ‖u(m) − u(m−1)‖(τ,M∞×n)] dτ, k ∈ N.
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By using the Gronwall inequality we get

‖u(m+1)
[k] − u(m)[k] ‖(t,Rn)

≤ exp

⎡
⎣

t∫

0

ϒ0(τ ) dτ

⎤
⎦

t∫

0

ϒ1(τ )[‖z(m) − z(m−1)‖(τ,Rn) + ‖u(m) − u(m−1)‖(τ,M∞×n)] dτ,

(35)

where k ∈ N. We conclude from (10) and from Assumption H [F], H [ϕ] that there is
ϒ2 ∈ L([0, c],R+) such that

‖z(m+1) − z(m)‖(t,l∞)

≤
t∫

0

ϒ2(τ )[‖z(m) − z(m−1)‖(τ,l∞) + ‖u(m+1) − u(m)‖(τ,M∞×n)] dτ. (36)

Write

K (m)(t) = ‖z(m+1) − z(m)‖(t,l∞) + ‖u(m+1)
[k] − u(m)[k] ‖(t,Rn), t ∈ [0, c].

We deduce from (35), (36) that there is ϒ ∈ L([0, c],R+) such that

K (m)(t) ≤
t∫

0

ϒ(τ)K (m−1)(τ ) dτ, m ≥ 1.

Set

[|K (m)|] = max

⎧⎨
⎩K (m)(t) exp

⎡
⎣−2

t∫

0

ϒ(τ) dτ

⎤
⎦ : t ∈ [0, c]

⎫⎬
⎭ .

Then we have

K (m)(t) ≤ [|K (m−1)|]
t∫

0

ϒ(τ) exp

⎡
⎣2

τ∫

0

ϒ(ξ) dξ

⎤
⎦ dτ

≤ [|K (m−1)|] exp

⎡
⎣2

t∫

0

ϒ(τ) dτ

⎤
⎦

and consequently

[|K (m)|] ≤ 1

2
[|K (m−1)|] for m ≥ 1.

Then limm→∞[|K (m)|] = 0 and consequently there are the limits

z̃(t, x) = lim
m→∞ z(m)(t, x), ũ(t, x) = lim

m→∞ u(m)(t, x) uniformly on Ec,

where z̃ = {z̃k}k∈N, ũ = [ũi j ]i∈N, 1≤ j≤n and ũ[k] = (ũk1, . . . , ũkn) for k ∈ N.

It follows from (Cm) that there exist the derivatives ∂x z̃, k ∈ N and ∂x z̃k = ũ[k] for k ∈ N.
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IV. Now we prove that z̃ : Ec → S is a solution to (1), (2). Write g̃[k](·, t, x) =
g[k][z̃, ∂x z̃](·, t, x), (t, x) ∈ E ∩ ([ak, c] × R

n), k ∈ N. It follows from (III) that
z̃k(t, x) = ψk(t, x) on E0.k for k ∈ N and

∂t z̃k(t, x) = ψk(ak, g̃[k](ak, t, x))+
t∫

ak

Fk(P[z̃, ∂x z̃k](τ, t, x)) dτ

−
t∫

ak

∂q Fk(P[z̃, ∂x z̃k](τ, t, x))) ◦ ∂x z̃k(τ, g̃[k](τ, t, x)) dτ, (37)

where (t, x) ∈ E ∩ ([ak, c] × R
n), k ∈ N. Suppose that k ∈ N is fixed. For given (t, x) ∈

E ∩ ([ak, c]×R
n), let us put y = g̃[k](ak, t, x). It follows that the relations x = g̃[k](t, ak, y)

and y = g̃[k](ak, t, x) are equivalent. We conclude from (37) that

z̃k(t, g̃[k](t, ak, x)) = ψk(ak, y)

+
t∫

ak

Fk(T̃k(τ, y)) dτ −
t∫

ak

∂q Fk(T̃k(τ, y)) ◦ ∂x z̃k(τ, g̃[k](τ, ak, y)) dτ (38)

where

T̃k(τ, y) = (τ, g̃[k](τ, ak , y), z̃(τ,g̃[k](τ,ak ,y)), z̃ϕ(τ,g̃[k](τ,ak ,y)), ∂x z̃k(τ, g̃[k](τ, ak, y))).

By differentiating (38) with respect to t and by putting again x = g̃[k](t, ak, y), we obtain
that z̃ is a weak solution of (1), (2).

V. It follows form (Am)−(Cm) that the sequences {z(m)} and {∂x z(m)} satisfy the conditions

‖z(m)‖(t,l∞) ≤ d, ‖∂x z(m)‖(t,M∞×n) ≤ r

and

‖∂x z(m)(t, x)− ∂x z(m)(t, x̄)‖(t,M∞×n) ≤ r0‖x − x̄‖
where m ∈ N, (t, x), (t, x̄) ∈ Ec. From the above inequalities we obtain in the limit, letting
m tend to ∞, estimates (18), (19).

VI. Now we prove (21). It follows from Assumption H [F] that

‖ẑ − z̃‖(t,l∞) + ‖∂x ẑ(m) − ∂x z̃(m)‖(t,M∞×n)

≤ ‖ψ − ψ̃‖X +
t∫

0

��(τ)[‖ẑ − z̃‖(τ,l∞) + ‖∂x ẑ(m) − ∂x z̃(m)‖(τ,M∞×n)] dτ, t ∈ [0, c].

Then we obtain (21) from the Gronwall inequality. This completes the proof of the theorem.

4 The main result

Suppose that Assumptions H [ϕ], H [F] are satisfied and ψ ∈ X. Let us denote by 
[ψ] the
solution to (1), (2). It follows from Theorem 3.2 that 
[ψ] exists on Ec and it is unique.
Then we have: 
 : X → C(Ec, l∞). We will denote by Y the class of all ψ ∈ X satisfying
the conditions:
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sup {‖ψk‖ E0.k : k ∈ N} < c0, sup {‖∂xψk‖E0.k : k ∈ N} < c1,

sup

{
1

‖x − x̄‖‖∂xψk(t, x)− ∂xψk(t, x̄)‖ : (t, x), (t, x̄) ∈ E0.k, x �= x̄, k ∈ N

}
< c1.

We prove that for each ψ ∈ Y there exists the Fréchet derivative ∂
[ψ] of 
 at the point
ψ . Moreover, if ψ ∈ Y, π ∈ X and z̄ = ∂
[ψ]π then z̄ is a solution of a linear system of
integral functional equations generated by (1), (2).

Suppose that Assumptions H [ϕ], H [F] are satisfied. Write

ζ̂ (t) = c0 exp

⎡
⎣2

t∫

0

β(τ) dτ

⎤
⎦ ,

ϑ̂(t) = d̂

⎧⎨
⎩exp

⎡
⎣d̂

t∫

0

β(τ) dτ

⎤
⎦ +

t∫

0

γ (μ) exp

⎡
⎣d̂

t∫

μ

β(τ) dτ

⎤
⎦ dμ

⎫⎬
⎭ ,

where t ∈ [0, c] and

Ĉ = ζ̂ (c), d̂ = exp

⎡
⎣C̄

c∫

0

γ (τ) dτ

⎤
⎦ max{c1, 2c̄Ĉ, 1 + Q0}. (39)

Suppose that π ∈ X, π = {πk}k∈N. Let us denote by Cπ.c[ζ̂ , ϑ̂] the class of all z : Ec → l∞,
z = {zk}k∈N, satisfying the conditions:

(i) z ∈ C(Ec, l∞) and zk(t, x) = πk(t, x) for (t, x) ∈ E0.k and k ∈ N,
(ii) ‖z‖(t,l∞) ≤ ζ̂ (t) for t ∈ [0, c] and

sup

{
1

‖x − x̄‖ ‖z(τ, x)−z(τ, x̄)‖∞ : (τ, x), (τ, x̄) ∈ Ec, τ ≤ t

}
≤ ϑ̂(t) for t ∈[0, c].

In this section we denote by z(· ;ψ) = {zk(· ;ψ)}k∈N the solution to (1), (2). Let us consider
the Cauchy problem

ω′(τ )=−∂q Fk
(
τ, ω(τ), (z(· ;ψ))(τ,ω(τ)), (z(· ;ψ))ϕ(τ,ω(τ)), ∂x z(τ, ω(τ);ψ)), ω(t)= x,

(40)

where (t, x) ∈ E ∩ ([ak, c] × R
n
)

and k ∈ N. The solution to (40) will be denote by
g[k][ψ](· , t, x). If Assumptions H [ϕ], H [F] are satisfied and ψ ∈ X then for each k ∈ N

the solution g[k][ψ](· , t, x) is defined on [ak, t]. For k ∈ N we put

Tk[ψ](τ, t, x)

= (
τ, g[k][ψ](τ, t, x), (z(· ;ψ))(τ,g[k][ψ](τ,t,x)), (z(· ;ψ))ϕ(τ,g[k][ψ](τ,t,x)),

×∂x z(τ, g[k][ψ](τ, t, x);ψ)).

Suppose that π ∈ X, π = {πk}k∈N, and z ∈ Cπ.c[ζ̂ , ϑ̂], z = {zk}k∈N. Let us denote by
W [z] = {Wk[z]}k∈N the function defined by

Wk[z](t, x) = πk(t, x) for (t, x) ∈ E0.k (41)
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and

Wk[z](t, x) = πk(ak, g[k][ψ](ak, t, x))+
t∫

ak

∂vFk
(
Tk[ψ](τ, t, x)

)  z(τ,g[k][ψ](τ,t,x)) dτ

+
t∫

ak

∂wFk
(
Tk[ψ](τ, t, x)

)  zϕ(τ,g[k][ψ](τ,t,x)) dτ for (t, x) ∈ E ∩ ([ak, c] × R
n), (42)

where k ∈ N. We consider the linear system of integral functional equations

z = W [z]. (43)

Lemma 4.1 Suppose that Assumptions H [ϕ], H [F] are satisfied and π ∈ X. Then there
exists exactly one solution z̄ : Ec → l∞ of (43) and

‖z̄‖∞ ≤ Ĉ on Ec, (44)

‖z̄(t, x)− z̄(t, x̄)‖∞ ≤ L̂‖x − x̄‖ on Ec (45)

where Ĉ is given by (39) and L̂ = ϑ̂(c).

Proof We prove that

W : Cπ.c[ζ̂ , ϑ̂] → Cπ.c[ζ̂ , ϑ̂]. (46)

It follows from Assumptions H [ϕ], H [F] that for z ∈ Cπ.c[ζ̂ , ϑ̂], (t, x) ∈ Ec, τ ≤ t , we
have

|Wk[z](τ, x)| ≤ c0 + 2

t∫

0

β(μ) ζ̂ (μ) dμ = ζ̂ (t)

and consequently

‖W [z]‖(t,l∞) ≤ ζ̂ (t) for t ∈ [0, c]. (47)

For the above z and for (τ, x), (τ, x̄) ∈ Ec, τ ≤ t , we have

|Wk[z](τ, x)− Wk[z](τ, x̄)| ≤ d̂

⎡
⎣1 +

t∫

0

γ (μ) dμ+
t∫

0

β(μ) ϑ̂(μ) dμ

⎤
⎦ ‖x − x̄‖

= ϑ̂(t)‖x − x̄‖, k ∈ N.

This gives

‖W [z](τ, x)− W [z](τ, x̄)‖∞ ≤ ϑ̂(t)‖x − x̄‖, (48)

where (τ, x), (τ, x̄) ∈ Ec, τ ≤ t . From (47), (48) we deduce (46).
For z, z� ∈ Cπ.c[ζ̂ , ϑ̂] and for k ∈ N we have

Wk[z](t, x)− Wk[z�](t, x) = 0 on E0.k, (49)

and

|Wk[z](t, x)− Wk[z�](t, x)| ≤ 2

t∫

0

β(τ) ‖z − z�‖(τ,l∞) dτ on E ∩ ([ak, c] × R
n). (50)
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Write

[|z − z�|] = max

⎧⎨
⎩‖z − z�‖(τ,l∞) exp

⎡
⎣−4

t∫

0

β(τ) dτ

⎤
⎦ : t ∈ [0, c]

⎫⎬
⎭ .

It follows from (49), (50) that for z, z� ∈ Cπ.c[ζ̂ , ϑ̂] we have

[|W [z] − W [z�]|] ≤ 1

2
[|z − z�|].

From the Banach fixed point theorem we deduce that there is exactly one solution z̄ ∈
Cπ.c[ζ̂ , ϑ̂] of (43). We conclude from (46) that conditions (44), (45) are satisfied. This
completes the proof.

Theorem 4.2 Suppose that Assumptions H [ϕ], H [F] are satisfied. Then

1. for each ψ ∈ Y there exists the Fréchet derivative ∂
[ψ],
2. ifψ ∈ Y, π ∈ X and z̄ = ∂
[ψ]π , z̄ = {z̄k}k∈N, then z̄ is a solution to (43) with W given

by (41), (42).

Proof The proof will be divided into three steps.
I. Let ψ ∈ Y and π ∈ X be fixed. There is ε0 > 0 such that for ξ ∈ I0 = (−ε0, ε0) we have
ψ + ξπ ∈ X. Let �ξ : Ec → l∞, ξ ∈ I0, ξ �= 0, be defined by

�ξ = {
�ξ.k

}
k∈N

, �ξ.k(t, x) = 1

ξ

[
zk(t, x;ψ + ξπ)− zk(t, x;ψ)], k ∈ N.

It follows from Lemma 4.1 that there is exactly one solution z̄ = {z̄k}k∈N to (43), z̄ ∈
C(Ec, l∞) and z̄ satisfies (44), (45). We prove that

lim
ξ→0

‖�ξ(t, x)− z̄(t, x)‖∞ = 0 uniformly on Ec. (51)

II. It follows from Theorem 3.2 that for k ∈ N, ξ ∈ I0, ξ �= 0 we have

∂t�ξ.k(t, x)

= 1

ξ

{
Fk

(
t, x, (z(· ;ψ + ξπ))(t,x), (z(· ;ψ + ξπ))ϕ(t,x), ∂x zk(t, x;ψ + ξπ)

)

−Fk
(
t, x, (z(· ;ψ))(t,x), (z(· ;ψ))ϕ(t,x), ∂x zk(t, x;ψ)) on E ∩ ([ak, c] × R

n), (52)

and

�ξ.k(t, x) = πk(t, x) on E0.k . (53)

Set

Qk(t, x;ψ) = (
t, x, (z(· ;ψ))(t,x), (z(· ;ψ))ϕ(t,x), ∂x zk(t, x;ψ)), k ∈ N,

and

�k[ψ,π](t, x; ξ, η) = (1 − η)Qk(t, x;ψ)+ ηQk(t, x;ψ + ξπ), k ∈ N,
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where η ∈ [0, 1]. Then we obtain from (52) that

∂t�ξ.k(t, x) =
1∫

0

∂vFk(�k[ψ,π](t, x; ξ, η))  (�ξ )(t,x) dη

+
1∫

0

∂wFk(�k[ψ,π ](t, x; ξ, η))  (�ξ )ϕ(t,x) dη

+
1∫

0

∂q Fk(�k[ψ,π](t, x; ξ, η)) ◦ ∂x�ξ.k(t, x) dη, (t, x) ∈ E ∩ ([ak, c] × R
n), (54)

where k ∈ N. Let us denote by g[k][ψ,π; ξ ](· , t, x) the solution of the Cauchy problem

ω′(τ ) = −
1∫

0

∂q Fk(�k[ψ,π](τ, ω(τ); ξ, η)) dη, ω(t) = x,

where (t, x) ∈ E ∩ ([ak, c] × R
n
)
. Write

Qk[ψ,π; ξ, η](τ, t, x) = �k[ψ,π](τ, g[k][ψ,π; ξ ](τ, t, x); ξ, η), k ∈ N.

It follows from (54) that �ξ satisfies relations

�ξ.k(t, x) = πk(ak, g[k][ψ,π; ξ ](ak , t, x))

+
t∫

ak

1∫

0

∂vFk
(
Qk[ψ,π; ξ, η](τ, t, x)

)  (�ξ )(τ,g[k][ψ,π;ξ ](τ,t,x)) dη dτ

+
t∫

ak

1∫

0

∂wFk
(
Qk[ψ,π; ξ, η](τ, t, x)

)  (�ξ )ϕ(τ,g[k][ψ,π;ξ ](τ,t,x)) dη dτ (55)

where (t, x) ∈ E ∩ ([ak, c] × R
n
)

and k ∈ N.
III. We construct an integral functional inequality for �ξ − z̄. Write

Ak(t, x) = πk(ak, g[k][ψ,π; ξ ](ak , t, x))− πk(ak, g[k][ψ](ak, t, x)),

Bk(t, x) =
t∫

0

1∫

0

∂vFk
(
Qk[ψ,π; ξ, η](τ, t, x)

)  (
�ξ − z̄

)
(τ,g[k][ψ,π;ξ ](τ,t,x)) dη dτ

+
t∫

0

1∫

0

∂wFk
(
Qk[ψ,π; ξ, η](τ, t, x)

)  (
�ξ − z̄

)
ϕ(τ,g[k][ψ,π;ξ ](τ,t,x)) dη dτ
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and

Ck(t, x) =
t∫

ak

1∫

0

∂vFk
(
Qk[ψ,π; ξ, η](τ, t, x)

)  [z̄(τ,g[k][ψ,π;ξ ](τ,t,x))

× − z̄(τ,g[k][ψ](τ,t,x))] dη dτ

+
t∫

ak

1∫

0

∂wFk
(
Qk[ψ,π; ξ, η](τ, t, x)

)  [z̄ϕ(τ,g[k][ψ,π;ξ ](τ,t,x)) − z̄ϕ(τ,g[k][ψ](τ,t,x))] dη dτ,

Dk(t, x) =
t∫

ak

1∫

0

[
∂vFk

(
Qk[ψ,π; ξ, η](τ, t, x)

) − ∂vFk
(
Tk[ψ](τ, t, x)

)]

×  z̄(τ,g[k][ψ](τ,t,x)) dη dτ

+
t∫

ak

1∫

0

[
∂wFk

(
Qk[ψ,π; ξ, η](τ, t, x)

)−∂wFk
(
Tk[ψ](τ, t, x)

)]  z̄ϕ(τ,g[k][ψ](τ,t,x)) dη dτ

where k ∈ N. Then we have

�ξ.k(t, x)− z̄k(t, x) = Ak(t, x)+ Bk(t, x)+ Ck(t, x)+ Dk(t, x), k ∈ N. (56)

It follows from Assumption H [F] and from (21) that

‖g[k][ψ,π; ξ ](τ, t, x)− g[k][ψ](τ, t, x)‖

≤ C̄

∣∣∣∣∣∣

t∫

τ

γ (μ)‖g[k][ψ,π; ξ ](μ, t, x)− g[k][ψ](μ, t, x)‖ dμ

∣∣∣∣∣∣
+ |ξ |A�, k ∈ N,

where

A� = 3‖π‖X exp

⎡
⎣

c∫

0

��(τ) dτ

⎤
⎦

c∫

0

γ (τ) dτ.

This gives

‖g[k][ψ,π; ξ ](τ, t, x)− g[k][ψ](τ, t, x)‖ ≤ |ξ | Â, k ∈ N, (57)

where

Â = A� exp

⎡
⎣C̄

c∫

0

γ (τ) dτ

⎤
⎦ ,

and consequently
∣∣Ak(t, x)

∣∣ ≤ c1 Â|ξ |, k ∈ N. (58)

It is clear that

∣∣Bk(t, x)
∣∣ ≤ 2

t∫

0

β(τ)‖�ξ − z̄‖(τ,l∞) dτ, k ∈ N. (59)
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We conclude from Assumption H [F] and from (45) that

∣∣Ck(t, x)
∣∣ ≤ L̂(1 + Q0)

t∫

ak

β(τ)‖g[k][ψ,π; ξ ](τ, t, x)− g[k][ψ](τ, t, x)‖ dτ

≤ |ξ |L̂(1 + Q0)

c∫

0

β(τ) dτ Â, k ∈ N. (60)

It follows from Assumption H [F] and from (21) that the expressions
t∫

ak

1∫

0

∥∥∂vFk
(
Qk[ψ,π; ξ, η](τ, t, x)

) − ∂vFk
(
Tk[ψ](τ, t, x)

)∥∥∞;� dη dτ,

t∫

ak

1∫

0

∥∥∂wFk
(
Qk[ψ,π; ξ, η](τ, t, x)

) − ∂wFk
(
Tk[ψ](τ, t, x)

)∥∥∞;� dη dτ, k ∈ N,

can be estimated from above by

C̄

t∫

ak

γ (τ)‖g[k][ψ,π; ξ ](τ, t, x)− g[k][ψ](τ, t, x)‖ dτ + |ξ |B̂, k ∈ N,

where

B̂ = 3

c∫

0

γ (τ) dτ ‖π‖X exp

⎡
⎣

c∫

0

��(τ) dτ

⎤
⎦ .

We conclude from the above relations and from (44), (57) that
∣∣Dk(t, x)

∣∣ ≤ |ξ |D̂, k ∈ N, (61)

where

D̂ = 2Ĉ

⎡
⎣C̄ Â

c∫

0

γ (τ) dτ + B̂

⎤
⎦ .

It follows from (56) and (58)–(61) that there is Q̂ ∈ R+ such that

∥∥�ξ − z̄
∥∥
(t,l∞) ≤ |ξ |Q̂ + 2

c∫

0

β(τ)
∥∥�ξ − z̄

∥∥
(τ,l∞) dτ, t ∈ [0, c].

By the Gronwall inequality we obtain

∥∥�ξ − z̄
∥∥
(t,l∞) ≤ |ξ |Q̂ exp

⎡
⎣2

c∫

0

β(τ) dτ

⎤
⎦ , t ∈ [0, c].

This completes the proof of (51).
The assertion of the theorem follows from (51).

Remark 4.3 It is easy to see that Theorems 3.2 and 4.2 can be applied to problems (4), (2)
and (8), (2).
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