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Abstract We study two Kadec-Klee properties with respect to coordinatewise conver-
gence and with respect to uniform convergence. We shall give full criteria for these proper-
ties in Calderón-Lozanovskiı̆ sequence spaces. In particular, we obtain the characterizations
of Kadec-Klee properties in Orlicz-Lorentz spaces, which have not been known in such
generality until now.
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1 Introduction

The Kadec-Klee properties play important role in the theory of Banach function spaces
(see [5,11,17]). The Calderón-Lozanovskiı̆ spaces are one of important classes of Banach
lattices, especially due to their application in the interpolation theory. Geometry of
Calderón-Lozanovskiı̆ spaces has been deeply studied recently (see for example [3,7–
10,12,14]).

The complete characterization of Kadec-Klee properties with respect to local (global) con-
vergence in measure Hl (Hg) for Orlicz function spaces Lϕ has been presented in [6] and later
generalized in [13] to the case of Calderón-Lozanovskiı̆ function spaces Eϕ . Here we con-
sider the respective sequence case. Some partial results concerning Kadec-Klee property with
respect to pointwise convergence in generalized Calderón-Lozanovskiı̆ and Orlicz-Lorentz
sequence spaces have been presented in [7] and [2]. We present full characterizations of
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46 P. Kolwicz

Kadec-Klee properties with respect to pointwise convergence (with respect to uniform con-
vergence) in Calderón-Lozanovskiı̆ sequence spaces. In particular we obtain the respective
criteria for these properties in Orlicz-Lorentz sequence spaces.

2 Preliminaries

Let R, R+, N be the sets of real, nonnegative real and positive integer numbers, respectively.
As usual S(X) (resp. B(X)) stands for the unit sphere (resp. the closed unit ball) of a real
Banach space (X, ‖·‖X ).

Let (N, 2N, m) be the counting measure space and l0 = l0(m) be the linear space of all
real sequences.

Let E = (E,≤, ‖·‖E ) be a Banach sequence lattice over the measure space (N, 2N, m),
that is E is a Banach space being a subspace of l0 endowed with the natural coordinatewise
semi-order relation, and E satisfies the conditions:

(i) if x ∈ E, y ∈ l0, |y| ≤ |x | , i.e. |y(i)| ≤ |x(i)| for every i ∈ N, then y ∈ E and
‖y‖E ≤ ‖x‖E ,

(ii) there exists a sequence x in E that is positive on the whole N (see [11] and [17]). Banach
sequence lattices are often called Köthe sequence spaces.

The symbol ei = (0, . . . , 0, 1, 0, . . .) stands for the i th unit vector. The set E+ = {x ∈
E : x ≥ 0} is called the positive cone of E . For any subset A ⊂ E define A+ = A ∩ E+.

A point x ∈ E is said to have order continuous norm if for any sequence (xm) in E such
that 0 ≤ xm ≤ |x | and xm → 0 pointwisely we have ‖xm‖E → 0. A Köthe sequence space E
is called order continuous (E ∈ (OC)) if every element of E has an order continuous norm
(see [11] and [17]).

Recall that E is said to have Kadec-Klee property (E ∈ (K K ) for short) whenever
‖xn − x‖ → 0 for any x and (xn) in E satisfying xn → x in the weak topology σ(E, E∗) and
‖xn‖ → ‖x‖ (see [17]). This property, also called the Radon-Riesz property or property H ,
has been considered in many classes of Banach spaces (see [1,2,5,7,15]). If we consider E
more generally over σ−finite and complete measure space (T, �,μ) and we replace the

weak convergence σ(E, E∗) by the convergence in measure (xn
μ→ x), by the convergence

in measure on every set of finite measure (xn
μ→ x locally) or by the uniform convergence

(xn ⇒ x), then we say that E has the Kadec-Klee property with respect to convergence in
measure, local convergence in measure or uniform convergence, respectively (we shall write
E ∈ (Hg), E ∈ (Hl), E ∈ (Hu)). Clearly, E ∈ (Hl) ⇒ E ∈ (Hg) ⇒ E ∈ (Hu). Moreover,
the converse of any of these implications is not true in general (see [13]). If (T, �,μ) is a
counting measure space (N, 2N, m) then:

(i) E ∈ (Hl) if and only if E ∈ (Hc) that means E has the Kadec-Klee property with
respect to pointwise convergence.

(ii) E ∈ (Hg) if and only if E ∈ (Hu).

In the whole paper ϕ denotes an Orlicz function, i.e. ϕ : R → [0,∞], it is convex, even,
vanishing and continuous at zero, left continuous on (0,∞) and not identically equal to zero.
Denote

aϕ = sup {u ≥ 0 : ϕ (u) = 0} and bϕ = sup{u ≥ 0 : ϕ (u) < ∞}.
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Kadec-Klee properties of Calderón-Lozanovskiı̆ sequence spaces 47

We write ϕ > 0 when aϕ = 0 and ϕ < ∞ if bϕ = ∞. Let ϕr = ϕχGϕ , where

Gϕ =
{[

aϕ, bϕ

]
if ϕ

(
bϕ

)
< ∞,[

aϕ, bϕ

)
otherwise.

(1)

Define on L0 a convex semimodular Iϕ by

Iϕ(x) =
{ ‖ϕ ◦ x‖E if ϕ ◦ x ∈ E,

∞ otherwise,

where (ϕ ◦ x)(t) = ϕ(x(t)), t ∈ T . By the Calderón-Lozanovskiı̆ space Eϕ we mean

Eϕ = {x ∈ L0 : Iϕ(cx) < ∞ for some c > 0}
equipped with so called Luxemburg-Nakano norm defined by

‖x‖ϕ = inf{λ > 0 : Iϕ (x/λ) ≤ 1}.
We generally assume that if bϕ < ∞, then aϕ < bϕ, because when 0 < aϕ = bϕ, then
Eϕ = L∞ and ‖x‖ϕ = 1

bϕ
‖x‖∞ .

If E = L1(E = l1), then Eϕ is the Orlicz function (sequence) space equipped with the
Luxemburg norm. If E = �ω (the Lorentz function space) or E = λω (the Lorentz sequence
space), then Eϕ is the corresponding Orlicz-Lorentz function (sequence) space denoted by
(�ω)ϕ ((λω)ϕ) and equipped with the Luxemburg norm (see [8,12]).

We will assume in the whole paper that E has the Fatou property, that is, if
0 ≤ xn ↑ x ∈ L0 with (xn)∞n=1 in E and supn ‖xn‖E < ∞, then x ∈ E and ‖x‖E =
limn ‖xn‖E . Since E has the Fatou property, Eϕ has also this property, whence Eϕ is a
Banach space.

We say an Orlicz function ϕ satisfies condition 	2(0) (resp. 	2(∞)) if there exist K > 0
and u0 > 0 such that ϕ(u0) > 0 (resp. ϕ(u0) < ∞) and the inequality ϕ(2u) � Kϕ(u) holds
for all u ∈ [0, u0](resp. u ∈ [u0,∞)). If there exists K > 0 such that ϕ(2u) � Kϕ(u) for
all u � 0, then we say that ϕ satisfies condition 	2(R+). We write for short ϕ ∈ 	2(0), ϕ ∈
	2(∞), ϕ ∈ 	2(R+), respectively.

For a Köthe space E and an Orlicz function ϕ we say that ϕ satisfies condition 	E
2 (ϕ ∈ 	E

2
for short) if:

1. ϕ ∈ 	2(0) whenever E ↪→ L∞;
2. ϕ ∈ 	2(∞) whenever L∞ ↪→ E;
3. ϕ ∈ 	2(R+) whenever neither L∞ ↪→ E nor E ↪→ L∞ (see [8]),

where the symbol E ↪→ F stands for the continuous embedding of the space E into the
space F.

Relationships between the modular Iϕ and the norm ‖·‖ϕ are collected in [12].

3 Results

3.1 Calderón-Lozanovskiı̆ sequence spaces

The property Hc.

We will need in the sequel the following refining of Corollary 12 from [14].

Lemma 1 Suppose that E is a Köthe sequence space. Then Eϕ ∈ (OC) if and only if:
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48 P. Kolwicz

(a) E ∈ (OC).

(b) ϕ ∈ 	E
2 .

Proof Necessity. First, we prove that

(+) aϕ = 0 whenever E ↪→ l∞ or l∞ �↪→ E .

Assume that E ↪→ l∞ and aϕ > 0. Then m = infn ‖en‖E > 0. Taking x = aϕχN and
xn = aϕχ{en}, we get xn → 0 pointwisely, Iϕ(2xn) = ϕ(2aϕ) ‖en‖E ≥ ϕ(2aϕ)m > 0,

whence ‖xn‖ϕ � 0. Thus Eϕ /∈ (OC).

Suppose that l∞ �↪→ E and aϕ > 0. Then χN /∈ E and putting x = aϕχN and xn = aϕχAn ,

where An = {n, n + 1, . . .}, we conclude that Eϕ /∈ (OC).

Next, note that if Eϕ ∈ (OC) and ϕ(bϕ) < ∞, then E ↪→ c0 ↪→ l∞ (see the proof
of Corollary 12 from [14]). Consequently (a) and (b) in Corollary 12 from [14] means
that if Eϕ ∈ (OC), then E ∈ (OC). Thus E ↪→ c0{‖en‖}. Thus, by (+), we may apply
Lemma 2.9 from [12] and Theorem 2.4 from [7] to obtain that ϕ ∈ 	E

2 . The sufficiency is
done by Corollary 12 from [14]. ��
Lemma 2 [13, Lemma 8] If ϕ ∈ 	2(∞), then for any a > 0 there are σ ∈ (0, 1] and
u1 > aϕ + a such that

inf
v∈(0,a)

inf
u≥u1

ϕ(u − v)

ϕ(u) − ϕ(v)
≥ σ.

Theorem 3 The Calderón-Lozanovskiı̆ sequence space Eϕ ∈ (Hc) if and only if:

(a) If E ↪→ l∞, then ϕ(bϕ) inf i ‖ei‖E ≥ 1.

(b) ϕ ∈ 	E
2 .

(c) E ∈ (Hc).

Proof The sufficiency has been proved in [7, Theorem 4.4] but under general assumption
that ϕ < ∞. However, recall that, if E ↪→ l∞ and ϕ ∈ 	2(0) then, for any x ∈ Eϕ, the equiv-
alence Iϕ(x) = 1 ⇔ ‖x‖ϕ = 1 holds if and only if ϕ(bϕ) inf i ‖ei‖e ≥ 1 (Lemma 1.4(ii)
from [12]). Thus the proof can be done as in [7, Theorem 4.4] with small changes when
E ↪→ l∞, ϕ ∈ 	2 (0) and bϕ < ∞. Formally we need also apply 2.9 from [12].

The necessity. Since Hc ⇒ OC (see [6]), so, applying Lemma 1, we conclude ϕ ∈ 	E
2

and E ∈ (OC). Consequently, condition (a) needs to considered only in the case E ↪→ l∞
and ϕ ∈ 	2(0). Notice that if E ∈ (OC) and E ↪→ l∞ then l∞ �↪→ E . Thus condition (a)

follows the same way as in the proof of Theorem 9(ii) below.
Suppose for the contrary that Eϕ ∈ (Hc) and E /∈ (Hc). Recall that property Hc can be

equivalently considered only on the positive cone E+ (Proposition 1 in [9]). Furthermore,
the straightforward calculation shows that we may equivalently take x and {xn} in S(E) in
the definition of property Hc. Consequently, we find x and {xn} in (S(E))+ with xn → x
pointwisely and ‖xn − x‖E ≥ ε. Set

yn = ϕ−1
r ◦ xn and y = ϕ−1

r ◦ x .

By (a) we conclude that yn, y are well defined. Furthermore, Iϕ(y) = Iϕ(yn) = 1, whence
y, yn ∈ S(Eϕ). Moreover, yn → y pointwisely. It is enough to prove that there is η > 0 with

‖yn − y‖ϕ ≥ η (2)

for infinitely many n. The similar condition has been proved in [12, Thereom 2.12], but
under additional assumption that ϕ > 0 and E ∈ (U M). Here the lack of these assumptions
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Kadec-Klee properties of Calderón-Lozanovskiı̆ sequence spaces 49

requires new techniques in comparison with the respective proof in [12, Thereom 2.12]. We
have

‖ϕ ◦ yn − ϕ ◦ y‖E ≥ ε. (3)

Denote

An = {i ∈ N : ϕ (yn(i)) ≥ ϕ(y(i))} and Dn = N\An . (4)

By (3) we get

max
{∥∥(ϕ ◦ yn − ϕ ◦ y) χAn

∥∥
E ,

∥∥(ϕ ◦ yn − ϕ ◦ y) χDn

∥∥
E

} ≥ ε/2 (5)

for each n. We assume that
∥∥(ϕ ◦ yn − ϕ ◦ y)χAn

∥∥
E ≥ ε/2 for infinitely many n ∈ N,

because otherwise the proof is analogous. Notice that two cases:

(i) l∞ ↪→ E and ϕ ∈ 	2(∞),

(ii) l∞ �↪→ E, E �↪→ l∞ and ϕ ∈ 	2(R+),

can be done analogously as in the proof of Theorem 8 in [13]. We repeat arguments for
readers convenience.

(i) Suppose that l∞ ↪→ E and ϕ ∈ 	2(∞). Let c = ϕ−1
r

(
ε

32‖χN‖E

)
> aϕ . Denoting

A1
n = {i ∈ An : yn(i) < c} and A2

n = {i ∈ An : yn(i) ≥ c}
we get

ε/2 ≤ ∥∥(ϕ ◦ yn − ϕ ◦ y)χAn

∥∥
E ≤

∥∥∥(ϕ ◦ yn − ϕ ◦ y)χA2
n

∥∥∥
E

+ ε/4.

Thus ∥∥∥(ϕ ◦ yn − ϕ ◦ y) χA2
n

∥∥∥
E

≥ ε/4. (6)

Set

c1 = c + aϕ

2
, B1

n = {i ∈ A2
n : y(i) < c1} and B2

n = {i ∈ A2
n : y(i) ≥ c1}.

The remaining proof of the case (i) we divide into two parts.

1. Suppose that
∥∥∥(ϕ ◦ yn − ϕ ◦ y)χB1

n

∥∥∥
E

≥ ε/8. By Lemma 2, for a = c1 there are σ > 0

and u1 > aϕ + c1 such that

inf
v∈(0,c1)

inf
u≥u1

ϕ(u − v)

ϕ(u) − ϕ(v)
≥ σ.

Set

C1
n = {i ∈ B1

n : yn (i) < u1} and C2
n = {i ∈ B1

n : yn(i) ≥ u1}.
(a) Assume that

∥∥∥(ϕ ◦ yn − ϕ ◦ y)χC1
n

∥∥∥
E

≥ ε/16. Taking 0 < α < c−c1
u1

we get∥∥∥∥
(

ϕ ◦
(

yn − y

α

))
χC1

n

∥∥∥∥
E

≥
∥∥∥∥
(

ϕ

(
c − c1

α

))
χC1

n

∥∥∥∥
E

≥
∥∥∥ϕ (u1) χC1

n

∥∥∥
E

≥
∥∥∥(ϕ ◦ yn − ϕ ◦ y) χC1

n

∥∥∥
E

≥ ε/16.

Thus ‖yn − y‖ϕ ≥ η1 = min {1, αε/16}.
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50 P. Kolwicz

(b) Let
∥∥∥(ϕ ◦ yn − ϕ ◦ y)χC2

n

∥∥∥
E

≥ ε/16. Thus, by Lemma 2,

∥∥∥ϕ ◦ (yn − y) χC2
n

∥∥∥
E

≥ σ

∥∥∥(ϕ ◦ yn − ϕ ◦ y) χC2
n

∥∥∥
E

≥ σε

16

and consequently ‖yn − y‖ϕ ≥ η2 = min{1, σε/16} (cf. [12, Lemma 1.1]).

2. Assume that
∥∥∥(ϕ ◦ yn − ϕ ◦ y)χB1

n

∥∥∥
E

< ε/8. Then, by ( 6),

∥∥∥(ϕ ◦ yn − ϕ ◦ y) χB2
n

∥∥∥
E

≥ ε/8. (7)

Since ϕ ∈ 	2(∞), for l = 1 + ε/32 and u1 = c1 there is a = a(l, u1) ∈ (0, 1) such that

ϕ ((1 + a) u) ≤ lϕ (u) (8)

for every u ≥ c1 (see [4, Theorem 1.13(4)]). Moreover, we can choose a > 0 satisfying

a

1 + a
ϕ (c1) ‖χT ‖E < ε/32. (9)

Let

B21
n =

{
i ∈ B2

n : (yn − y) (i) <
ac1

1 + a

}
and

B22
n =

{
i ∈ B2

n : (yn − y) (i) ≥ ac1

1 + a

}
. (10)

Then, by (8) and (9), using convexity of ϕ, we get

|ϕ ◦ yn − ϕ ◦ y|χB21
n

= (ϕ ◦ (yn − y + y) − ϕ ◦ y) χB21
n

≤
(

a

1 + a
ϕ ◦

(
1 + a

a
(yn − y)

)
+ 1

1 + a
ϕ ◦ ((1 + a) y) − ϕ ◦ y

)
χB21

n

≤
(

a

1 + a
ϕ ◦

(
1 + a

a
(yn − y)

)
+ 1

1 + a
lϕ ◦ y − ϕ ◦ y

)
χB21

n

=
(

a

1 + a
ϕ ◦

(
1 + a

a
(yn − y)

)
+

(
ε/32 − a

1 + a

)
ϕ ◦ y

)
χB21

n
. (11)

Note f (a) = ε/32−a
1+a is a decreasing function of a >0. Hence, by (9),

∥∥∥(ϕ ◦ yn −ϕ ◦ y)χB21
n

∥∥∥
E

< ε/16. Then, by (7), ∥∥∥(ϕ ◦ yn − ϕ ◦ y) χB22
n

∥∥∥
E

≥ ε/16.

Since ϕ ∈ 	2(∞), for u3 = c1 and β = 1+a
a there is k2 > 0 such that ϕ(βu) ≤ k2ϕ(u) for

each u ≥ u3 (see [4]). Taking 0 < γ < a
1+a and applying (8), we get

|ϕ ◦ yn − ϕ ◦ y| χB22
n

= (ϕ ◦ (yn − y + y) − ϕ ◦ y) χB22
n

≤
(

ϕ ◦
(

yn − y

γ
+ y

)
− ϕ ◦ y

)
χB22

n

≤
(

a

1 + a
ϕ ◦

(
1 + a

a

(
yn − y

γ

))
+ 1

1 + a
ϕ ◦ ((1 + a) y) − ϕ ◦ y

)
χB22

n

≤
(

a

1 + a
k2ϕ ◦

(
yn − y

γ

)
+ 1

1 + a
lϕ ◦ y − ϕ ◦ y

)
χB22

n

=
(

a

1 + a
k2ϕ ◦

(
yn − y

γ

)
+

(
ε/32 − a

1 + a

)
ϕ ◦ y

)
χB22

n
. (12)
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Then
∥∥∥ϕ ◦ (

yn−y
γ

)

∥∥∥
E

≥ ε(1+a)
32ak2

and consequently ‖yn − y‖ϕ ≥ η3 = min
{

1,
γ ε(1+a)

32ak2

}
(see Lemma 1.1 in [12]). Combining cases 1 and 2 we get (2) with η = min{η1, η2, η3}.

(ii) Suppose that l∞ �↪→ E and E �↪→ l∞. Since ϕ ∈ 	2(R+), so for every l > 1 there is
a = a(l) ∈ (0, 1) such that ϕ((1+a)u) ≤ lϕ(u) for every u ≥ 0 (see [4, Theorem 1.13(4)]).
Moreover for every β > 0 there is k > 0 such that ϕ(βu) ≤ kϕ(u) for each u ≥ 0. Then the
proof is analogous as in case (i) (it is simpler and shorter).

Note that the necessity when E ↪→ l∞ has not been discussed in the function case in [13],
because if E is a Köthe function space with E ↪→ L∞, then Ea = {0}.

(iii) Suppose that E ↪→ l∞ and ϕ ∈ 	2(0). We divide the proof into three parts.
A. Assume that ϕ < ∞. By E ↪→ l∞ we get ‖ϕ ◦ yn‖l∞ ≤ M ‖ϕ ◦ yn‖E ≤ M. Hence

yn ≤ ϕ−1(M). Moreover, ynχAn ≥ yχAn , by ϕ ◦ ynχAn ≥ ϕ ◦ yχAn and yn, y ≥ 0. From
ϕ ∈ 	2(0) and ϕ < ∞ we conclude that:

(a) for each l > 1 and u0 > 0 there is a ∈ (0, 1) such that ϕ((1 + a)u) ≤ lϕ(u) for each
0 ≤ u ≤ u0.

(b) for each β > 0 and u0 > 0 there is k > 0 such that ϕ(βu) ≤ kϕ(u) for each 0 ≤ u ≤ u0.

Applying (a) take a ∈ (0, 1) for l = 1 + ε/32 and u0 = ϕ−1(M). Let k > 0 be from (b)

for β = 1+a
a and u0 = ϕ−1(M). Consequently we obtain

|ϕ ◦ yn − ϕ ◦ y| χAn = (ϕ ◦ (yn − y + y) − ϕ ◦ y) χAn

≤
(

a

1 + a
ϕ ◦

(
1 + a

a
(yn −y)

)
+ 1

1 + a
ϕ ◦ ((1 + a) y)−ϕ ◦ y

)
χAn

≤
(

a

1 + a
ϕ ◦ (β (yn − y)) + 1

1 + a
lϕ ◦ y − ϕ ◦ y

)
χAn

≤
(

ak

1 + a
ϕ ◦ (yn − y) +

(
ε/32 − a

1 + a

)
ϕ ◦ y

)
χAn . (13)

Note f (a) = ε/32−a
1+a is a decreasing function of a > 0. Therefore ‖ϕ ◦ (yn − y)‖E ≥ ε(1+a)

4ak
and we are done.

B. Suppose that ϕ(bϕ) < ∞. From ϕ ∈ 	2(0) we conclude that:

(a) for each l > 1 there is a ∈ (0, 1) such that ϕ((1 + a)u) ≤ lϕ(u) for each 0 ≤ u ≤
bϕ/(1 + a).

(b) for each β > 1 there is k0 > 0 such that ϕ(βu) ≤ k0ϕ(u) for each 0 ≤ u ≤ bϕ/β.

Applying (a) take a number 0 < a < 1 for l = 1 + ε/32. Take k0 from (b) for β = 1+a
a .

Set

A1
n =

{
i ∈ An : y (i) ≥ bϕ

1 + a

}
and A2

n =
{

i ∈ An : y (i) <
bϕ

1 + a

}
.

Since Eϕ ∈ (Hc), so Eϕ ∈ (OC) (see [6]) and consequently y ∈ (Eϕ)a, whence, by
Theorem 11 from [14], |y(i)| → 0 as i → ∞. Then m(A) < ∞, where A = ⋃

A1
n .

On the other hand ϕ ◦ yn → ϕ ◦ y pointwisely, so
∥∥∥(ϕ ◦ yn − ϕ ◦ y)χA1

n

∥∥∥
E

→ 0. Thus∥∥∥(ϕ ◦ yn − ϕ ◦ y)χA2
n

∥∥∥
E

≥ ε/2 for almost all n. Put

A21
n = {

i ∈ A2
n : (1 + a) (yn − y) (i) ≤ abϕ

}
and A22

n = A2
n\A21

n ,
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We have σ0 = inf i ‖ei‖E > 0, because E ↪→ l∞. If
∥∥∥(ϕ ◦ yn − ϕ ◦ y)χA22

n

∥∥∥
E

≥ ε/4 for

infinitely many n, then

∥∥∥ϕ ◦ (yn − y) χA22
n

∥∥∥
E

≥ ϕ

(
abϕ

1 + a

) ∥∥∥χA22
n

∥∥∥
E

≥ σ0ϕ

(
abϕ

1 + a

)
> 0,

whence ‖yn − y‖ϕ ≥ η1 = min
{

1, σ0ϕ
(

abϕ

1+a

)}
. This is again the contradiction with the

fact that Eϕ ∈ (Hc).

Supposing that
∥∥∥(ϕ ◦ yn − ϕ ◦ y) χA21

n

∥∥∥
E

≥ ε/4 we follow the same way as in the proof

of inequality (13).
We need to discuss additionally the case

∥∥(ϕ ◦ yn − ϕ ◦ y)χDn

∥∥
E ≥ ε/2 for infinitely

many n ∈ N, where Dn = {i ∈ N : ϕ(y(i)) > ϕ(yn(i))} is defined in (4). We decompose set
Dn analogously

D1
n =

{
i ∈ Dn : y (i) ≥ bϕ

1 + a

}
, D2

n =
{

i ∈ Dn : y (i) <
bϕ

1 + a

}
,

D21
n = {

i ∈ D2
n : (1 + a) (y − yn) (i) ≤ abϕ

}
and D22

n = D2
n\D21

n .

Notice that (1 + a)yn(i) ≤ (1 + a)y(i) ≤ bϕ for each i ∈ D2
n . Then we step analogously as

above but replacing roles of elements yn and y.

C. Suppose that bϕ < ∞ and ϕ(bϕ) = ∞. Then, from ϕ ∈ 	2(0), we get:

(i) for each l > 1 and u0 < bϕ there is a ∈ (0, 1) such that ϕ((1 + a)u) ≤ lϕ(u) for each
0 ≤ u ≤ u0/(1 + a).

(ii) for each β > 1 and u0 < bϕ there is k0 > 0 such that ϕ(βu) ≤ k0ϕ(u) for each
0 ≤ u ≤ u0/β. Thus we step as in case B with u0 = ϕ−1

r (M), where M is chosen as
in case A. Note also that we have to take u0 instead of bϕ in the respective definitions
of sets A1

n, A2
n, A21

n and A22
n . ��

The property Hu .

We will need in the sequel the following

Lemma 4 [13, Lemma 9]

(i) Suppose xn, x ∈ l0. If xn ⇒ x, ϕ ◦ xn, ϕ ◦ x are finitely valued and ϕ ◦ x ∈ l∞, then
ϕ ◦ xn ⇒ ϕ ◦ x .

(ii) If xn ⇒ x, xn, x ∈ E+ and ϕ−1
r ◦xn, ϕ−1

r ◦x are well defined functions, then ϕ−1
r ◦xn ⇒

ϕ−1
r ◦ x.

The proof of (i) has been done under the assumption that E is symmetric Köthe space.
However, if we replace this assumption by ϕ ◦ x ∈ l∞, the proof is the same.

Lemma 5 [13, Lemma 5] Suppose that E is a Köthe sequence space. Then E ∈ (Hu) if and
only if E ∈ (Hu)+.

Definition 6 Assume that supi∈N
‖ei‖E = ∞. Then by B we denote a subset of N such that

for any infinite subset B of B we have supi∈B ‖ei‖E = ∞.

Lemma 7 If E ∈ (Hu) then E |B∈ (OC).
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Proof Let x ∈ E |B, x ≥ 0, x /∈ Ea and ‖x‖E = 1. Then B is infinite and there are a number
δ > 0 and a sequence (Bn) pairwise disjoint subsets of B with

∥∥xχBn

∥∥
E ≥ δ for each n.

Setting Bn =
{

i (n)
1 , i (n)

2 , . . . , i (n)
k(n), . . .

}
we conclude that for each k0 there is N0 such that

i (n)
1 ≥ k0 for any n ≥ N0. Notice also that x ∈ c0. Thus xχBn → 0 uniformly. Moreover,

xχBn → 0 weakly (see the proof of Proposition 2.1 from [6]. Put

y = x and yn = x − xχBn .

Since yn → y weakly and ‖yn‖E ≤ ‖y‖E , so ‖yn‖E → ‖y‖E (because the norm is
lower semicontinuous with respect to the weak topology). Finally, yn → y uniformly and
‖yn − y‖E ≥ δ. ��
Remark 8 The same proof shows that if E ∈ (Hu) then E ∩ c0 ∈ (OC). Notice also that
x ∈ c0 need not imply that x ∈ Ea . The required example may be constructed in particular
Marcinkiewicz sequence space.

We set c0 {‖ei‖E } = {
x ∈ l0 : |x(i)| ‖ei‖E → 0

}
. Clearly, if E ∈ (OC), then E ↪→

c0 {‖ei‖E } and the converse is not true (see [7]).

Theorem 9 (i) If l∞ ↪→ E or aϕ > 0, then Eϕ ∈ (Hu).

(ii) Let l∞ �↪→ E, E ↪→ l∞ and aϕ = 0. Then the Calderón-Lozanovskiı̆ sequence space
Eϕ ∈ (Hu) if and only if:

(a) ϕ(bϕ) inf i ‖ei‖E ≥ 1.

(b) ϕ ∈ 	2(0) and E ∈ (Hu).

(iii) Suppose that l∞ �↪→ E, E �↪→ l∞, E ↪→ c0 {‖ei‖E } and aϕ = 0. Then the
Calderón-Lozanovskiı̆ sequence space Eϕ ∈ (Hu) if and only if ϕ ∈ 	2(R+) and
E ∈ (Hu).

Proof (i) Take x, xn ∈ Eϕ, n ∈ N , ‖xn‖ϕ → ‖x‖ϕ and xn → x uniformly. Let λ, ε > 0.

If l∞ ↪→ E, then there is σ > 0 such that ϕ(λσ) ‖χN‖E < ε. Moreover, there is a number
N0 such that |xn(i) − x(i)| < σ for each n ≥ N0 and i ∈ N. Consequently

‖ϕ ◦ (λ |xn − x |)‖E ≤ ϕ (λσ) ‖χN‖E < ε

for n ≥ N0. This means that ‖xn − x‖ϕ → 0. If aϕ > 0, then, taking N0 such that
λ |xn(i) − x(i)| < aϕ for n ≥ N0 and each i, we get ‖ϕ ◦ (λ |xn − x |)‖E = 0 < ε.

(ii) The necessity. (a) Suppose that ϕ(bϕ) inf i ‖ei‖E < 1. Let

x = bϕei0 and xn = x + anχAn ,

where ϕ(bϕ)
∥∥ei0

∥∥
E < 1, (An) is an increasing sequence of subsets of N\{i0} with∥∥χAn

∥∥
E → ∞ (that can be achieved by E ∈ (F P)) and for each n a number an is such that

ϕ(bϕ)
∥∥ei0

∥∥
E + ϕ(an)

∥∥χAn

∥∥
E = 1. Then x, xn ∈ S(Eϕ) and xn → x uniformly. Finally,

‖xn − x‖ϕ ≥ Iϕ (xn − x) = ϕ (an)
∥∥χAn

∥∥
E = 1 − ϕ

(
bϕ

) ∥∥ei0

∥∥
E .

(b) The proof of necessity that ϕ ∈ 	2(0) we divide into two parts.
I. Assume that supi∈N

‖ei‖E = ∞. Then B is infinite. By Lemma 7 applied for E = Eϕ

we conclude that Eϕ |B∈ (OC). Thus, by Lemma 1, we get ϕ ∈ 	E
2 = 	2(0).

II. Suppose M = supi∈N
‖ei‖E < ∞ and ϕ /∈ 	2(0). Then there is a sequence {un} in

R+ with un → 0 and

ϕ (2un) > 2nϕ (un)
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for any n ∈ N. Without loss of generality, passing to a subsequence if necessary, we can
assume that ϕ(un) ≤ 2−n . Really, since ϕ(un) → 0, there is an increasing sequence (nk)

of positive integers such that ϕ(unk ) ≤ 1
/

2k for any k ∈ N. Noticing that nk ≥ k for any
k ∈ N, we have

ϕ
(
2unk

)
> 2nk ϕ

(
unk

) ≥ 2kϕ
(
unk

)
.

To get the desired subsequence it is enough to put vk = unk for any k ∈ N.

By (a), if ϕ(bϕ) < ∞, there is a ∈ (0, bϕ] with ϕ(a) ‖e1‖E = 1. If ϕ(bϕ) = ∞, the
existence of such a is obvious. Set

x = aχ{e1} and A = {i2, i3, . . .}.
Since χA /∈ E, for each n ∈ N we denote by k = k(n) ∈ N the smallest number satisfying

ϕ (un)
∥∥χBn

∥∥
E > 2−n, where Bn = {

i2, i3, . . . , ik(n)

} ⊂ A.

Then

ϕ (un)
∥∥χBn

∥∥
E ≤ ϕ (un)

∥∥∥χ{i2,i3,...,ik(n)−1}
∥∥∥

E
+ ϕ (un)

∥∥∥χ{ik(n)}
∥∥∥

E
≤ 2−n + 2−n M.

Set

xn = x + un

2
χBn .

We have ‖xn‖ϕ ≥ ‖x‖ϕ = 1. Moreover,

Iϕ (xn) ≤ 1 + 1

2
ϕ (un)

∥∥χBn

∥∥
E ≤ 1 + 1

2
2−n (1 + M) → 1,

whence 1 ≤ ‖xn‖ϕ ≤ Iϕ(xn) → 1. Moreover, xn → x uniformly. Finally,

Iϕ (4 (xn − x)) ≥ ϕ (2un)
∥∥χBn

∥∥
E ≥ 2nϕ (un)

∥∥χBn

∥∥
E > 1.

It means that ‖xn − x‖ϕ ≥ 1
4 .

Finally, suppose that ϕ ∈ 	2(0) and E /∈ (Hu) . Then, by Lemma 5, we find x ∈ S(E)+
and {xn} in E+ with ‖xn‖E → ‖x‖E with xn → x uniformly and ‖xn − x‖E ≥ ε. Set

yn = ϕ−1
r ◦ xn and y = ϕ−1

r ◦ x .

By (a) we conclude that yn, y are well defined. Then Iϕ(y) = 1 and Iϕ(yn) → 1, whence
y ∈ S(Eϕ) and ‖yn‖ϕ → 1. Moreover, yn → y uniformly, by Lemma 4(ii). It is enough to
prove that there is η > 0 with

‖yn − y‖ϕ ≥ η (14)

for infinitely many n. To prove inequality (14) we follow analogously as in the proof of
Theorem 3 cases (iii) A, B, C . In the respective case B denote

A =
{

i ∈ N : y (i) ≥ bϕ

1 + a

}
and B =

{
i ∈ N : y (i) <

bϕ

1 + a

}
.

Then χA ∈ Eϕ, whence χA ∈ E . Since ϕ◦yn →ϕ◦y uniformly so ‖(ϕ◦yn−ϕ◦y)χA‖E → 0.
Thus ‖(ϕ ◦ yn − ϕ ◦ y)χB‖E ≥ ε/2 for almost all n. The rest of the proof is the same as in
case B.
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The sufficiency. We follow as in the proof of sufficiency in case (iii) below. To prove the
respective condition

‖ϕ ◦ xn − ϕ ◦ x‖E → 0

notice that ϕ ◦ x ∈ E ↪→ l∞ whence A = ∅ and B = N. Then we show

‖ϕ ◦ (xn − x)‖E → 0 (15)

(see the proof of case (iii) below). Take λ > 1. We need to show that

‖ϕ ◦ (λ (xn − x))‖E → 0. (16)

Since ϕ ∈ 	2(0) there is u0 > 0 (u0 < bϕ/λ when bϕ < ∞) and K > 0 and K > 0 such
that ϕ(λu) ≤ Kϕ(u) for all u ≤ u0. Take N0 big enough to satisfy |(xn − x)(i)| ≤ u0 for
each n ≥ N0 and i ∈ N. Then ϕ ◦ (λ(xn − x)) ≤ Kϕ ◦ (xn − x) for n ≥ N0. Thus, by (15),
the condition (16) is proved.

(iii) The necessity. First we discuss the necessity of condition ϕ ∈ 	2(R+). Note that if
Eϕ ∈ (Hu), then the implication

‖u‖ϕ = 1 ⇒ Iϕ(u) = 1 (17)

is true for any u ∈ Eϕ. Really, otherwise we find u ∈ (Eϕ)+ satisfying ‖u‖ϕ = 1 and
Iϕ(u) < 1. We divide the proof into two parts.

a. If ϕ(bϕ) < ∞ and u(i0) = bϕ for some i0 then taking

y = uχ{i0}
we get ‖y‖ϕ = 1 and Iϕ(y) < 1. Take an increasing sequence (An) in N\ {i0} with

∥∥χAn

∥∥
E →

∞ and a sequence (an) of positive real numbers satisfying ϕ(an) → 0 and ϕ(an)
∥∥χAn

∥∥
E =

1 − Iϕ(y). Setting

yn = y + anχAn

we get yn → y uniformly. Moreover, yn ∈ S(Eϕ) because Iϕ(yn) ≤ 1 and y ≤ yn . Finally,
‖yn − y‖ϕ ≥ Iϕ(yn − y) = 1 − Iϕ(y) > 0, whence Eϕ /∈ (Hu).

b. Suppose that u(i) < bϕ for each i. Take an increasing sequence of finite sets (An) in N

with
∥∥χAn

∥∥
E → ∞ and a sequence (an) of positive real numbers satisfying ϕ(an) → 0 and

ϕ(an)
∥∥χAn

∥∥
E = 1 − Iϕ(u). Set

y = u and yn = y − anχAn .

We will prove that yn ∈ S(Eϕ). First notice that, by superadditivity of ϕ on R+ we get

Iϕ(yn) ≤ ∥∥ϕ ◦ y − ϕ (an) χAn

∥∥
E ≤ 1.

Note that the function f (λ) = Iϕ(λy) is convex function of λ. Thus if f is finite valued
in the interval [0, λ0] then f is continuous in the interval [0, λ0]. Consequently from facts
‖y‖ϕ = 1 and Iϕ(y) < 1 we conclude that Iϕ(y/λ) = ∞ for each λ < 1. Moreover, for
each n there is λn < 1 with Iϕ(

y
λn

χAn ) < ∞. Then Iϕ(
y
p χAn ) < ∞ for each λn < p < 1,

whence Iϕ(
y
p χN\An ) = ∞. Therefore

Iϕ

(
yn

p

)
=

∥∥∥∥ϕ ◦
(

y − an

p

)
χAn + ϕ ◦

(
y

p

)
χN\An

∥∥∥∥
E

≥
∥∥∥∥ϕ ◦

(
y

p

)
χN\An

∥∥∥∥
E

= ∞.

Thus ‖yn‖ϕ > p. Finally ‖yn‖ϕ = 1 because p < 1 may be taken arbitrary close to 1. The
rest of the proof is the same as in case a.
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Applying condition (17), Lemma 2.9 from [12] and the proof of Lemma 2.4 [7] we con-
clude that ϕ ∈ 	E

2 = 	2(R+).

Finally, suppose that ϕ ∈ 	2(R+) and E /∈ (Hu). Then, by Lemma 5, we find x ∈ S(E)+
and {xn} in E+ with ‖xn‖E → ‖x‖E , xn → x uniformly and ‖xn − x‖E ≥ ε. Set

yn = ϕ−1
r ◦ xn and y = ϕ−1

r ◦ x .

Then Iϕ(y) = 1, Iϕ(yn) → 1, whence y ∈ S(Eϕ) and ‖yn‖ϕ → 1. Moreover, yn → y
uniformly, by Lemma 4(ii). It is enough to prove that there is η > 0 with

‖yn − y‖ϕ ≥ η (18)

for infinitely many n. Then, to prove inequality (18) we follow analogously as in the proof
of inequality (13) (the respective inequalities ϕ((1 + a)u) ≤ lϕ(u) and ϕ

( 1+a
a u

) ≤ kϕ(u)

hold for all u).
The sufficiency. We apply Lemma 5. Take x, xn ∈ (Eϕ)+, n ∈ N, ‖xn‖ϕ → ‖x‖ϕ = 1

and xn → x uniformly. By ϕ ∈ 	E
2 = 	2(R+) we get ‖ϕ ◦ x‖E = 1 and ‖ϕ ◦ xn‖E → 1.

Set

A = {i ∈ N : ϕ (x (i)) ≥ 1} and B = {i ∈ N : ϕ (x (i)) < 1}. (19)

in the case ϕ ◦ x /∈ l∞ and A = ∅, B = N if ϕ ◦ x ∈ l∞. Since χA ∈ E, so

‖ϕ ◦ (xn − x) χA‖E → 0. (20)

Applying (20) and ϕ ∈ 	2(R+) one can obtain ‖(ϕ ◦ xn − ϕ ◦ x)χA‖E → 0 (this can be
done using similar arguments as in (13)). Let

zn = ϕ ◦ xχA + ϕ ◦ xnχB .

Consequently

‖zn‖E = ‖ϕ ◦ xnχB + (ϕ ◦ x − ϕ ◦ xn) χA + ϕ ◦ xnχA‖E

≤ ‖ϕ ◦ xn‖E + ‖(ϕ ◦ x − ϕ ◦ xn) χA‖E → 1.

Furthermore, setting

A1 = {i ∈ A : ϕ (x (i)) ≥ ϕ (xn (i))} and A2 = {i ∈ A : ϕ (x (i)) < ϕ (xn (i))}
we get

‖zn‖E =
= ∥∥ϕ ◦ xnχB +(ϕ ◦ x − ϕ ◦ xn) χA1 +ϕ ◦ xnχA1 +(ϕ ◦ xn − ϕ ◦ x) χA2 − ϕ ◦ xnχA2

∥∥
E

≥ ∥∥ϕ ◦ xnχB + ϕ ◦ xnχA1 + ϕ ◦ xnχA2 − (ϕ ◦ xn − ϕ ◦ x) χA2

∥∥
E

≥ ∣∣‖ϕ ◦ xn‖E − ∥∥(ϕ ◦ xn − ϕ ◦ x) χA2

∥∥
E

∣∣ → 1.

Thus ‖zn‖E → 1. Moreover, ϕ◦xnχB → ϕ◦xχB uniformly by Lemma 4(i). Thus zn → ϕ◦x
uniformly and, by E ∈ (Hu), we conclude ‖zn − ϕ ◦ x‖E → 0. Thus

‖(ϕ ◦ xn − ϕ ◦ x) χB‖E → 0.

By superadditivity of ϕ on R+ we get

‖ϕ ◦ (xn − x) χB‖E ≤ ‖(ϕ ◦ xn − ϕ ◦ x) χB‖E → 0,

which together with (20) yields ‖ϕ ◦ (xn − x)‖E → 0. Applying ϕ ∈ 	2(R+) we get
‖xn − x‖ϕ → 0. ��
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Remark 10 Discussing assumptions of Theorem 9(iii) notice that conditions l∞ �↪→
E, E �↪→ l∞ need not imply that E ↪→ c0{‖ei‖E } in general.

Proof Denote N1 = {i ∈ N : i is odd} and N2 = {i ∈ N : i is even} . Take

E =
⎧⎨
⎩x ∈ l0 : ‖x‖ =

∞∑
i∈N1

[
|x (i)| 1

i2

]
+ sup

i∈N2

{|x (i)| i} < ∞
⎫⎬
⎭ .

Then l∞ �↪→ E, because x = (0, 1, 0, 1, . . .) /∈ E . Next, E �↪→ l∞ since x =
(1, 0,

√
3, 0,

√
5, 0, . . .) ∈ E . Finally, we conclude that E �↪→ c0{‖ei‖E } by taking

x = (0, 1/2, 0, 1/4, 0, 1/6, . . .). ��
Remark 11 Note that the necessity of condition ϕ ∈ 	2(0) in Theorem 9(i i) can be deduced
analogously as the necessity of ϕ ∈ 	2(R+) in Theorem 9(iii). However, in (iii) we have
additionally to assume that E ↪→ c0{‖ei‖E } in order to apply results from [7]. In order to
show that conditions l∞ �↪→ E, E ↪→ l∞ need not imply that E ↪→ c0{‖ei‖E } in general
it is enough to apply some modification of above example from Remark 10. Consequently,
using the direct proof of necessity of condition ϕ ∈ 	2(0) in Theorem 9(i i) we obtain result
concerning the larger class of Köthe sequence spaces than applying the proof of Lemma 2.4
from [7] which requires the assumption that E ↪→ c0{‖ei‖E }.
3.2 Orlicz-Lorentz sequence spaces

Recall that Lorentz sequence space λω consists of all sequences x = (x(i)) such that ‖x‖λω
=∑∞

i=1 x∗(i)ω(i) < ∞, where ω = (ω(i)) is a weight sequence, that is ω is a nonincreasing
sequence of nonnegative real numbers, and x∗ is the nonincreasing rearrangement of x (see
[16]).

Lemma 12 (i) λω ∈ (Hc) if and only if
∑∞

i=1 ω(i) = ∞.

(ii) λω ↪→ c0 if and only if
∑∞

i=1 ω(i) = ∞. The inclusion l∞ ↪→ λω holds if and only if∑∞
i=1 ω(i) < ∞.

Proof (i) Since Hc ⇒ OC (see [6]), the necessity follows from Lemma 3.2 from [12]. For
the sufficiency it is enough to apply Theorem 7 from [2]. (i i) It is obvious. ��

Taking E = λω in Theorems 3, 9 and applying Lemma 12 we get immediately the fol-
lowing new characterization

Corollary 13 Let (λω)ϕ be the Orlicz-Lorentz sequence space.

(a) (�ω)ϕ ∈ (Hc) if and only if
∑∞

i=1 ω(i) = ∞, ϕ ∈ 	2(0) and ϕ(bϕ)ω(1) ≥ 1.

(b) (i) If
∑∞

i=1 ω(i) < ∞ or aϕ > 0, then (λω)ϕ ∈ (Hu).

(ii) Suppose that
∑∞

i=1 ω(i) = ∞ and aϕ = 0. Then (λω)ϕ ∈ (Hu) if and only if:
1. ϕ(bϕ)ω(1) ≥ 1.

2. ϕ ∈ 	2(0).

Obviously, if ω(i) = 1 for each i, then (λω)ϕ = lϕ, the Orlicz sequence space. Thus,
applying the previous corollary in this case it is easy to get the respective characterizations
for lϕ.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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