Skip to main content
Log in

Critical top tension for static equilibrium configuration of a steel catenary riser

  • Published:
China Ocean Engineering Aims and scope Submit manuscript

Abstract

This paper aims to present the critical top tension for static equilibrium configurations of a steel catenary riser (SCR) by using the finite element method. The critical top tension is the minimum top tension that can maintain the equilibrium of the SCR. If the top tension is smaller than the critical value, the equilibrium of the SCR does not exist. If the top tension is larger than the critical value, there are two possible equilibrium configurations. These two configurations exhibit the nonlinear large displacement. The configuration with the smaller displacement is stable, while the one with larger displacement is unstable. The numerical results show that the increases in the riser’s vertical distances, horizontal offsets, riser’s weights, internal flow velocities, and current velocities increase the critical top tensions of the SCR. In addition, the parametric studies are also performed in order to investigate the limit states for the analysis and design of the SCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atanackovic, T. M., 1997. Stability Theory of Elastic Rods, Singapore, World Scientific Publishing Co., London, UK.

    MATH  Google Scholar 

  • Athisakul, C., Huang, T. and Chucheepsakul, S., 2002. Large strain static analysis of marine risers via a variational approach, Proc. 12th Int. Offshore Polar Eng. Conf., Kitakyushu, Japan, 12, 164–170.

    Google Scholar 

  • Athisakul, C., Monprapussorn, T. and Chucheepsakul, S., 2011. A variational formulation for three-dimensional analysis of extensible marine riser transporting fluid, Ocean Eng., 38(4): 609–620.

    Article  Google Scholar 

  • Athisakul, C., Phanyasahachart, T., Klaycham, K. and Chucheepsakul, S., 2012. Static equilibrium configurations and appropriate applied top tension of extensible marine riser with specified total arc-length using finite element method, Eng. Struct., 34, 271–277.

    Article  Google Scholar 

  • Bernitsas, M. M., 1980. Riser top tension and riser buckling loads, Computational Methods for Offshore Structures, Appl. Mech. Div., ASME, 37, 101–109.

    Google Scholar 

  • Bernitsas, M. M. and Kokkinis, T., 1983. Buckling of risers in tension due to internal pressure: Nonmovable boundaries, J. Energy Resour. Technol., 105(3): 277–281.

    Article  Google Scholar 

  • Chai, Y. T. and Varyani, K. S., 2006. An absolute coordinate formulation for three-dimensional flexible pipe analysis, Ocean Eng., 33(1): 23–58.

    Article  Google Scholar 

  • Chen, J. and Wang, D., 1991. Nonlinear dynamic analysis of flexible marine-risers, China Ocean Eng., 5(4): 373–384.

    MATH  Google Scholar 

  • Chucheepsakul, S. and Monprapussorn, T., 2001. Nonlinear buckling of marine elastica pipes transporting fluid, Int. J. Struct. Stabil. Dyn., 1(3): 333–365.

    Article  Google Scholar 

  • Chucheepsakul, S. and Wang, C. M., 1997. Mechanics of neutrally buoyant cables, Mech. Res. Commun., 24(6): 603–607.

    Article  MATH  Google Scholar 

  • Chucheepsakul, S., Monprapussorn, T. and Huang, T., 2003. Large strain formulations of extensible flexible marine pipes transporting fluid, J. Fluid. Struct., 17(2): 185–224.

    Article  Google Scholar 

  • Felippa, C. A. and Chung, J. S., 1981. Nonlinear static analysis of deep ocean mining pipe-Part 1: Modeling and formulation, J. Energy Resour. Technol., 103(1): 11–15.

    Article  Google Scholar 

  • Fu, J. J. and Yang, H. Z., 2010. Fatigue characteristic analysis of deepwater steel catenary risers at the touchdown point, China Ocean Eng., 24(2): 291–304.

    Google Scholar 

  • Huang, T. and Chucheepsakul, S., 1985. Large displacement analysis of a marine riser, J. Energy Resour. Technol., 107(1): 54–59.

    Article  Google Scholar 

  • Moe, G. and Arntsen, Ø., 2001. An analytic model for static analysis of catenary risers, Proc. 11th Int. Offshore Polar Eng. Conf., Stavanger, Norway, 2, 248–253.

    Google Scholar 

  • More, J. J., Garbow, B. S. and Hillstrom, K. E., 1980. User Guide for MINPACK-1, Illinois, Argonne National Laboratories.

    Google Scholar 

  • Seyed, F. B. and Patel, M. H., 1992. Mathematics of flexible risers including pressure and internal flow effects, Mar. Struct., 5(2): 121–150.

    Article  Google Scholar 

  • Zheng, W. Q., Yang, H. Z. and Li, Q. Q., 2012. Multiaxial fatigue analyses of stress joints for deep water steel catenary risers, China Ocean Eng., 26(4): 713–722.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somchai Chucheepsakul.

Additional information

This paper is financially supported by the Thailand Research Fund (TRF) through the Royal Golden Jubilee Ph. D. Program (Grant No. PHD/0112/2553) and the National Research University (NRU) initiative.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athisakul, C., Klaycham, K. & Chucheepsakul, S. Critical top tension for static equilibrium configuration of a steel catenary riser. China Ocean Eng 28, 829–842 (2014). https://doi.org/10.1007/s13344-014-0064-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13344-014-0064-x

Key words

Navigation