Skip to main content
Log in

Effect of a 6-week strength-training program on neuromuscular efficiency in type 2 diabetes mellitus patients

  • Original Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Background

The neuromuscular system generates human movement. The functional capacity of the neuromuscular system in patients with type 2 diabetes mellitus (T2DM) is decreased and this affects the generation of muscle force. Exercise is recommended as an effective treatment in such cases. Short-duration strength training causes neural adaptations in healthy participants, but the effects of strength training on T2DM are unclear. The present study aimed to evaluate the effect of strength training on neuromuscular efficiency of lower limb muscles in T2DM.

Methods

Surface electromyograms (SEMG) of the knee flexors and extensors were recorded during isometric contractions. The ratio of peak torque to SEMG amplitude was calculated as neuromuscular efficiency. Measurements were taken before the intervention after 6 weeks of non-training, and after 6 weeks of strength training.

Results

SEMG amplitudes did not differ among the subsequent measurement sessions. Flexor and extensor peak torque increased after the strength-training program. The neuromuscular efficiency of all muscles increased after the 6 weeks of strength training.

Conclusion

A 6-week strength-training program increased the neuromuscular efficiency and peak torque in patients with T2DM; however, the electrical properties of the muscles did not change. These results may be related to increased neural adaptations and motor learning in the early stages of strength training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Moritani T. Neuromuscular adaptations during the acquisition of muscle strength, power and motor tasks. J Biomech. 1993;26(Suppl 1):95–107.

    Article  PubMed  Google Scholar 

  2. Duchateau J, Semmler JG, Enoka RM. Training adaptations in the behavior of human motor units training adaptations in the behavior of human motor units. J Appl Physiol (Bethesda, MD: 1985). 2006;101(6):1766–75.

    Article  Google Scholar 

  3. Power GA, Dalton BH, Rice CL. Human neuromuscular structure and function in old age: a brief review. J Sport Health Sci. 2013;2(4):215–26.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sacchetti M, Balducci S, Bazzucchi I, Carlucci F, di Palumbo AS, Haxhi J, et al. Neuromuscular dysfunction in diabetes: role of nerve impairment and training status. Med Sci Sports Exerc. 2013;45(1):52–9.

    Article  PubMed  Google Scholar 

  5. Orlando G, Balducci S, Bazzucchi I, Pugliese G, Sacchetti M. Neuromuscular dysfunction in type 2 diabetes: underlying mechanisms and effect of resistance training. Diabetes/Metab Res Rev. 2016;32(1):40–50.

    Article  Google Scholar 

  6. Watanabe K, Gazzoni M, Holobar A, Miyamoto T, Fukuda K, Merletti R, et al. Motor unit firing pattern of vastus lateralis muscle in type 2 diabetes mellitus patients. Muscle Nerv. 2013;48(5):806–13.

    Article  Google Scholar 

  7. David P, Mora I, Pérot C. Neuromuscular efficiency of the rectus abdominis differs with gender and sport practice. J Strength Cond Res. 2008;22(6):1855–61.

    Article  PubMed  Google Scholar 

  8. Aragão FA, Schäfer GS, de Albuquerque CE, Vituri RF, de Azevedo FM, Bertolini GRF. Neuromuscular efficiency of the vastus lateralis and biceps femoris muscles in individuals with anterior cruciate ligament injuries. Revis Bras Ortop. 2015;50(2):180–5.

    Article  Google Scholar 

  9. Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG. J Appl Physiol (Bethesda, MD: 1985). 2004;96(4):1486–95.

    Article  Google Scholar 

  10. Arabadzhiev TI, Dimitrov VG, Dimitrova NA, Dimitrov GV. Interpretation of EMG integral or RMS and estimates of “neuromuscular efficiency” can be misleading in fatiguing contraction. J Electromyogr Kinesiol. 2010;20(2):223–32.

    Article  PubMed  Google Scholar 

  11. Patsika G, Kellis E, Amiridis IG. Neuromuscular efficiency during sit to stand movement in women with knee osteoarthritis. J Electromyogr Kinesiol. 2011;21(5):689–94.

    Article  PubMed  Google Scholar 

  12. Falla D, Jull G, Edwards S, Koh K, Rainoldi A. Neuromuscular efficiency of the sternocleidomastoid and anterior scalene muscles in patients with chronic neck pain. Disabil Rehabil. 2004;26(12):712–7.

    Article  CAS  PubMed  Google Scholar 

  13. Milner-Brown HS, Mellenthin M, Miller RG. Quantifying human muscle strength, endurance and fatigue. Arch Phys Med Rehabil. 1986;67(8):530–5.

    CAS  PubMed  Google Scholar 

  14. Schimidt HL, Machado ÁS, Vaz MA, Carpes FP. Isometric muscle force, rate of force development and knee extensor neuromuscular efficiency asymmetries at different age groups. Revis Bras Cineantropometria Desempenho Hum. 2014;16:307–15.

    Article  Google Scholar 

  15. Reid KF, Pasha E, Doros G, Clark DJ, Patten C, Phillips EM, et al. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. Eur J Appl Physiol. 2014;114(1):29–39.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cadore EL, Pinto RS, Pinto SS, Alberton CL, Correa CS, Tartaruga MP, et al. Effects of strength, endurance, and concurrent training on aerobic power and dynamic neuromuscular economy in elderly men. J Strength Cond Res. 2011;25(3):758–66.

    Article  PubMed  Google Scholar 

  17. Castaneda C, Layne JE, Munoz-Orians L, Gordon PL, Walsmith J, Foldvari M, et al. A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes Care. 2002;25(12):2335–411.

    Article  PubMed  Google Scholar 

  18. Larose J, Sigal RJ, Boule NG, Wells GA, Prud’homme D, Fortier MS, et al. Effect of exercise training on physical fitness in type II diabetes mellitus. Med Sci Sports Exerc. 2010;42(8):1439–47.

    Article  PubMed  Google Scholar 

  19. Reeves ND, Narici MV, Maganaris CN. Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol (Bethesda, MD: 1985). 2004;96(3):885–92.

    Article  CAS  Google Scholar 

  20. Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med (Auckland, NZ). 2006;36(2):133–49.

    Article  Google Scholar 

  21. Hovanec N, Sawant A, Overend TJ, Petrella RJ, Vandervoort AA. Resistance training and older adults with type 2 diabetes mellitus: strength of the evidence. J Aging Res. 2012;. https://doi.org/10.1155/2012/284635.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Louis TA, Lavori PW, Bailar JC, Polansky M. Crossover and self-controlled designs in clinical research. N Engl J Med. 1984;310(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  23. Farina D, Cescon C, Merletti R. Influence of anatomical, physical, and detection-system parameters on surface EMG. Biol Cyber. 2002;86(6):445–56.

    Article  Google Scholar 

  24. Carlo JDL. The use of surface electromyography in biomechanics. J Appl Biomech. 1997;13(2):135–63.

    Article  Google Scholar 

  25. De Luca CJ, Adam A, Wotiz R, Gilmore LD, Nawab SH. Decomposition of surface EMG signals. J Neurophysiol. 2006;96(3):1646–57.

    Article  PubMed  Google Scholar 

  26. Davir Z. Isokinetic muscle testing interpertation and clinical applications. London: Churchill Livingstone; 2004.

    Google Scholar 

  27. Vigotsky AD, Halperin I, Lehman GJ, Trajano GS, Vieira TM. Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Front Physiol. 2018;8:985.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hatef B, Ghanjal A, Meftahi GH, Askary-Ashtiani A. Isokinetic and electromyographic properties of muscular endurance in short and long-term type 2 diabetes. Glob J Heal Sci. 2016;8(8):54366.

    Google Scholar 

  29. Hatef B, Bahrpeyma F, Mohajeri Tehrani MR. The comparison of muscle strength and short-term endurance in the different periods of type 2 diabetes. J Diabet Metab Disord. 2014;13(1):22.

    Article  Google Scholar 

  30. Bazzucchi I, De Vito G, Felici F, Dewhurst S, Sgadari A, Sacchetti M. Effect of exercise training on neuromuscular function of elbow flexors and knee extensors of type 2 diabetic patients. J Electromyogr Kinesiol. 2015;25(5):815–23.

    Article  CAS  PubMed  Google Scholar 

  31. Botton CE, Umpierre D, Rech A, Pfeifer LO, Machado CLF, Teodoro JL, et al. Effects of resistance training on neuromuscular parameters in elderly with type 2 diabetes mellitus: a randomized clinical trial. Exp Gerontol. 2018;113:141–9.

    Article  PubMed  Google Scholar 

  32. Arakawa S, Watanabe T, Sone H, Tamura Y, Kobayashi M, Kawamori R, et al. The factors that affect exercise therapy for patients with type 2 diabetes in Japan: a nationwide survey. Diabetol Int. 2015;6(1):19–25.

    Article  Google Scholar 

  33. Mangine GT, Hoffman JR, Gonzalez AM, Townsend JR, Wells AJ, Jajtner AR, et al. The effect of training volume and intensity on improvements in muscular strength and size in resistance-trained men. Physiol Rep. 2015;3(8):e12472.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cannon RJ, Cafarelli E. Neuromuscular adaptations to training. J Appl Physiol (Bethesda, MD: 1985). 1987;63(6):2396–402.

    Article  CAS  Google Scholar 

  35. Garfinkel S, Cafarelli E. Relative changes in maximal force, EMG, and muscle cross-sectional area after isometric training. Med Sci Sports Exerc. 1992;24(11):1220–7.

    CAS  PubMed  Google Scholar 

  36. Cadore EL, Pinto SS, Alberton CL, Pinto RS, Baroni BM, Vaz MA, Lanferdini FJ, Radaelli R, González-Izal M, Bottaro M, Kruel LFM. Neuromuscular adaptations to concurrent training in the elderly: effects of intrasession exercise sequence. Age. 2013;35:891–903.

    Article  PubMed  Google Scholar 

  37. Guerrero-Berroa E, Ravona-Springer R, Heymann A, Schmeidler J, Silverman JM, Sano M, et al. Decreased motor function is associated with poorer cognitive function in elderly with type 2 diabetes. Dement Geriatr Cognit Disord Extra. 2014;4(1):103–12.

    Article  Google Scholar 

  38. Yi SS. Effects of exercise on brain functions in diabetic animal models. World J Diabetes. 2015;6(4):583–97.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Uno K. Roles of the interorgan neuronal network in the development of metabolic syndrome. Diabetol Int. 2016;7(3):205–11.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was a residency thesis and was supported by Tarbiat Modares University. The authors would like to thanks the subjects for their participation in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Bahrpeyma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrjerdi, S., Bahrpeyma, F., Savelberg, H.H.C.M. et al. Effect of a 6-week strength-training program on neuromuscular efficiency in type 2 diabetes mellitus patients. Diabetol Int 11, 376–382 (2020). https://doi.org/10.1007/s13340-020-00432-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-020-00432-y

Keywords

Navigation