Correction to: On Bernstein's inequality for polynomials

H. Queffélec ${ }^{1} \cdot$ R. Zarouf ${ }^{2,3}$

Received: 17 April 2019 / Accepted: 17 April 2019 / Published online: 8 May 2019
© Springer Nature Switzerland AG 2019

Correction to: Analysis and Mathematical Physics https://doi.org/10.1007/s13324-019-00294-x

In this addendum to the paper On Bernstein's inequality for polynomials [Anal. Math. Phys. online 20 March 2019], we rectify the beginning of Section 5 where we mentioned a proof of Mahler's result, i.e. the case $p=0$ in Bernstein's inequality, using subharmonicity. In particular, we take into account a reference that we previously missed, and that Paul Nevai, whom we thank, has very recently brought to our attention.

5 Case $p=0$, Mahler's result

This section (as well as Section 6) owes much to old conversations with Nazarov [3] during the fall of 1994, when the first-named author was finishing the joint work [4] with B. Saffari. F. Nazarov then emphasized the importance of subharmonicity. The possible use of this subharmonicity was first alluded to by the referee (M. Marden) of Mahler's 1961 paper [2]. But then it was also intensively used in the 1989 paper [1], which fully reproved Bernstein's inequality in L^{0} and then in $L^{p}, 0<p \leq \infty$. The authors of the implied survey paper were not aware of [1] when their work was accepted in "Analysis and Mathematical Physics" and were informed of this important

The original article can be found online at https://doi.org/10.1007/s13324-019-00294-x.

[^0]paper by P. Nevai , whom they thank, very shortly after their work appeared in arXiv. They apologize for this overview.

References

1. von Golitschek, A., Lorentz, G.G.: Bernstein's inequalities in $L_{p}, 0 \leq p \leq \infty$, Rocky Mountain. J. Math. 19, 145-156 (1989)
2. Mahler, K.: On the zeros of the derivative of a polynomial. Proc. R. Soc. Lond. Ser. A 264, 145-154 (1961)
3. Nazarov, F.: Private communication (1994)
4. Queffélec, H., Saffari, B.: On Bernstein's inequality and Kahane's ultraflat polynomials. J. Fourier Anal. Appl. 2(6), 519-582 (1996)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: R. Zarouf
 rachid.zarouf@univ-amu.fr
 H. Queffélec

 Herve.Queffelec@univ-lille.fr
 1 USTL, Laboratoire Paul Painlevé U.M.R. CNRS 8524 et Fédération CNRS Nord-Pas-de-Calais FR 2956, Université Lille Nord de France, 59655 Villeneuve d'Ascq Cedex, France

 2 Laboratoire Apprentissage, Didactique, Evaluation, Formation, Aix-Marseille Université, 32 Rue Eugène Cas CS 90279, 13248 Marseille Cedex 04, France
 3 Department of Mathematics and Mechanics, Saint Petersburg State University, 28, Universitetski pr., St. Petersburg, Russia 198504

