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Abstract
By using the inner diameter distance condition we define and investigate new, in such
a generality, class F of homeomorphisms between domains in metric spaces and
show that, under additional assumptions on domains, F contains (quasi)conformal,
bi-Lipschitz and quasisymmetric mappings as illustrated by examples. Moreover, we
employ a prime ends theory in metric spaces and provide conditions allowing con-
tinuous and homeomorphic extensions of mappings in F to topological closures of
domains, as well as homeomorphic extensions to the prime end boundary. Domains
satisfying the bounded turning condition, locally and finitely connected at the bound-
ary and the structure of prime end boundaries for such domains play a crucial role in
our investigations. We apply our results to show the Koebe theorem on arcwise lim-
its for mappings in F . Furthermore, relations between the Royden boundary and the
prime end boundary are presented. Our work generalizes results due to Carathéodory,
Näkki, Väisälä and Zorič.
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1 Introduction

The extension problem for mappings between two open domains has been studied
in various settings and for various kinds of extension properties. The classical set-
ting, from which our studies are originated, includes domains in the Euclidean spaces
and conformal mappings. In 1913 Carathéodory [11] and Osgood–Taylor [43] proved
independently that a conformal mapping between Jordan domains extends to a home-
omorphism of the closures of domains. Counterexamples, such as a slit-disc, show that
in general a homeomorphic extension need not be possible. However, Carathéodory
[11] created and studied an abstract type of a boundary, the so-called prime end bound-
ary and proved that for planar simply-connected domains a homeomorphic extension
of a conformal map is possible with respect to the prime end closure of the target
domain. Subsequently, prime ends and their properties have been studied in more
general domains and in higher dimensions, see Sect. 3 for further references. More-
over, prime ends have been employed to investigate other topics, e.g. the theory of
continua, see Carmona–Pommerenke [12], local connectivity of sets, see Rempe [45],
the dynamical systems, see Koropecki–Le Calvez–Nassiri [29], the boundary behav-
ior of solutions to elliptic PDEs, see Ancona [4] and the studies of the p-harmonic
Dirichlet problem in metric spaces, see Björn [7], Björn–Björn–Shanmugalingam [9],
Estep–Shanmugalingam [15] and [2].

Another direction of related studies arises from quasiconformal mappings (qc-
mappings for short). In this setting the higher-dimensional counterpart of the
Carathéodory–Osgood–Taylor theorem for Jordan domains fails to exist as showed by
Kuusalo [32]. Nevertheless, for Euclidean domains locally connected at the boundary
and quasiconformally collared the homeomorphic extension of a qc-mapping exists,
see Väisälä [50, Section 17] and Gehring [17]; see also Gehring–Martio [18], Herron–
Koskela [25] and Näkki [39,40] for further boundary properties of domains implying
the homeomorphic and continuous extension properties. Moreover, results concerning
homeomorphic extensions of qc-mappings with respect to prime end closures of a tar-
get domain are due toNäkki [42] andVäisälä [52]; see also Ilyutko–Sevost’yanov [26],
Sevost’yanov [46], Sevost’yanov–Petrov [44] and Kovtonyuk–Petkov–Ryazanov [31]
for related works involving prime ends.

Let us alsomention that the extension problemshave been investigated in the context
of other generalizations of (quasi)conformal mappings, such as Q-homeomorphisms,
see e.g. Chapter 13 in Martio–Ryazanov–Srebro–Yakubov [36].

The extension results presented above are studied largely for Euclidean domains.
The main goal of our work and the key novelty is to study extension properties for a
class of homeomorphisms between domains in metric spaces defined via the internal
diameter distance, denoted by distinn, see Definition 1.We extract a condition essential
for continuous and homeomorphic extensions to the topological closures and closures
with respect to the prime end boundary. Namely, we say that a homeomorphism f :
� → �′ belongs to a class F(�,�′) if the following condition holds for any two
connected sets E, F � �:

distinn(E, F) = 0 if and only if distinn( f (E), f (F)) = 0,
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where � ⊂ X and �′ ⊂ Y are bounded domains in complete doubling quasiconvex
metric spaces X and Y . See Definition 13 and Sect. 4 for details and further remarks.
According to our best knowledge, classF has not been studied before in such a general
setting. We illustrate the above definition in Examples 2–5, where we show that,
under additional assumptions on domains, conformal, quasiconformal, bi-Lipschitz
and quasisymmetric mappings belong to class F . Among the boundary properties of
domains employed in our studies let us mention the local and finite connectedness
at the boundary, also collardness, qc-flatness, uniformity and the bounded turning
condition, see Preliminaries.

The essential role in our studies is played by the prime ends theory for domains
in metric spaces developed recently in [1,15], as an extension conditions are stated
in terms of prime ends. We recall basic definitions for prime ends in Sect. 3. Further
properties of prime ends such as the structure of the prime end boundary for domains
finitely (locally) connected at the boundary are recalled in Sect. 5 where they are
applied, seeTheorems1–2 andCorollary 1. In the same sectionweprove the key lemma
of the paper, Lemma 3. The result shows that mappings in classF map chains of sets to
chains and preserve equivalency of chains, giving rise to the corresponding properties
for (prime) ends. Moreover, for a mapping inF and a target domain finitely connected
at the boundary it holds that a preimage of a singleton prime end is a singleton, that is
both prime ends have singleton impressions (see Definition 10(3)). Using Lemma 3
we establish the following three types of extension results for homeomorphisms inF :

(1) An extension to a continuous map between closures of domains (Theorem 3).
In particular, if a domain� satisfies the bounded turning condition and a domain
�′ is finitely connected at the boundary, then f ∈ F(�,�′) extends continuously
to a mapping F : � → �′, cf. Corollary 2.

(2) An extension to a homeomorphism between closures of domains (Theorem 4).
(3) An extension to a homeomorphism between the topological and the prime end

boundaries (Theorem 5).
As corollaries we retrieve results for qc-mappings: a counterpart of Theorem
4.2 in Näkki [42] in quasiconformally collared domains, see Corollary 3 and
an extension result for target domains finitely connected at the boundary due to
Väisälä [52, Section 3.1], see Corollary 4.

Last section is devoted to studies of two applications of extension results: in Sect. 6.1
we present a variant of the Koebe theorem, see Theorem 6. Namely, we show that
mappings in class F between domains locally and finitely connected at the boundary,
respectively, have arcwise limits along end-cuts.

Section 6.2 brings on stage another type of an abstract boundary, the Royden
boundary. Upon stating the necessary definitions we recall an extension criterion for
quasiconformal mappings expressed in terms of fibers, see Theorem 7. Then we show
that for Euclidean domains finitely connected at the boundary fibers over a given
boundary point correspond to prime ends with impressions at this point, see Theo-
rem 8. As a corollary, we obtain an upper estimate for a number of components of
fibers in the Royden compactification for John domains, see Corollary 6.
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2 Preliminaries

Let (X , dX ) denote a metric space X with a distance function dX (sometimes denoted
in our work also as d, if the considered space X is fixed or clearly follows from the
context of the discussion). Let further � ⊂ X stand for an open bounded connected
domain in X . Unless stated otherwise, in what follows we will study only bounded
domains. By a curve in X we understand a continuous mapping γ : [a, b] → X . The
length of γ is denoted by l(γ ) and we say that γ is rectifiable if l(γ ) < ∞. Every
rectifiable curve admits the so-called arc-length parametrization, see e.g. Section 5.1
in Heinonen–Koskela–Shanmugalingam–Tyson [23].

Let γ be a curve in �. We define its diameter as follows:

diam γ := sup dX (x, y),

where the supremum is taken over all points x, y ∈ γ .
We say that a metric space (X , dX ) satisfies the set of assumptions (A) if the

following hold.

Assumptions (A)

(1) (X , dX ) is a complete doubling metric space.
(2) X is quasiconvex.

The first assumption on space X implies, among other properties, that X is proper,
i.e. closed and bounded sets in X are compact. The second allows us to infer that
if � ⊂ X is an open connected set, then � is rectifiably connected and, thus path-
connected, see Lemmas 4.37 and 4.38 in Björn–Björn [8]. Unless stated otherwise,
all metric spaces considered from now on satisfy Assumptions (A).

The following metrics will play an important role in the paper, as they are used
in the definition of chain and (prime) ends (see Definitions 10 and 11) and in the
definition of the main class of mappings studied in the paper, see Definition 13.

Definition 1 We define the inner diameter distance dinn on � by

dinn(x, y) = inf diam γ,

where the infimum is taken over all rectifiable curves γ joining x, y ∈ � such that
γ ⊂ �.

The definition of dinn naturally extends to the distance between two sets E, F ⊂ �

denoted distinn(E, F).
The above metric is more commonly called relative diameter distance, sometimes

known as internal/intrinsic diameter distance. Clearly, under our assumptions, dinn
is a metric on �. One can also define the similar distance function, the so-called
Mazurkiewicz metric between points x and y by taking the infimum of diameters of
all connected sets in � containing x, y, cf. Definition 8.10 in [1]. Let us denote such
metric by dM . See also Björn–Björn–Shanmugalingam [9,10] for further studies on
Mazurkiewicz distance and its role in the geometry of sets and nonlinear potential
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theory on metric spaces, see also Mazurkiewicz [37]. The following relations between
the aforementioned metrics hold for all x, y ∈ �:

dinn(x, y) ≥ dM (x, y) ≥ dX (x, y). (1)

In particular, if dinn(x, y) = 0, then dM (x, y) = 0 and dX (x, y) = 0.

Definition 2 (Bounded turning condition)We say that a completemetric space (X , dX )

satisfies the L-bounded turning condition for some L ≥ 1, if for all x, y ∈ X there
exists a continuum K containing x and y such that

diamK ≤ LdX (x, y).

Let us comment on the above definition.

Remark 1

(1) The spaces satisfying the L-bounded turning condition are also known as L-
linearly connected spaces or LLC(1), cf. e.g. Hakobyan–Herron [19, Sections
2.B, 4.B] and MacKay [34].

(2) It turns out that in Definition 2 one may assume that K is an arc, at the cost of
possibly increasing L by an arbitrarily small amount, see e.g. [34].

(3) A domain satisfying the bounded turning condition is locally connected. More-
over, such a domain is locally connected at every point of its boundary, see e.g.
discussion in [19].

Boundary of domains in metric spaces
In what follows we will study the boundary behavior of mappings. For this reason,
we gather the necessary definitions of various types of boundary points and related
domains. Since definitions and examples below rely or are related to the notion of the
curve modulus, we will first recall it, see e.g. Väisälä [50, Chapter 6] for discussion in
the Euclidean setting and Heinonen–Koskela [22] and Heinonen [20, Chapter 7] for
the definitions and applications of the modulus in metric measure spaces.

Let � be a family of curves in a domain � ⊂ X and let 1 ≤ p < ∞. Then the
p-modulus of curve family � is defined as follows:

Modp� := inf
�∈F(�)

∫
X

�pdμ,

where μ is a Borel regular measure in metric space X , whereas F(�) stands for the
set of admissible functions. Namely, a nonnegative Borel function � : X → [0,∞] is
admissible for � if

∫
γ

�ds ≥ 1,

for every locally rectifiable γ ∈ �. If F(�) is empty, then by convention we define
Modp� = ∞. This happens if � contains a constant curve. Among fundamental
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properties of the p-modulus we mention that it defines an outer measure on the set of
all curves in X .

Let � ⊂ X be a domain and let E, F ⊂ �. By Modp(E, F,�) we denote the
modulus of the curve family �(E, F,�) consisting of all rectifiable curves γ in �

which join E and F , i.e. one of the endpoints of γ belongs to E , the other to F and
γ \ (E ∪ F) ⊂ �.

Definition 3 We say that a domain� in a metric measure space (X , dX ) equipped with
a Q-regular measure is quasiconformally flat(QC-flat for short) at x ∈ ∂� if for any
pair of connected subsets E, F ⊆ � such that x ∈ E ∩ F we have ModQ(E, F,�) =
∞.

In order to illustrate the definition let us mention that a locally Q-Loewner uniform
domain is QC-flat at every boundary point as follows from Fact 2.12 in Herron [24].

Next, we define a class of quasiconformally collared domainswhich plays an impor-
tant role in the studies of the boundary behavior of quasiconformal mappings, see
Väisälä [50, Chapter 17], Näkki [42] in the Euclidean setting and [3, Section 3.3] for
the studies in Heisenberg group H1.

Definition 4 Let � ⊂ Rn be a domain and let x ∈ ∂�. We say that � is quasiconfor-
mally collared at x (collared for short) if there exists a neighborhood U of x (in Rn)
and a homeomorphism g from U ∩ � onto {x ∈ Rn : |x | < 1, xn ≥ 0} such that g
restricted to U ∩ � is quasiconformal.

Notice that by Topology g maps U ∩ ∂� to a (n − 1)-dimensional ball in Rn .

The following class of domains is crucial from the point of view of extension results
studied below, as well as, from the perspective of prime ends theory, as it turns out
that prime end boundaries have particularly simple structure in such domains, see
Theorem 1 below and discussion following it, see also Sections 10 and 11 in [1].

Definition 5 We say that � ⊂ X is finitely connected at a point x ∈ ∂� if for every
r > 0 there exists a bounded open setU in X containing x such that x ∈ U ⊂ B(x, r)
and U ∩ � has has only finitely many components. If � is finitely connected at every
boundary point, then we say it is finitely connected at the boundary.

In particular, if U ∩ � has exactly one component, then we say that � is locally
connected at x ∈ ∂�.

If a domain � satisfies Definition 5 at every boundary point, then we say that � is,
respectively, finitely (locally) connected at the boundary.

Example 1 (domains finitely and locally connected at the boundary) The following
domains are finitely connected at the boundary:

(1) John domains in complete metric spaces, see [1, Theorem 11.3]
(2) Weakly linearly locally connected domains inRn (WLLC domains), see Herron–

Koskela [25, Section 2]
(3) Sobolev capacity domains (SC domains), see [25, Section 2]
(4) Almost John domains, see Definition 11.4 and Theorem 11.5 in [1].

The following domains are locally connected at the boundary:
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(1) Uniform domains in complete metric spaces, see [1, Proposition 11.2]
(2) Linearly locally connected domains in Rn (LLC domains), see [25, Section 2]
(3) Quasiextremal distance domains (QED), see [25, Section 2]
(4) Linearly connected domains, see Hakobyan–Herron [19, Section 2.C]
(5) Jordan domains in Rn , see [50, Definition 17.19, Theorem 17.20]
(6) Quasiconformally collared domains, see Definition 4 and Väisälä [50, Theorem

17.10] in Euclidean setting; see also Definition 3.9 and Observation 3.2 in [3] in
the setting of H1.

Quasiconformal mappings and their counterparts in metric spaces
Our studies for mappings largely grow from the similar studies for (quasi)conformal
mappings. For the rudimentary properties of quasiconformal mappings we refer to e.g.
[50] in Euclidean setting and [22] in the metric setting. Relations between several def-
initions of quasiconformal mappings in metric measure spaces, including conditions
implying their equivalence, are presented e.g. in Koskela–Wildrick [30] and Williams
[49]. Below we employ the following definition.

Definition 6 Let (X , dX ) be a Q-regular metric measure space (Q > 1) and �,�′ ⊂
X be domains (not necessarily bounded). A homeomorphism f : � → �′ is called
K f -quasiconformal in � if there exists a constant K f ≥ 1 such that for any family of
curves � in � we have

1

K f
ModQ(�) ≤ ModQ( f �) ≤ K fModQ(�). (2)

If X = Rn and K f = 1, then f is conformal.

In next definition we present another generalization of quasiconformal mappings in
metric spaces, the so-called quasisymmetricmappings. The concept was introduced by
Ahlfors–Buerling [6] in the context of the boundary behavior of planar quasiconformal
mappings and in themetric spaces byTukia–Väisälä [48].We remark that among exam-
ples of quasisymmetricmappings there are bi-Lipschitzmappings, and quasiconformal
mappings between domains in Rn can be characterized as locally quasisymmetric, see
Heinonen [20, Theorems 11.14 and 11.19] and Section 4 in Heinonen–Koskela [22].

Definition 7 Let (X , dX ) and (Y , dY ) be metric spaces. A homeomorphism f : X →
Y is called η-quasisymmeric if there exists a homeomorphism η : [0,∞) → [0,∞)

such that the following condition holds for all triples a, b, x of distinct points in X :

dY ( f (x), f (a))

dY ( f (x), f (b))
≤ η

(
dX (x, a)

dX (x, b)

)
.

We refer to [20,22] for further properties of quasisymmetric mappings and to [30]
for a survey of relations between quasisymmetricity and various definitions of quasi-
conformal maps (in particular, see Theorem 4.3 in [30]).

Definition 8 Let (X , dX ) and (Y , dY ) be metric spaces and � ⊂ X , �′ ⊂ Y be
domains. A map f : � → �′ is called L-bi-Lipschitz if there exists a constant L such
that the following condition holds
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1

L
dX (x, y) ≤ dY ( f (x), f (y)) ≤ LdX (x, y) for any x, y ∈ �.

In order to see thesemappings in thewider context, let us recall that in Euclidean set-
ting, an orientation preserving bi-Lipschitz map is a map of bounded length distortion
(the so-called BLD-map), and thus quasiregular. See Chapter 14.78 in Heinonen–
Kilpeläinen–Martio [21] and further references therein. Furthermore, in the setting
of metric spaces, one observes that an L-bi-Lipschitz map is η-quasisymmetric with
η(t) = L2t (cf. Definition 7), see e.g. Chapter 10 in Heinonen [20].

3 Prime ends inmetric spaces

The first theory of prime ends is due to Carathéodory [11] who studied prime ends
in simply-connected domains in the plane. For a comprehensive introduction to
Carathéodory’s prime ends we refer to Chapter 9 of a book by Collingwood–Lohwater
[13]. Subsequently, the theory has been developing to include more general domains
in the plane and in higher dimensional Euclidean spaces, e.g. Freudenthal [16], Kauf-
man [27], Mazurkiewicz [38], and more recently Epstein [14] and Näkki [42]. The
latter one defines prime ends based on the notion of modulus, and therefore, suitable
to investigate the quasiconformal mappings in Rn (cf. [3] for a related to [42] prime
ends theory in the Heisenberg group H1).

In this paper we study the following types of ends and prime ends in a more
general setting of metric spaces recently proposed in [1,15]. In order to introduce
basic definitions, it is enough to assume that (X , dX ) is a complete doubling metric
space. The construction of (prime) ends consists of number of auxiliary definitions.
First, we define acceptable sets.

Let � � X be a bounded domain in X , i.e. a bounded nonempty connected open
subset of X that is not the whole space X itself.

Definition 9 We call a bounded connected set E � � an acceptable set if E∩∂� �= ∅.
By discussion in [1], we know that boundedness and connectedness of an acceptable

set E implies that E is compact and connected. Furthermore, E is infinite, as otherwise
we would have E = E ⊂ �. Therefore, E is a continuum. Recall that a continuum is
a connected compact set containing at least two points.

Definition 10 We call a sequence {Ek}∞k=1 of acceptable sets a chain if it satisfies the
following conditions:

(1) Ek+1 ⊂ Ek for all k = 1, 2, . . .,
(2) distM(� ∩ ∂Ek+1,� ∩ ∂Ek) > 0 for all k = 1, 2, . . .,
(3) The impression

⋂∞
k=1 Ek ⊂ ∂�.

We remark that the impression is either a point or a continuum, since {Ek}∞k=1 is
a decreasing sequence of continua. Furthermore, Properties 1 and 2 above imply that
Ek+1 ⊂ IntEk . In particular, IntEk �= ∅.

Our definition of a chain differs from that in Definition 4.2 in [1] as now we use
the Mazurkiewicz distance instead of the underlying metric. Such a modification is
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convenient since class F of mappings is defined in terms of the related inner diameter
distance, also due to relations (1). Furthermore, in what follows we will often study
paths and their behavior under homeomorphisms in class F , also we will appeal to
constructions involving paths and continua containing them. Let us also emphasize
that such a modification does not affect results from [1], cf. Definition 2.3 in Estep–
Shanmugalingam [15] and the discussion following it for comparison between the
above definition and Definition 4.2 in [1]. In general, there are more chains and ends in
the sense of the above definition than in [1] (see Definition 11 below), and thus a priori
a prime end in the setting of [1] need not be prime in our sense. We further note, that
results in [1] employed below, which use the analog of condition (2) in Definition 10
for d instead of distM are, in fact, based on the positivity of theMazurkiewicz distance.
Nevertheless, upon appealing to results from [1], we comment about consequences of
the difference between definitions here and in [1].

Definition 11 (1) We say that a chain {Ek}∞k=1 divides the chain {Fk}∞k=1 if for each k
there exists lk such that Elk ⊂ Fk (for all l ≥ lk).

(2) Two chains are said to be equivalent if they divide each other.
(3) A collection of all mutually equivalent chains is called an end and denoted [Ek],

where {Ek}∞k=1 is any of the chains in the equivalence class.
(4) The impression of [Ek], denoted I [Ek], is defined as the impression of any

representative chain.
The collection of all ends is called the end boundary and is denoted ∂E�.

The impression of an end is independent of the choice of representative chain, see
[1, Section 4]. Note also that if a chain {Fk}∞k=1 divides {Ek}∞k=1, then it divides every
chain equivalent to {Ek}∞k=1. Furthermore, if {Fk}∞k=1 divides {Ek}∞k=1, then every
chain equivalent to {Fk}∞k=1 also divides {Ek}∞k=1. Therefore, the relation of division
extends in a natural way from chains to ends, defining a partial order on ends.

Definition 12 We say that an end [Ek] is a prime end if it is not divisible by any other
end. The collection of all prime ends is called the prime end boundary and is denoted
∂P�.

Similarly, the collection of all prime ends with singleton impressions is denoted
∂SP�.

For the convenience of readers further results describing accessible points and the
structure of prime ends in domains (locally) finitely connected at the boundary are
presented in Sect. 5, where they are applied.

4 The classF of mappings

The following class of mappings is the central subject of our studies. Recall the set
of assumptions (A) in Preliminaries and also our longstanding assumption that the
domains studied in the paper are bounded.

Definition 13 Let (X , dX ) and (Y , dY ) be metric spaces both satisfying assumptions
(A). We say that a homeomorphism f from a domain � ⊂ X onto a domain �′ ⊂ Y
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belongs to class F(�,�′) if for any two connected sets E, F � � it holds that

distinn(E, F) = 0 if and only if distinn( f (E), f (F)) = 0. (F)

In the definition above we provide a minimal set of assumptions on the underlying
domains. However, in further studies and examples illustrating this class of mappings
we need to impose various additional conditions on the geometry of domains. This is
the case, for instance, when one wants to check when all quasiconformal mappings
between two given domains belong to class F , see examples below and Remark 6.

Similar class of mappings was introduced and studied in the Euclidean setting
in the context of extension properties of homeomorphisms by Zorič [53] (with the
inner distance metric called in [53], the Mazurkiewicz metric). However, in [53] one
studies only the case of homeomorphisms between a ball and its image under given
homeomorphism.Moreover, the results of [53] heavily rely on the discussion of similar
extension results for quasiconformalmappings between a Euclidean ball and its image.

ClassF contains severalwell-known classes ofmappings as shownby the following
examples. We present them in both Euclidean and metric settings and use various
techniques to determine when a homeomorphism belongs to F . When discussing the
Euclidean case we may assume without the loss of the generality that Rn is equipped
with the Lebesgue measure, denoted by μ.

Example 2 (a) ((Quasi)conformal mappings I) Let Bn ⊂ Rn be a ball and f be
(quasi)conformal mapping of Bn onto a collared domain �′ ⊂ Rn . Then f ∈
F(Bn,�′).

Indeed, let E, F ⊂ Bn be connected such that distinn(E, F) = 0. Then it also holds
that d(E, F) = 0. Thus, there exists x ∈ E ∩ F and we need to consider two cases:
x ∈ Int Bn and x ∈ ∂Bn .

In the first case Modn(E, F, Bn) = ∞, as �(E, F, Bn) contains a constant
curve. Condition (2) in Definition 6 implies that Modn( f (E), f (F),�′) = ∞ which
together with the injectivity of f in turn again imply that �( f (E), f (F),�′) contains
a constant curve. Hence, distinn( f (E), f (F)) = 0. The similar reasoning gives us
implication in the opposite direction.

On the other hand, if x ∈ ∂Bn , then since Bn is QC-flat, we have by Def-
inition 3 that Modn(E, F, Bn) = ∞. By quasiconformality of f we have that
Modn( f (E), f (F),�′) = ∞. Moreover, since �′ is collared (see Definition 4), then
Lemma 2.3 in Näkki [42] implies that distinn( f (E), f (F)) = 0.

(b) (bi-Lipschitz mappings) Let f be a bi-Lipschitz mapping between domains � and
�′ in metric spaces such that� and�′ are linearly connected (cf. Definitions 2 and 8).
Then f ∈ F(�,�′).

The proof is analogous to the one in part a). Using the above notation, lin-
ear connectedness of �′ is used in order to infer from dY ( f (E), f (F)) = 0 that
distinn( f (E), f (F)) = 0. Similarly, linear connectedness of � is employed to show
that dX (E, F) = 0 implies that distinn(E, F) = 0.

It turns out that the above example can be generalized to include the case of a target
domain �′ ⊂ Rn finitely connected at the boundary. We present it separately, since
the argument differs from the above.
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Example 3 Let � = Bn ⊂ Rn and �′ ⊂ Rn be a domain finitely connected at the
boundary. Then, every quasiconformal map f ∈ F(Bn,�′).

In order to show this let us assume, that with the notation of Example 2(a), it
holds that distinn(E, F) = 0, for connected sets E, F ⊂ Bn as in Definition 13. If
(E ∩ F) ∩ � �= ∅, then, as above, by injectivity of f we immediately obtain that
distinn( f (E), f (F)) = 0. Let us, therefore, assume that E and F intersect only at the
boundary of�. Then, as in the previous example by QC-flatness of Bn , we obtain that

Modn( f (E), f (F),�′) = ∞. (3)

Let us suppose on the contrary, that distinn( f (E), f (F)) > 0. By the assumption
f (E) intersects with f (F) only at ∂�′. Therefore, Theorem 7.1 in [50] leads to the
estimate:

Modn( f (E), f (F),�′) ≤ μ(�′)
distinn( f (E), f (F))

< ∞. (4)

Here μ(�′) < ∞, since �′ is a domain and hence bounded (see the beginning of
Preliminaries) whileμ is here assumed to be the Lebesguemeasure (see the discussion
before Example 2).

This gives us an immediate contradiction with (3), and so also in this case we get
that distinn(E, F) = 0 implies that distinn( f (E), f (F)) = 0.

In order to prove the opposite implication, let us choose E, F ⊂ �′ such that
distinn(E, F) = 0. Moreover, let x ∈ E ∩ F ∩ ∂�′. Finite connectedness of �′ at
the boundary implies that for any r > 0 and any neighborhood U ⊂ B(x, r) of x it
holds that at least one of the connected components of E ∩ U and at least one of the
connectedness components of F ∩ U belong to the same connectedness component
U (r) of U , as otherwise distinn(E, F) > 0. Consider a (minimizing) sequence of
curves (γi ) joining E and F in U (r) such that inf i∈N diam γi = 0 (= distinn(E, F)).
Since Bn is locally connected at the boundary and f is a homeomorphism, it holds
that

inf
i∈N diam f −1(γi ) = 0 = distinn( f

−1(E), f −1(F)).

and the proof of the Property (F) for f is completed.

Next example generalizes observations from Example 2 to the setting of metric
spaces. The example appeals to notions of a uniform domain and the Loewner condi-
tion. For their definitions and importance we refer to e.g. Heinonen [20, Chapters 8-9],
Heinonen–Koskela [22] and Väisälä [51]. Let us just mention that among examples of
uniform domains there are quasidisks, bounded Lipschitz domains and the von Koch
snowflake-type domains.

Example 4 (Quasi)conformal mappings II) Let � be a uniform domain in a locally
compact Q-regular Q-Loewner space X and�′ ⊂ Y be a domain locally connected at
the boundary for spaces X ,Y as in Definition 13. Then, quasiconformal mappings as
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in Definition 6 belong to class F(�,�′). In order to prove this statement we proceed
similarly as in Example 2 and distinguish two cases.

With the notation of Example 2, if x ∈ Int�, then as above we appeal to the
modulus definition of quasiconformal mappings, their injectivity and relations (1) to
obtain that condition (F) of Definition 13 holds.

Let now x ∈ ∂�, sets E, F ⊂ � be as in Definition 13 and let f ∈ F(�,�′).
By Fact 2.12 in Herron [24] we know that � is QC-flat at x , cf. Definition 3. This,
together with the uniformity of � and quasiconformality of f allows us to infer from
distinn(E, F) = 0 that ModQ(E, F,�) = ∞ and so ModQ( f (E), f (F),�′) = ∞.

Suppose that distinn( f (E), f (F)) > 0. Thus, f (E) ∩ f (F) = ∅ and we are left
with two cases to consider:

(
f (E) ∩ f (F)

)
∩ ∂�′ = ( �=)∅.

In both cases the reasoning is similar and, therefore, we present the argument only
for the case when there exists y ∈ f (E) ∩ f (F) ∩ ∂�′. Then, the definition of local
connectedness at the boundary gives us that for any ball B(y, r)wefind aneighborhood
U ⊂ B(y, r) of y such thatU ∩�′ is connected and path-connected (Y is quasiconvex
by Assumptions (A)). Thus, for every r > 0 we find a curve γr ⊂ U ∩ �′ ⊂ B(y, r)
such that γr ∩ f (E) �= ∅ �= γr ∩ f (F). By letting r → 0 we obtain that diamγr → 0
which contradicts assumption that distinn( f (E), f (F)) > 0. Thus, we showed that
distinn(E, F) = 0 implies that distinn( f (E), f (F)) = 0.

In order to prove the opposite implication we use the similar approach and assume
that distinn( f (E), f (F)) = 0. For any sequence (γn) of curves joining f (E) with
f (F) we consider the sequence of curves ( f −1(γn)) joining E and F . Furthermore,
we recall that a uniform domain � is locally connected at the boundary (see e.g. [1,
Proposition 11.2]). Then, the above reasoning results in distinn(E, F) = 0.

Another wide class of mappings belonging to F is the class of quasisymmetric
mappings, see Definition 7 and the discussion before it.

Example 5 (Quasisymmetric mappings in metric spaces) Let �,�′ ⊂ X be domains
locally connected at the boundary. Let further f : � → f (�) := �′ be an η-
quasisymmetric (cf. Definition 7). Then f ∈ F(�,�′).

Suppose that, under the notation of Definition 13, distinn(E, F) = 0 for connected
subsets E, F in �. Similarly, to the discussion in above examples it is enough to
consider the case when E ∩ F ∩ ∂� �= ∅. Then, there exists a sequence of curves
(γi ) joining E and F in � such that limi→∞ diam γi = 0. Moreover, since � is
locally connected at the boundary we find a connected set U ⊂ � contained in any
ball centered at some x ∈ ∂� ∩ (

E ∩ F
)
and containing all γi for large enough i .

Proposition 10.8 in [20] gives us the following estimate:

diam f (γi ) ≤ diam f (U )η

(
2
diam γi

diamU

)
→ 0 for i → ∞,

where in the last step we again appeal to connectedness of � and infer from
[20, Theorem 11.3] (see also Tukia–Väisälä [48, Corollary 3.12]) that η(0) = 0.
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Since η is continuous, we have diam f (γi ) → 0 for i → ∞. In a consequence,
distinn( f (E), f (F)) = 0. By Proposition 10.6 in [20] we know that f −1 is quasisym-
metric and, thus a reasoning analogous to the one for f gives us also the opposite
implication in condition (F).

5 Main results

The main purpose of this section is to show three types of extension results for map-
pings in class F :

• An extension of a homeomorphism between domains to a continuousmap between
closures of domains (Theorem 3).

• An extension of a homeomorphism between domains to a homeomorphism
between closures of domains (Theorem 4).

• An extension of a homeomorphism between domains to a homeomorphism
between the topological and the prime end boundaries (Theorem 5).

We will need the following definitions and results studied in [1].
First, we recall a notion of accessible boundary points. Such points appear in studies

of the boundary extension properties of quasiregular and quasiconformal mappings
and there are several variants of the following definition (requiring rectifiability or
injectivity of a curve), see e.g. Näkki [42, Section 7.1].

Definition 14 (cf. Definition 7.6 in [1]) We say that a point x ∈ ∂� is an accessible
boundary point if there is a (possibly nonrectifiable) curve γ : [0, 1] → X such that
γ (1) = x and γ ([0, 1)) ⊂ �. We call γ an end-cut of � from x .

The following lemma gives us a method of constructing prime ends at accessible
boundary points, see Lemma 7.7 in [1]. For the sake of completeness of presentation
we state this result specializing it to our case. The lemma is used in the proof of the
Koebe theorem as well as in the studies of the Royden boundary, see Sect. 6.

Lemma 1 (Lemma 7.7 in [1]) Let � ⊂ X be a domain satisfying the bounded turning
condition. Let γ : [0, 1] → X be a curve such that γ ([0, 1)) ⊂ � and γ (1) = x ∈ ∂�.
Let also (rk) be a strictly decreasing sequence converging to zero as k → ∞. Then,
there exist a sequence (tk) of positive numbers smaller than 1 and a prime end [Ek]
such that

(1) I [Ek] = {x},
(2) γ ([tk, 1)) ⊂ Ek and
(3) Ek is a component of � ∩ B(x, rk) for all k = 1, 2, . . ..

If [Ek] is an end and there exists a curve γ as in the above lemma, then we say that
x ∈ ∂� is accessible through [Ek].
Remark 2 Let X be locally path-connected, i.e. every neighborhood of a point x ∈ X
contains a path-connected neighborhood.TheMazurkiewicz–Moore–Menger theorem
asserts that if X is a locally connected proper metric space, then X is locally path-
connected, see Kuratowski [33, Theorem 1, pg 254]. In particular, every component
of an open set is open and path-connected, see [33, Theorem 2, pg. 253].



1954 T. Adamowicz

Recall the following important observation, see Remark 7.4 in [1].

Remark 3 Let F ⊂ � be a a connected set intersecting both sets A and � \ A. Then
F ∩ (� ∩ ∂A) �= ∅.

An immediate consequence is that if Ek , Ek+1 and F are connected subsets of �

satisfying

Ek+1 ⊂ Ek, Ek+1 ∩ F �= ∅ and F \ Ek �= ∅,

then F meets both � ∩ ∂Ek+1 and � ∩ ∂Ek , which implies in turn that dist(� ∩
∂Ek+1,� ∩ ∂Ek) ≤ diamF .

Proof of Lemma 1 For the proof we refer to Lemma 7.7 in [1] and note that [Ek] is an
end regardless whether in Definition 10(2) we consider dist or distM. However, if in
Definition 10(2) one assumes condition with distM, then in order to show that [Ek] is
a prime end one needs, additionally, to check that also Proposition 7.1, Lemma 7.3
and Remark 7.4 in [1] remain true for the Mazurkiewicz distance instead of d. This
easily follows from Remark 2 and the bounded turning condition holding for �. ��

We will also need the following description of prime ends for domains finitely
connected at the boundary.

Theorem 1 (Theorem 10.8 in [1]) Assume that� is finitely connected at the boundary.
Then all prime ends have singleton impressions, and every x ∈ ∂� is the impression
of a prime end and is accessible.

In the special case of a domain � locally connected at the boundary, we are able to
provide more detailed construction of prime ends.

Corollary 1 (Corollary 10.14 in [1]) If � is locally connected at the boundary and
[Ek] is a prime end in �, then I [Ek] = {x} for some x ∈ ∂� and there exist radii
r xk > 0, such that B(x, r xk ) ∩ � ⊂ Ek, k = 1, 2, . . .. Furthermore, for each x ∈ ∂�,
the connectedness components of sets

Gk = B(x, 1/k) ∩ �, k = 1, 2, . . . ,

which contain x in their boundaries define the only prime end [Gk] with x in its
impression.

In what follows, we will often appeal to chains/prime ends [Gk] as canonical
chains/prime ends and denote them [Gx

k ] or, for short, [Gk] if a boundary point asso-
ciated with [Gk] will be clear from the context of discussion.

Denote by ∂SP� the set of all singleton prime ends.

Theorem 2 (Theorem 10.10 in [1])A domain� is finitely connected at the boundary if

and only if�
P = �∪∂SP� is compact and all prime ends have singleton impressions.

The following auxiliary result shows that given a domain� and a sequence {Ek}∞k=1
of subdomains in � satisfying first two conditions of Definition 10 and a sequence of
points in� converging to a point in the impression of {Ek}∞k=1, we can infer that every
Ek contains almost every element of the sequence of points (cf. Definition 8.1 in [1]
for the notion of convergence of a sequence of points to an end).
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Lemma 2 Let � ⊂ X be a domain satisfying the bounded turning condition. Suppose
that {Ek}∞k=1 is a sequence of bounded subdomains of � such that the following
conditions hold:

(1) Ek+1 ⊂ Ek for all k = 1, 2, . . .,
(2) distM(� ∩ ∂Ek+1,� ∩ ∂Ek) > 0 for all k = 1, 2, . . ..

Let (xn) be a sequence of points in � such that xn → x ∈ I [Ek] in dX . Then, for all
k there exists nk such that xn ∈ Ek for all n > nk. The same assertion holds if we
assume dist or distinn instead of distM.

Proof Suppose that the assertion of the lemma is false. Then, we may find a subse-
quence of (xn), denoted (x ′

n) ⊂ �, and k0 ∈ N such that x ′
n → x ∈ I [Ek] in dX and

x ′
n /∈ Ek0 for all n > nk0 . On the other hand the convergence of (x ′

n) to x implies
that there exists a subsequence (x ′

nl ) such that x ′
nl → x in metric dX for l → ∞

with a property that x ′
nl ∈ Ek0+2 for sufficiently large l. Indeed, the bounded turn-

ing condition implies that � is locally connected at the boundary, see Remark 1(3).
Hence, Theorem 2 gives us that all prime ends in ∂P� are singletons. Therefore, [Ek]
is equivalent to a singleton prime end given by a chain of shrinking balls centered at
I [Ek] = {x} intersected with �.

Let now γ be any continuous path in � joining two given x ′
nl and x ′

n . Remark 3
and path-connectedness of � result in the following inequalities:

Ld(x ′
n, x

′
nl ) ≥ diam(γ ) ≥ distM(� ∩ ∂Ek0 ,� ∩ ∂Ek0+2) := c > 0,

where L is a bounded turning constant of �. The above estimate holds for all
sufficiently large n and l leading us to a contradiction with the convergence of
(x ′

n). ��
We are in a position to present the key technical lemma of the paper. In the statement

of the result we abuse notation and write f [Ek] to denote an end determined by an
image under a map f of any chain {Ek}∞k=1 belonging to an end [Ek]. However, Part
3 of Lemma 3 explains that such a notation is justified.

Recall our definition of domains and Assumptions (A).

Lemma 3 Let � ⊂ X be a domain locally connected at the boundary and D ⊂ Y be
a domain. Let further f ∈ F(�, D). Then the following properties hold:

(1) If {Ek}∞k=1 is a chain in �, then { f (Ek)}∞k=1 is a chain in D.
(2) If {Fk}∞k=1 is a chain in D, then { f −1(Fk)}∞k=1 is a chain in �. Moreover, if D

is additionally finitely connected at the boundary and [Fk] is a (singleton) prime
end in D, then [ f −1(Fk)] is a (singleton) prime end in � as well.

(3) If {Ek}∞k=1 and {Fk}∞k=1 are equivalent chains in �, then { f (Ek)}∞k=1 and
{ f (Fk)}∞k=1 are equivalent chains in D, i.e.

f [Ek] = [ f (Ek)].

In particular, if [Ek] is a singleton prime end, then [ f (Ek)] is a singleton prime
end.
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Proof Part (1) Let {Ek}∞k=1 be a chain in �. By Topology it holds that for all k =
1, 2, . . . a homeomorphic image f (Ek) of an acceptable set Ek is acceptable (see also
the discussion in Part (2) below).We show that { f (Ek)}∞k=1 satisfies conditions (1)-(3)
of Definition 10. Notice that Part 1 of Definition 10 holds since if Ek+1 ⊂ Ek , then
f (Ek+1) ⊂ f (Ek) by mapping properties.
Next we show that { f (Ek)}∞k=1 satisfies Part 3 of Definition 10. Suppose on the

contrary that
⋂∞

k=1 f (Ek) � ∂D, i.e. there exists y ∈ D ∩ ⋂∞
k=1 f (Ek). Since, in

particular, y ∈ D then x := f −1(y) ∈ � as homeomorphisms maps interiors of
domains onto interiors. Thus dist(x, ∂�) > 0. Moreover, we claim that there exists
k0 such that x ∈ Ek0 \ Ek0+1: if not, then x ∈ Ek for all k = 1, . . . and since {Ek}∞k=1
is a chain, then by Property 3 of chains we have that x ∈ ⋂∞

k=1 Ek ⊂ ∂�. But then
dist(x, ∂�) = 0 leading to the contradiction. Then, the injectivity of f gives us that
y = f (x) ∈ f (Ek0)\ f (Ek0+1) and thus y /∈ ⋂∞

k=1 f (Ek) contradicting the definition
of y.

In order to show that Property 2 of Definition 10 holds for sets f (Ek) we again
proceed with the proof by contradiction. Namely, suppose that for some m it holds
that

distM(D ∩ ∂ f (Em+1), D ∩ ∂ f (Em)) = 0. (5)

Then, we find a sequence of curves (γk) ⊂ D

γk : [0, 1] → D, γk(0) ∈ D ∩ ∂ f (Em) and γk(1) ∈ D ∩ ∂ f (Em+1),

such that limk→∞ diam(γk) = 0. The existence of such a sequence of curves follows
directly from the definition of the Mazurkiewicz distance and (5).

Moreover, it holds that { f −1(γk)}∞k=1 is a sequence of sets intersecting both�∩∂Em

and�∩∂Em+1, and the argument for this observation is similar as in the first part of the
proof. By Property 2 of chain {Ek}∞k=1 we have that distM(�∩∂Em,�∩∂Em+1) > 0.
Since � ∩ ∂Em and � ∩ ∂Em+1 are bounded and closed in � we can choose the
following subsequences:

xkl ∈ f −1(γkl ) ∩ � ∩ ∂Em and ykl ∈ f −1(γkl ) ∩ � ∩ ∂Em+1

converging to distinct points x ∈ � and x ′ ∈ �, respectively. However, this contradicts
Property (F) of mappings in F(�, D). In order to see that this is the case, note that
by (1) for all sufficiently large l it holds that

dinn(xkl , ykl ) ≥ dM (xkl , ykl ) ≥ dX (xkl , ykl ) ≥ 1

2
dX (x, x ′).

This estimate by Property (F) then implies that for all sufficiently large l it holds

0 < distinn( f (xkl ), f (ykl )) = distinn(γkl (tkl ), γkl (t
′
kl )), (6)
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where tkl ∈ [0, 1] depends on f (xkl ), while t ′kl ∈ [0, 1] depends on f (ykl ). The
existence of such parameters follows from the fact that f (xkl ) ∈ γkl ∩ D ∩ ∂Em

and f (ykl ) ∈ γkl ∩ D ∩ ∂Em+1. Observation (6) contradicts our assumption that
diam γkl → 0 as l → ∞, and shows that (5) cannot hold.

Part (2) Let {Fk}∞k=1 be a chain in D. Define the following sequence of subsets in
�:

Ek := f −1(Fk), for k = 1, 2, . . . .

We claim that {Ek}∞n=1 are acceptable sets in �. Indeed, first notice that by the con-
tinuity of f sets Ek are connected and bounded subsets of �. Suppose now, that
Ek ∩ ∂� = ∅ for some k. Then f (Ek) ∩ ∂D = ∅. However, f (Ek) = f (Ek) = Fk
while by the definition of acceptable sets we require Fk ∩ ∂D �= ∅ which leads to the
contradiction.

Properties 1 and 3 of Definition 10 for a chain {Ek}∞n=1 are proven in the same
way as the analogous properties showed in the proof of Part 1. It remains to show
Property 2 of chains and the argument is again similar to the proof of Property 2 in
Part (1). Suppose, on the contrary, that distM(�∩ ∂Em,�∩ ∂Em+1) = 0 for somem.
Property (F) of mappings in F(�, D), the definition of chain {Fk}∞n=1 together with
inequalities (1) imply that

distM(D ∩ ∂Fm, D ∩ ∂Fm+1) = distM(D ∩ ∂ f (Em), D ∩ ∂ f (Em+1)) = 0.

This contradicts the fact that {Fk}∞k=1 is a chain.
Let us now additionally assume that D is finitely connected at the boundary. Since

� is locally connected at the boundary, then Theorem 1 and Corollary 1 imply that a
chain { f −1(Fn)}∞n=1 is divisible by a canonical chain {Gk}∞k=1 and, thus I [ f −1(Fn)] =
{x} ⊂ ∂� for some x ∈ ∂�.

Part (3) Let chains {Ek}∞k=1 and {Fl}∞l=1 be equivalent. Thus, these chains divide
each other. Since {Ek}∞k=1 divides {Fl}∞l=1, then for every l there is k0 such that Ek ⊂ Fl
for all k ≥ k0. This immediately implies that f (Ek) ⊂ f (Fl) for all k ≥ k0, as f is
a homeomorphism, and so chain { f (Ek)}∞k=1 divides { f (Fl)}∞l=1. Similarly we prove
the opposite property, namely that the division of {Fl}∞l=1 by {Ek}∞k=1 implies division
of { f (Fl)}∞l=1 by { f (Ek)}∞k=1.

This observation together with Parts 1 and 2 of the lemma justify the nota-
tion f [Ek] := [ f (Ek)] for an end (an equivalence class) represented by a chain
{ f (Ek)}∞k=1.

It remains to show that impression of [ f (Ek)] consists of a single point only. Recall
that by Theorem 1 we know that I [Ek] = {x} ∈ ∂�. Suppose, on the contrary, that
I [ f (Ek)] contains two distinct points, denoted y, z ∈ ∂D. Let further (yk) and (zl) be
sequences of points in D converging to y and z respectively. Clearly, d(ykn , zln ) > 0
for some subsequences (ykn ) and (zln ). Moreover, ykn , zln ∈ f (Em) starting from
some m ≥ m0 and for sufficiently large n ≥ n0. Using the path-connectedness of �

(implied by its rectifiable connectedness, see Assumptions (A)) we join every ykn and
ykn+1 by a curve, denoted γn and similarly for points zln and zln+1 , obtaining for every
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n a curve γ ′
n . In a consequence we get a sequence of connected sets |γn| and |γ ′

n| such
that distinn(|γn|, |γ ′

n|) > 0 for n ≥ n0.
However, by considering f −1(γn) and f −1(γ ′

n) for n = 1, . . . we arrive at
sequences of connected subsets of Em with the property that for every m ≥ m0
we find nm such that

f −1(γn) ⊂ Em and f −1(γ ′
n) ⊂ Em for all n ≥ nm .

Moreover, since I [Ek] = {x} it holds that limn→∞ distinn( f −1(γn), f −1(γ ′
n)) = 0,

contradicting Property (F) of class F(�, D).
This completes the proof of Part 3 and, thus, the whole proof of Lemma 3 is

completed as well. ��
Remark 4 Note that in order to prove Parts (1) and (2) of the lemma we only need
one implication in condition (F) of Definition 13, namely that dinn( f (E), f (F)) = 0
provided that dinn(E, F) = 0 . The opposite implication is used only in the proof of
Part (3).

The remaining part of Sect. 5 is devoted to presentation of various extension results
for mappings in class F and their consequences. We begin with an observation that
for domains with regular enough boundaries mappings in class F induce a bijection
between the singleton prime ends part of the prime end boundary and the topological
boundary of the underlying domains.

Observation 1 Let � be a domain locally connected at the boundary, D a domain
finitely connected at the boundary and f ∈ F(D,�). Then, there exists a bijective
map � : ∂SPD → ∂� defined as follows: if [Ek] is a (singleton) prime end in D, then
we assume

�([Ek]) := x ∈ ∂�, where {x} = I [ f −1(En)].

Proof Let [Ek] be a prime end in D. Then Theorem 1 implies that [Ek] is a singleton
prime end. By Part 2 of Lemma 3 we have that [ f −1(En)] is a singleton prime end
as well. The map � is well-defined, since equivalent chains belonging to an end [Ek]
have the same impressions. Let now [Ek] and [Fn] be two singleton prime ends in D
such that [Ek] �= [Fn]. Part 2 of Lemma 3 implies that [ f −1(Ek)] and [ f −1(Fn)] are
non-equivalent singleton prime ends and, since� is locally connected at the boundary,
it holds that

I [ f −1(Ek)] = {x} �= {x ′} = I [ f −1(Fn)].

From this, injectivity of � follows immediately.
Let us choose any x ∈ ∂� and consider [Gx

k ] a canonical singleton prime end
associated with point x as in Corollary 1. Then Part 1 of Lemma 3 applied to f −1

gives us that [ f −1(Gx
k )] defines an end in �, whereas Part 3 of Lemma 3 allows us o

conclude that [ f −1(Gx
k )] is in fact a singleton prime end. Hence, � is surjective. ��
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5.1 Continuous extensions for mappings inF

Recall that for a domain � ⊂ X and a map f : � → Y one defines the cluster set of
f at x as follows:

C( f , x) :=
⋂
U

f (U ∩ �), (7)

where the intersection ranges over all neighborhoods U of x in X .
Let f : � → �′ be a homeomorphism and F be its continuous extension to �

provided that it exists. Denote by

�′′ := �′ ∪
⋃
x∈∂�

C( f , x) ⊂ �′

and by

F(∂�) :=
⋃
x∈∂�

C( f , x) ⊂ ∂�′.

Similarly, by ∂PF�
′ we denote a set of prime ends with impressions in F(∂�). It holds

that ∂PF�′ = ∂P�
′.

In the theorem below we employ singleton prime ends to provide sufficient and
necessary conditions for a homeomorphism in classF to have a continuous extension.

Theorem 3 Let � be a domain satisfying the bounded turning condition, �′ be a
domain and f ∈ F(�,�′) be a homeomorphism. Suppose that f has a continuous
extension F : � → �′′, then every prime end in the prime end boundary ∂P�

′ is a
singleton prime end.

Furthermore, if every prime end in the prime end boundary ∂P�
′ is a singleton

prime end, then every homeomorphism f ∈ F(�,�′) has a continuous extension
F : � → �′′.

Notice that in the above theorem, if f has a continuous extension, then for every
x ∈ ∂�, the cluster set C( f , x) consists of a single point only.

The following remark is used in the proof of Theorem 3.

Remark 5 (1) Proposition 7.1 in [1] asserts that if an end has a singleton impression,
then it is a prime end. If a domain satisfies the bounded turning condition, then
that proposition holds also for prime ends as in Definition 10 (with condition (2)
stated for the Mazurkiewicz distance).

(2) Recall that Proposition 7.2 in [1] states that [Ek] is a singleton end if and only if
diam Ek → 0 as k → ∞.

Proof Let F be a continuous extension of f as in the statement of the theorem. Then
for any x ∈ ∂� it holds thatC( f , x) consists of a single point only. Since� is a domain
satisfying the bounded turning condition, it is locally connected at the boundary, in
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particular at x . Therefore, by Corollary 1 a family of sets, denoted U ′
r and defined as

connected components of Ur := B(x, r) ∩ � containing x in their boundaries (and
considered for small enough r ) define a singleton prime end in ∂P� with impression
{x}. (Note that since � is locally connected at the boundary, U ′

r as defined above, are
unique for each small enough r .) By Parts (1) and (3) of Lemma 3 sets f (U ′

r ) define a
prime end in ∂PF�

′. Moreover, it holds that I [ f (U ′
r )] = {C( f , x)} which proves the

first assertion of the theorem.
Let us now show the necessity part of the theorem. Suppose now that every prime

end in ∂P�
′ is a singleton prime end. We can assign to any x0 ∈ ∂� a prime end

[En] in ∂P�
′ corresponding to x0. The existence of such a prime end follows from

the following reasoning: as � is a domain satisfying the bounded turning condition,
it is locally connected at the boundary (cf. Example 1). Then Corollary 1 gives us a
canonical prime end, denoted [Gk], with a singleton impression I [Gk] = {x0}. Part 1
of Lemma 3 gives us that [En] = [ f (Gk)] is an end in ∂P�

′. By the reasoning similar
to the final part of the argument of the sufficiency part of the theorem we obtain that
[En] is in fact a prime end. Since, upon assuming that the opposite holds, namely that
there exists prime end [E ′

n] dividing [En] and not equivalent to [En], we obtain that
[ f −1(En)] divides [Gk] and is not equivalent to it. However, this is impossible as [Gk]
is a singleton prime end. Moreover, Part 3 of Lemma 3 implies that [En] is a singleton
prime end. Denote I [En] = {yx0} ⊂ ∂�′. We define F : � → �′ by the formula:

F(x) =
{
f (x), x ∈ �,

yx , x ∈ ∂�.
(8)

In order to show that F is continuous in � we need to consider four cases.
Case 1. Let x ∈ � and xn → x in dX for a sequence of points (xn) ⊂ �. Then

F ≡ f and the continuity of F follows from the continuity of f .
Case 2. Let x ∈ ∂� and xn → x in dX for a sequence of points such that (xn) ⊂ �

for large enough n. Furthermore, let [Gk] be the canonical prime end in � obtained
by Corollary 1 satisfying I [Gk] = {x} (as in the paragraph before formula (8)). Since
dX (xn, x) → 0 for n → ∞ we have by Lemma 2, applied to Ek := Gk for k =
1, 2, . . ., that xn ∈ Gk for every k and all sufficiently large n; hence f (xn) ∈ f (Gk).
Furthermore, by the above discussion and Remark 5 we have that

lim
k→∞ diam f (Gk) = 0 and I [ f (Gk)] = {yx }.

Therefore, f (xn) → yx = F(x) in dY for n → ∞ and the continuity of F follows.
Case 3. Let x ∈ ∂� and xn → x in dX for a sequence of points such that (xn) ⊂ ∂�

for sufficiently large n. By the continuity result proven in Case 2, for every xn we can
find such a point x ′

n ∈ � that

dX (xn, x
′
n) <

1

n
and dY (F(xn), F(x ′

n)) <
1

n
.
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By the choice of sequence (xn) and by the triangle inequality we obtain that

dX (x ′
n, x) ≤ dX (x ′

n, xn) + dX (xn, x) <
1

n
+ dX (xn, x) → 0, as n → ∞,

and hence x ′
n → x . Using again Case 2, we have that for any ε > 0, there is n(ε) such

that for all n > n(ε) it holds dY (F(x ′
n), F(x)) < ε

2 . The triangle inequality implies
that

dY (F(xn), F(x)) ≤ dY (F(x ′
n), F(x)) + dY (F(x ′

n), F(xn)) <
1

n
+ ε

2

and the continuity of F follows in this case as well.
Case 4. Finally, let x ∈ ∂� and xn → x in dX for a sequence of points (xn) ⊂ �

for large enough n. Then we may find a subsequence of (xn), for simplicity again
denoted (xn), which satisfies either Case 2 or Case 3. This reduces the discussion to
one of these cases and, thus, completes the proof of Theorem 3. ��
Corollary 2 Let � be a domain satisfying the bounded turning condition and �′ be a
domain finitely connected at the boundary. Then, a homeomorphism f ∈ F(�,�′)
extends to a continuous mapping F : � → �′′. Furthermore, �′′ = �′.

Proof Theorem 1 states that finitely connected at the boundary domain �′ has only
singleton prime ends. Then, Theorem 3 implies immediately the first part of the asser-
tion.

In order to show the second assertion, let us suppose that ∂�′ \ �′′ �= ∅, i.e. there
exists

y ∈ ∂�′ \
⋃
x∈∂�

C( f , x).

Then Theorem 1 implies that there is [En] ∈ ∂SP�
′ such that I [En] = {y}. Further-

more, Part 2 of Lemma 3 gives us that [ f −1(En)] is a singleton prime end in � with
impression denoted by {xy}. Then,

f −1(En) ⊂ Un ∩ �, for n = 1, 2, . . .

for some neighborhoods Un of xy . In a consequence, the definition of cluster sets (7)
implies that y ∈ C( f , xy) and, hence, y ∈ �′′ contradicting our initial assumption.

This completes the proof of the second assertion and thewhole proof of the corollary
as well. ��
Remark 6 In the setting of quasiconformal analysis in Rn the results corresponding
to Corollary 2 are due to e.g. Herron–Koskela, see Theorem 3.3 and Corollary 3.5
in [25]. In particular, part (a) of Corollary 3.5 asserts that continuous extension of
a quasiconformal mapping between domains � and �′ to the topological closure of
domains exists if and only if � is QC-flat on the boundary and �′ is a QED domain,
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cf. Definition 3 above and [25, Section 2.B]. Furthermore, Lemma 5.6 in Martio–
Ryazanov–Srebro–Yakubov [35] shows that a QC-flat domain is strongly accessible,
which in turn results in finite connectedness at the boundary, by the argument verbatim
to the proof of Theorem 6.4 in Näkki [41]. Note that domains satisfying the bounded
turning condition are locally connected at the boundary, see Part 3 of Remark 1, while
QED domains are finitely connected at the boundary, cf. Example 1.

In the setting ofmetric spaces an approach to extension problem for quasiconformal
mappings is presented in Andrei [5].

5.2 Homeomorphic extensions for mappings inF

In our next results we describe conditions for existence of homeomorphic extensions
of mappings in F . In the setting of quasiconformal mappings in Rn the correspond-
ing results can be found in Väisälä [50], cf. Theorems 17.17, 17.18 and 17.20, also
in Herron–Koskela [25], Theorem 3.3(e) and Corollaries 3.5(c) and 3.6. Conditions
presented in [50] involve collared domains, see Definition 4 and Jordan domains,
while conditions in [25] appeal to quasiextremal distance domains, QC-flat and QC-
accessible domains, see Sections 2.B and 3.A in [25]. Belowwe take different approach
and apply prime ends to ensure existence of homeomorphic extensions.

Theorem 4 Let � be a domain satisfying the bounded turning condition and D be a
domain. If a homeomorphism f ∈ F(�, D) extends to a homeomorphism F : � →
D, then it holds that:

(a) non-equivalent prime ends in ∂PD have distinct impressions, and
(b) every prime end in ∂PD is a singleton prime end.

Moreover, let us assume that (a) and (b) hold, and additionally that
(b’) every x ∈ ∂D is the impression of some prime end (in ∂SPD).

Then f ∈ F(�, D) posseses a homeomorphic extension F : � → D.

Note that, by Theorem 1, Theorem 4 holds for instance if D is a domain locally
connected at the boundary.

Remark 7 In general a map in class F(�, D) need not preserve the local connectivity
at the boundary. Indeed, if � is a unit disc in R2 and D ⊂ R2 is a slit-disc, then
direct computations show that a Riemann map f ∈ F(�, D) even though D fails to
be locally connected at the boundary. Nevertheless, if a map f ∈ F(�, D) extends
to a homeomorphism F : � → D, then local(finite) connectivity at the boundary of
� is preserved under F and so D is also locally(finite) connected at the boundary, cf.
Remark 17.8 in [50]. Therefore, the first part of Theorem 4 additionally implies that
D must be locally connected at the boundary.

Proof of Theorem 4 Part 3 of Remark 1 and Corollary 1 imply that prime end boundary
∂P� consists of singleton prime ends only. Let F be a homeomorphic extension of f
from � onto D. Suppose that there exists a prime end

[Fn] ∈ ∂PD \ ∂SPD.



Prime ends in metric spaces and quasiconformal-type… 1963

Then, a set

Y := F−1(I [Fn]) ⊂ ∂�

and Y is a continuum, since I [Fn] is continuum (see the remark following Defini-
tion 10).

For any y ∈ IntY (with Y ⊂ ∂�), consider a canonical prime end [Gy
k ] in �

given by Corollary 1. Then Parts 1 and 3 of Lemma 3 imply that [ f (Gy
k )] ∈ ∂SPD.

Furthermore, [ f (Gy
k )] and [Fn] are both distinct prime ends in ∂PD. However, on the

other hand it holds that I [ f (Gy
k )] = {F(y)} and F(y) ∈ Int I [Fn] giving that [ f (Gy

k )]
must divide [Fn], and so [Fn] is not a prime end on the contrary to our assumption.
Thus ∂PD = ∂SPD.

Since F and F−1 are injective, then it is not possible that two nonequivalent prime
ends [Ek] and [Fn] in D have the same (singleton) impressions, that is it cannot hold
that I [Ek] = {x} = I [Fn] for some x ∈ ∂D.

For the opposite implication suppose that ∂SPD = ∂PD, non-equivalent prime ends
have distinct impressions and also that (b’) holds. Then, the second part of Theorem 3
implies continuity of extension map F defined in (8). In order to prove injectivity
of F let us consider two cases: first, for distinct points x, y ∈ � or, respectively, if
x ∈ �, y ∈ ∂� we clearly have that

F(x) = f (x) �= f (y) = F(y) or, respectively F(x) = f (x) �= F(y),

due to f being a homeomorphism and the definition of F . For the second case let
x, y ∈ ∂� be distinct points and suppose on the contrary that

F(x) = F(y) = z ∈ ∂D. (9)

Local connectivity at the boundary of � implies existence of canonical prime ends
[Gx

k ] and [Gy
k ] in � such that

I [Gx
k ] = {x} �= {y} = I [Gy

k ]. (10)

If (9) holds, then I [ f (Gx
k )] = I [ f (Gy

k )] = {z}. Then, (a) and (b) give us that both
prime ends [ f (Gx

k )] and [ f (Gy
k )] are equivalent to each other. Moreover, Part 2 of

Lemma 3 applied to f −1 gives us that also [Gx
k ] = [Gy

k ] which cannot hold by
(10). (More precisely, we get that { f −1( f (Gx

k ))} and { f −1( f (Gy
k ))} are chains (and

thus give rise to ends) in � and are equivalent dividing both [Gx
k ] and [Gy

k ].) This
contradiction completes the proof for injectivity of F .

In order to show that F is onto let x ∈ ∂D. Then, by assumption (b’) on ∂D, there
exists a singleton prime end [En] with I [En] = {x}. Part 2 of Lemma 3 together with
the following reasoning give us that [ f −1(En)] is a singleton prime end in �: Indeed,
suppose that an end [ f −1(En)] has a non-singleton impression I , then it is divisible
by a canonical prime end [Gx

k ] for some x ∈ I and [ f (Gx
k )] is equivalent to [En]. By

the reasoning as in the beginning of the proof for Part 3 of Lemma 3 applied to f −1,
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we obtain that [Gx
k ](= [ f −1( f (Gx

k ))]) and [ f −1(En)] are equivalent. However, this
is impossible, since [Gx

k ] is a singleton prime end and [ f −1(En)] is assumed to be a
non-singleton end. Thus, [ f −1(En)] is a singleton end, which by Part (1) of Remark 5
implies that it is a singleton prime end. Therefore, by Corollary 1 there is a point
y ∈ ∂� such that I [ f −1(En)] = {y}. Moreover, by construction F(y) = x , cf. (8).

Finally, F−1 is continuous by the argument similar to the one for the continuity of
map F in Theorem 3. ��

5.3 Homeomorphic extensions for mappings inF with respect to topological and
prime end boundaries

Below we deal with the extension of the Mazurkiewicz distance between sets to the
setting of prime ends. In order to show the main result of this section, we need to
recall the Mazurkiewicz boundary and a relation between Mazurkiewicz and prime
end boundaries.

Let � ⊂ X be a domain. Then its completion with respect to the Mazurkiewicz

distance dM is denoted �
M
, and dM extends to �

M
in the standard way by

defining the following equivalence relation between two dM -Cauchy sequences
{xn}∞n=1, {yn}∞n=1 ∈ �: {xn}∞n=1 ∼ {yn}∞n=1, provided that limn→∞ dM (xn, yn) = 0. In
what follows we identify equivalence classes of dM -Cauchy sequences with a limit in
� with that limit point. Then, theMazurkiewicz boundary of � is defined as ∂M� =
�

M \� and consists of equivalence classes of dM -Cauchy sequences without limits in

�. The metric dM can be extended to�
M
by letting dM (x, y) = limn→∞ dM (xn, yn),

where x = {xn}∞n=1 ∈ �
M

and y = {yn}∞n=1 ∈ �
M
. In general, a point in ∂� may

correspond to more than one point in ∂M�, as it is in the case of the slit disc, see
Examples 9.2 and 9.3 in [1].

The following result relates the prime end closure�
P
and theMazurkiewicz closure

�
M
for domains finitely connected at the boundary.

Observation 2 (Corollary 10.9 in [1]) Assume that � is finitely connected at the

boundary. Then there is a homeomorphism � : �
P → �

M
such that �|� is the

identity map. Moreover, the prime end closure �
P

is metrizable with the metric
mP (x, y) := dM (�(x),�(y)).

Let us recall the definition of �. If x ∈ �, then we set �(x) := x . Let [Ek] ∈
∂SP�. For each k choose xk ∈ Ek and show that (xk) is a dM -Cauchy sequence and

corresponds to a point y ∈ �
M
, in fact y ∈ ∂M� (for details see the proof of Theorem

9.6 in [1]). Therefore, it is justified to define �([Ek]) := y.
Let� ⊂ X be a domain finitely connected at the boundary. By Theorem 1we know

that ∂SP� = ∂P� and so all prime ends are singletons. Observation 2 together with
the definition of � allow us to define

dist∗M (x, y) =

⎧⎪⎨
⎪⎩
dM (�(x),�(y)) x, y ∈ ∂SP�,

dM (x,�(y)) x ∈ �, y ∈ ∂SP�,

dM (x, y) x, y ∈ �.
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The following theorem is the main result of this section.

Theorem 5 Let � be a domain satisfying the bounded turning condition and D be a
domain finitely connected at the boundary. Then, a homeomorphism f ∈ F(�, D)

extends to a homeomorphism FP : � → D ∪ ∂PD continuous with respect to the
Mazurkiewicz distance dist∗M. Namely, we define

FP(x) =
{
f (x), x ∈ �,

[ f (Gx
k )], x ∈ ∂�,

(11)

where [Gx
k ] is a unique prime end in ∂SP� given by Corollary 1 such that I [Gx

k ] = {x}.
Before proving this result let us provide some of its consequences and compare it

to previous extension results.

Corollary 3 (cf. Theorem 4.2 in Näkki [42]) Let Bn ⊂ Rn be a ball and D ⊂ Rn be a
collared domain. Then a quasiconformal homeomorphism f : Bn → D extends to a
homeomorphism FP : Bn → D ∪ ∂PD.

Proof Notice that a ball Bn ⊂ Rn satisfies the bounded turning condition and a collared
domain (see Definition 4) D ⊂ Rn is locally connected at the boundary, see Theorem
17.10 in [50]. By the discussion in Example 2(a) above, we get that f ∈ F(Bn, D)

and, thus Theorem 5 results in the assertion of the corollary. ��
Similarly, by Example 3 and Theorem 5, below we obtain Corollary 4. There we

retrieve the extension result for quasiconformal mappings discussed in Section 3.1 in
Väisälä [52]. The prime end boundary studied in [52] is defined via accessible curves
andVäisälä’s proof is basedon the property that the impressionof every singletonprime
end in the domains finitely connected at the boundary is accessible (cf. Theorem 1 and
Lemma 1 for the relation between prime ends and accessibility in our setting).

In particular, if f is conformal, n = 2 and D is simply-connected, then we obtain
a counterpart of the celebrated Carathéodory extension theorem, see [11]. However,
our result differs from Carathéodory’s theorem as we use different prime ends theory
than in [11].

Corollary 4 (cf. Section 3.1 in [52]) Let Bn ⊂ Rn be a ball and D ⊂ Rn be a
domain finitely connected at the boundary. Then a quasiconformal homeomorphism
f : Bn → D extends to a homeomorphism FP : Bn → D ∪ ∂PD.

Let us also add that in the setting of quasiconformal mappings in domains in the
Heisenberg group H1 the result corresponding to Theorem 5 has been recently proven
in [3, Theorem 3.7]. There, we assume that � is collared and the theory of prime ends
studied in [3] differs from the one above.

We now turn to provingTheorem5. Recall that since� satisfies the bounded turning
condition, it is locally connected at the boundary, see Remark 1(3).

Proof of Theorem 5 By assumptions of the theorem and Corollary 2 we obtain that a
homeomorphism f ∈ F(�, D) extends continuously to F : � → D. (Here, likewise
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in Theorem 3 and Corollary 2, continuity of F is understood with respect to the
underlying distances in metric spaces X and Y ).

Lemma 3 implies that prime ends in ∂P� = ∂SP� correspond to prime ends in
∂PD under a mapping in F(�, D) and opposite. This observation allows us to define

FP : � → D
P
(where D

P := D ∪ ∂PD), and show that F is a unique bijective
extension of f . Namely, let x ∈ ∂� and [Gx

k ] be a unique prime end in ∂SP� given
by Corollary 1 such that I [Gx

k ] = {x}. We define FP as in (11) above. Mapping FP
is well-defined by the definition of prime ends and Lemma 3. The injectivity of FP
follows from the injectivity of f and the following argument:

Suppose on the contrary that there exist x �= y ∈ ∂� such that

FP(x) = FP(y) = [Ek] ∈ ∂PD (= ∂SPD).

Then by Lemma 3(2) we have that [ f −1(Ek)] ∈ ∂P�(= ∂SP�) and divides, and
hence is equivalent to, both canonical prime ends [Gx

k ] and [Gy
k ]. In a consequence

[Gx
k ] = [Gy

k ] and x = y by Theorem 1 and Corollary 1, giving us the contradiction.
In order to show that FP is onto let [En] ∈ ∂SPD and note that ∂SPD = ∂PD, as D

is finitely connected at the boundary. Hence, by Part 2 of Lemma 3, [ f −1(Ek)] is a
singleton prime end in � and divides a canonical prime end [Gx

k ] for some x ∈ ∂�.
Thus, [ f −1(Ek)] = [Gx

k ] by the definition of prime ends (the minimality property
with respect to division of ends) and FP(x) := [ f (Gx

k )] = [En]. In particular, F−1
P

exists and is well-defined.
Next, we show the continuity of FP. Let [En] ∈ ∂SPD with impression I [En] = {z}

for some z ∈ ∂D and set x := F−1
P ([En]) with x ∈ ∂�.

Let ε > 0. Since F is continuous as map from (�, dX ) to (D, dY ), then there exist
δ = δ(ε) > 0 and a set

Uδ := � ∩ B(x, δ) such that F(Uδ) ⊂ B(z, ε/2) ∩ D.

In order to prove continuity of FP we consider two cases:
Case 1. Let y ∈ � ∩ B(x, δ). Denote by (xn) ∈ D a sequence of points in D

representing�([En]) as a point in theMazurkiewicz boundary ∂MD (cf. Observation 2
and the discussion in the beginning of this Section). Since f is homeomorphism and
F = f |� it holds that xn = f (yn) = F(yn) for some points yn ∈ � and n = 1, 2 . . ..
Therefore, we get

dist∗M (F(y),�([En])) = dM (F(y),�([En]))
= lim

n→∞ dM (F(y), xn) = lim
n→∞ dM (F(y), F(yn))

≤ lim
n→∞ distinn(F(y), F(yn)) ≤ ε.

Hence, FP is continuous at x = F−1
P ([En]).

Case 2. Let y ∈ ∂� ∩ B(x, δ). Recall that by the definition of extension F(y) =
y0 ∈ ∂D, with {y0} = I [ f (Gy

n)], see (8) (where y0 is denoted yx ) and the related part
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of the presentation in the proof of Theorem 3. Then, the approach similar to Case 1
gives us

dist∗M (F(y),�([En])) =dM (y0,�([En])) = lim
n→∞ dM (y0, xn)

= lim
n→∞ dM (y0, F(yn)) ≤ lim

n→∞ distinn(y0, F(yn)) < ε.

Thus, Cases 1 and 2 show that dist∗M (F(y),�([En])) < ε for all y ∈ Uδ and
continuity of FP at x follows.

Finally, we show that F−1
P is continuous with respect to metrics dist∗M in D and dX

in �. Then, the proof that FP is a homeomorphism will be completed.
For a set Uδ defined as above we choose a compact set G := ∂B(x, δ

2 ) ∩ �. By
inequalities (1), it holds that distinn(G, x) > distX (G, x) > 0. Therefore, since F is
a homeomorphism such that F |� = f belongs to class F(�, D), the definition of F
allows us to infer that distinn(F(G), I [En]) > 0. Finally, let us choose

δ′ := distM(F(G), I [En]) (< distinn(F(G), I [En])).

Let now [Fk] ∈ ∂PD be such that

dist∗M ([En], [Fk]) = distM(�([En]),�([Fk])) < δ′.

Then, F−1
P ([Fk]) ∈ Uδ and so, F−1

P is continuous as a map from (D
P
, dist∗M ) to

(�, dX ). ��

6 Applications

This section is devoted to some applications of extension results and prime ends. First,
we discuss and prove a variant of the Koebe theorem on arcwise limits along end-cuts
for mappings in class F . In the second part, we relate the prime end boundary as
defined in Sect. 3 and the Royden boundary. The latter one type of the boundary arises
naturally in the extension problems, see Theorem 7.

6.1 The Koebe theorem

In 1915 Koebe [28] proved that a conformal mapping from a simply-connected planar
domain � onto the unit disc has arcwise limits along all end-cuts of �. The purpose
of this section is to show a counterpart of Koebe’s result for mappings in the class F
in metric spaces. First, we need to introduce two auxiliary definitions.

In the Euclidean setting the following definition appears in Näkki [39,40] as an
uniform domain. However, in order to avoid confusion with uniform domains stud-
ied above and by e.g. Väisälä [51] (cf. Definition 11.1 in [1]) we shall use a term
mod-uniform domains instead. See also [3, Definition 4.1] for mod-uniform domains
considered in the setting of the Heisenberg group H1.
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Definition 15 Let X be a metric measure space equipped with a Q-regular measure.
We say that a domain � ⊂ X is mod-uniform if for every t > 0 there is ε > 0 such
that if

min{diam(E), diam(F)} ≥ t, then ModQ(E, F,�) ≥ ε.

In order to illustrate the definition, let us recall that by Herron [24, Fact 2.12] a
uniform subdomain in a locally compact Q-regular Q-Loewner space is mod-uniform.

Next, we refine the definition of a cluster set and include the behavior of a mapping
along an end-cut, cf. (7) and Definition 14.

Definition 16 Let � ⊂ X be a domain, f : � → Y be a mapping and x ∈ ∂�. We
say that a sequence of points {xn}∞n=1 in � converges along an end-cut γ at x if there
exists a sequence {tn}∞n=1 with 0 < tn < 1 such that limn→∞ tn = 1 and xn = γ (tn)
and

lim
n→∞ dX (xn, x) = 0.

We say that a point x ′ ∈ X belongs to the cluster set of f at x along an end-cut γ

from x , denoted by Cγ ( f , x), if there exists a sequence of points {xn}∞n=1 converging
along γ at x , such that

lim
n→∞ dY ( f (xn), x

′) = 0.

If Cγ ( f , x) = {y}, then y is called an arcwise limit(asymptotic value) of f at x .

The following result extends Koebe’s theorem and Theorem 7.2 in Näkki [42] to
the setting of mappings in F . Moreover, we study more general end-cuts than in [42].

Theorem 6 (The Koebe theorem in metric spaces) Let f ∈ F(�, D) be a homeo-
morphism between a domain � ⊂ X satisfying the bounded turning condition and a
domain D ⊂ Y finitely connected at the boundary. Then f has arcwise limits along
all end-cuts of �.

We note that in Theorem 6 both domains � and D are studied with respect to the
topological boundaries (see also Remark 9 following the proof of Theorem 6).

Remark 8 A variant of the Koebe theorem for quasiconformal mappings between
domains in the Heisenberg group H1 such that one domain is finitely connected at
the boundary and the target domain is mod-uniform is proved in [3]. As observed
by Näkki, mod-uniform domains in R

n
are finitely connected at the boundary, see

Theorem 6.4 in [41]. However, a domain � ⊂ R
n
finitely connected at the boundary

is mod-uniform if and only if � can be mapped quasiconformally onto a collared
domain, see [41, Section 6.5].

Proof of Theorem 6 Since by Remark 1(3) we have that � is locally connected at the
boundary, then Theorem 1 implies that every point in the boundary ∂� is accessible.
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Let x ∈ ∂� and suppose that γ is an end-cut in � from x (cf. Definition 14). By
Lemma 1 there exists a singleton prime end [En] such that x is accessible through
[En] (cf. the statement following Lemma 1). Let

xn := γ (tn) for n = 1, 2, . . .

and some tn → 1 as n → ∞ be any sequence of points converging to x in dX . Since
every xn belongs to some acceptable set En in [En] and by Part 3 of Lemma 3 it holds
that [ f (En)] is a singleton prime end in D, we obtain a corresponding sequence of
points f (xn) in D for n = 1, 2, . . . which converges in dY to

I [ f (En)] = {x ′}, for x ′ ∈ ∂D. (12)

Moreover, Theorem 1 together with Theorem 3 (Corollary 2) give us the existence of
F , a continuous extension of f to �, and that it holds that

lim
n→∞ dY ( f (xn), F(x)) = 0, and F(x) = x ′.

Since every prime end in D is a singleton prime end, therefore it holds that the cluster
set of f at x along an end-cut γ from x consists of a single point only, namely
Cγ ( f , x) = {x ′}. By Definition 16, this implies that f has an arcwise limit at x . ��
Remark 9 In order to obtain (12) we use the fact that f (xn) ∈ f (En) for n = 1, 2, . . ..
Moreover, we also use that [ f (En)] is a singleton prime end, and hence by Lemma
7.2 in [1], it holds that diam f (Ek) → 0, as k → ∞, cf. Remark 5.

By narrowing the class of mappings to the quasiconformal ones (cf. Definition 6)
we may weaken assumptions in Theorem 6 on� by the price of strengthening slightly
requirements on the target domain. In a consequence we obtain the following result.

Corollary 5 Let X be a Q-regular metric measure space with Q > 1. Let f : � → D
be a quasiconformal map between a domain� ⊂ X finitely connected at the boundary
and a mod-uniform domain D ⊂ X. Then f has arcwise limits along all end-cuts of
�.

The proof closely follows steps of the corresponding proof of the Koebe theorem
for quasiconformal mappings in the Heisenberg group, see Theorem 5.1 in [3]. Hence,
we omit the proof.

6.2 Prime ends and Royden boundaries

In this section we relate our results on prime ends with the homeomorphic extensions
of quasiconformal mappings and the theory of Royden boundaries. Let us briefly
set up the stage for our considerations and recall necessary notions from the theory
of Royden algebras and compactifications. Our presentation is based on a work by
Soderberg [47].
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In what follows let �,�′ be domains in Rn for n ≥ 2 and, without the loss of
the generality, let us futher assume that Rn is equipped with the Lebesgue measure
μ. We define a Royden algebra on � and denote A(�), as an algebra of all bounded
continuous functions u : � → R with pointwise addition and multiplication such that
the first order weak partial derivatives of u exist and belong to Ln(�). The norm of
u ∈ A(�) is defined as follows:

‖u‖� := ‖u‖L∞(�) + ‖∇u‖Ln(�).

Such an algebra is a commutative regular Banach algebra which separates points in �

and is inverse-closed (see Preliminaries in [47] for further details).
It turns out that there is a correspondence between quasiconformal mappings and

Royden algebras isomorphisms. Namely, a quasiconformal map f : � → �′ defines
an algebra isomorphism f ∗ : A(�′) → A(�) by the formula

f ∗v := v ◦ f for any v ∈ A(�′).

Furthermore, an algebra isomorphism between A(�′) and A(�) induces a quasicon-
formal map f : � → �′, cf. [47, Theorem 1.1]. Similarly to the setting of prime end
boundaries (see Theorem 5), quasiconformal mappings give rise also to maps between
an ideal type of boundary defined via the Royden algebras. Namely, a collection of all
non-zero, bounded linear homomorphisms χ : A(�) → R is called a Royden com-
pactification�∗. Thus,�∗ ⊂ A(�)′ a dual space ofA(�). Moreover,�∗ is a compact
Hausdorff space in the relative weak∗ topology generated byA(�). Points x ∈ � can
be identified with a subset of �∗ denoted �̂ via point evaluation homomorphisms

x̂(u) = u(x) for any u ∈ A(�).

Hence, the identification x → x̂ defines a homeomorphic embedding of � onto the
image �̂ ⊂ �∗. We define the Royden ideal boundary of � as follows, cf. [47]:

� = �� := �∗ \ �̂.

Let T = f ∗ be the Royden algebra isomorphism defined above for a given quasicon-
formal map f . One defines an adjoint operator T ∗ : �∗ → (�′)∗ by the formula

T ∗χ = χ ◦ T for any χ ∈ �∗

and show the following result (cf. [47, Theorem 2.3]):Operator T ∗ is a homeomorphic
extension of f to the Royden compactification �∗ with the property that T ∗ maps the
Royden ideal boundary of � onto the corresponding Royden ideal boundary of �′.
Related is the following notion crucial for the further discussion. Let x ∈ �, then we
denote by �x ⊂ �∗ a fiber over x , i.e.

�x :=
{

χ = x̂, x ∈ �

χ corresponding to a Royden net converging to x, x ∈ ∂�.
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We refer to Sections 3 and 4 in [47] for definitions and properties of Royden nets, in
particular see [47, Definition 3.3]. It turns out that �x is a compact subset of �, also
that different boundary points have distinct fibers. Moreover, � = ⋃

x∈∂� �x .
The following result connects the topic of our work to Royden algebras and the

Royden compactification.

Theorem 7 (Theorem 5.1 in [47]) Let f : � → �′ be a quasiconformal map and
T = f ∗ : A(�′) → A(�) be the corresponding Royden algebras isomorphism. A
homeomorphic extension of f , denoted F : � → �′, exists if and only if for every
x ∈ ∂� there is y ∈ ∂�′ such that T ∗(�x ) = �y . Moreover, it holds that F(x) = y.

We are in a position to present the main result of this section (cf. Theorem 7.4 in
[47] for a different prime ends theory).

Theorem 8 Let � ⊂ Rn be a domain finitely connected at the boundary. Then, for
every point x ∈ ∂� it holds that the set of components of a fiber �x coincides with
the set of prime ends with impressions {x}.

In the case of John domains, Theorem 8 allows us to provide the following estimate
for a number of components for fibers in the Royden compactification.

Corollary 6 Let � ⊂ Rn be a John domain with the John constant C�. Then, for any
x ∈ ∂� the number of components of a fiber �x is at most N (n,C�).

Proof Theorem 11.3 in [1] asserts that for a John domain � ⊂ Rn there exists a
constant N , depending only on the doubling constant Cμ = 2n , the John constant
C� and the quasiconvexity constant, such that � is at most N -connected at every
boundary point. Then, Proposition 10.13 in [1] gives us that every point x ∈ ∂� is
the impression of exactly N distinct prime ends. Moreover, there is no other prime
end with x in its impression. These propositions together with Theorem 8 result in the
assertion of the corollary. ��

The proof of Theorem 8 requires the following observation, specialized to the
Euclidean setting, about the structure of prime ends for domains finitely connected
at the boundary. One can think about the lemma as a counterpart of the construction
of canonical prime ends obtained in Corollary 1 for the setting of domains locally
connected at the boundary. The main difference is that now every boundary point can
be the impression of more than one prime end.

Lemma 4 (Lemmas 10.5 and 10.6 in [1]) Assume that a domain � ⊂ Rn is finitely
connected at x0 ∈ ∂�. Let Ak � � be such that:

(1) Ak+1 ⊂ Ak,
(2) x0 ∈ Ak,
(3) dist(x0,� ∩ ∂Ak) > 0 for each k = 1, 2, . . . .

Furthermore, let 0 < rk < dist(x0,� ∩ ∂Ak) be a sequence decreasing to zero.
Then for each k = 1, 2, . . . there is a component G jk (rk) of B(x0, rk) ∩ � inter-

secting Al for each l = 1, 2, . . ., and such that x0 ∈ G jk (rk) and G jk (rk) ⊂ Ak.
Moreover, there exists a prime end [Fk] such that I [Fk] = {x0}, Fk = G jk (rk) for

some 1 ≤ jk ≤ N (rk) and Fk ⊂ Ak, k = 1, 2, . . ..
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In the proof belowwe follow the approach of the proof for Theorem7.4 in Soderborg
[47]. However, we employ the prime ends as described in Sect. 3, especially the
structure of the prime ends boundary for domains finitely connected at the boundary.

Proof of Theorem 8 Recall that by Theorem 1 every x ∈ ∂� is an impression of some
prime end [En] ∈ ∂P� and all prime ends are singletons, i.e. ∂P� = ∂SP�. We define
a map R : ∂P� → � as follows:

R([En]) = 
x ,

for 
x satisfying the following two conditions:

(1) π(
x ) = I [En] = {x} ⊂ ∂�, where π : �∗ → � is a natural continuous
projection map, surjective from � onto ∂� (see Section 4 and Theorems 4.2 and
4.3 in [47]).

(2) for every χ ∈ 
x and for every neighborhood U of x (in Rn) it holds that

Q(U , χ) = G jk (rk), for some jk ∈ N, rk > 0

where Q(U , χ) is a unique component ofU ∩� such that each Royden net corre-
sponding to χ lies eventually in Q(U , χ) (the existence of such a neighborhood is
proved in [47, Lemma 7.1]) andG jk (rk) is one of the sets constructed in Lemma 4.

Theorem 7.2 in [47] stays that two elements χ, η ∈ �x belong to the same compo-
nent of �x if and only if Q(U , χ) = Q(U , η) for each neighborhood U of x in Rn .
Moreover, equivalent chains of the given prime end have the same impressions. There-
fore, the map R is well defined and injective (by [47, Theorem 7.2] and Theorem 1).
The proof will be completed once we show that R is onto. Let 
 be a component of

x and χ ∈ 
. Similarly to the construction in Lemma 1 and Theorem 1 we consider
a sequence of balls centered at x and related sequence of open connected subsets of
Rn

Q j := Q(B(x, 1/ j), χ)

Q j+1 ⊂ Q j for j = 1, 2, . . . .

Let us choose a sequence of points x j ∈ Q j for j = 1, 2, . . . and join every x j with
x j+1 by a path γ j . The resulting path γ has one endpoint at x1 and γ (x j ) → x for
j → ∞. Next, Lemma 4 gives us a prime end [Fk]with Fk = G jk (rk) for k = 1, 2, . . .
and I [Fk] = {x}. This together with the definition of γ imply that [Fk] is accessible
through γ .

Finally, for any neighborhood U of x it holds that Qm ⊂ U for m large enough.
Moreover, Q(U , χ) is a component of U containing Qm . On the other hand, Qm

contains some subpath of γ , and hence one of the acceptable sets G jl (rl) of prime end
[Fk] is a component of U ∩ � containing Qm . In a consequence Q(U , χ) = G jl (rl)
and the proof is completed. ��

The following observation is an immediate consequence of Theorem 7 and the
proof of Theorem 8.
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Corollary 7 Let� ⊂ Rn be a domain finitely connected at the boundary and f : � →
�′ be a quasiconformal map. If f extends homeomorphically to a map F : � → �′,
then there exists a correspondence between prime ends with impressions at a point
x ∈ ∂� and prime ends with impressions at point F(x) ∈ ∂�′.
In other words, prime ends associated with a given boundary point in ∂� may not be
mapped to prime ends with impressions at different points in ∂�′ (they have to be
mapped to prime ends with the same impressions at F(x)).

Moreover, note that in the above corollary, the existence of a homeomorphic exten-
sion to topological closures of domains implies that �′ is finitely connected at the
boundary.

Proof We utilize map R studied in the proof of Theorem 8 and define a mapping
FP : ∂P� → ∂P�

′ by the following formula

FP([En]) = R−1
�′ ◦ T ∗ ◦ R�([En]), for any [En] ∈ ∂P�.

By the above discussion T ∗ is a homeomorphism (an extension of f ) between Royden
compactifications �∗ and (�′)∗ and since mappings R� and R�′ are bijections, the
proof of the corollary is completed. ��
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