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Abstract: In this paper, we describe a new method to improve fast-light transmission, which uses 
cascades. We design a simple plasmonic device that enables plasmonic-induced absorption (PIA). It 
consists mainly of two parallel rectangular cavities. The numerical results simulated by using the 
finite element method (FEM) confirm its function. The corresponding group delay-time can reach 
–0.146 ps for the PIA window. Based on this result, we propose a cascade device, with the 
dual-rectangular cavity system as building block, to improve fast-light transmission even more. The 
results indicate that the cascade scheme can increase the group delay-time to –0.456 ps, which means 
the fast-light feature is substantially enhanced compared with the non-cascading approach. The effect 
of the distance between two cascade resonators and other structural parameters is also investigated. 
Finally, we use this design concept to build a refractive-index sensor with a sensitivity of         
701 nm/RIU. 
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1. Introduction 

Electromagnetically induced absorption (EIA) 

appeared first as a quantum mechanical 

phenomenon in atomic media, where the absorption 

of a laser beam increased significantly but only for a 

narrow frequency band [1, 2]. Within the narrow 

frequency band (the absorption window), anomalous 

dispersion can be created, which leads to 

superluminal propagation, i.e., “fast light” [3]. 

Unfortunately, atomic EIA often requires very 

specific operating conditions including stable 

gas-lasers and a low-temperature environment, 

which makes many applications problematic. In 

recent years, it was found that the EIA effects can 

also be realized in classical configurations such as 

coupled dielectric resonators, acoustic waveguides, 

planar metamaterials, and plasmonic    

nanodevices [4]. More specifically, plasmonic- 

induced absorption (PIA) in metal-insulator-metal 

(MIM) waveguides [5–12] has attracted a lot of 

interest. For example, PIA was observed in a 

plasmonic coupling system consisting of MIM bus 

waveguides and two concentric nano-rings [5].    

In [6], a simple MIM plasmonic device, consisting 

of two rectangle cavities, was designed and 
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investigated. Moreover, the perfect PIA effect with 

fast-light performance was observed in this device. 

The authors of [7] proposed an end-coupled 

composite-slot-cavity resonator using MIM 

waveguides. The PIA response in this device was 

studied and confirmed by using the coupled-mode 

theory [13] and the finite-difference time-domain 

(FDTD) method [14]. 

In this paper, we first design a simple plasmonic 

device on a nanoscale. It consists of a 

dual-rectangular cavity system coupled to MIM bus 

waveguides. Numerical simulations using the finite 

element method (FEM) were carried out to 

investigate the transmission spectra and field 

distribution. The results show that the PIA effect can 

indeed be observed. Furthermore, by changing the 

structural parameters, the fast-light characteristics of 

this plasmonic system can be adjusted. We then 

describe a cascade-based scheme to improve the 

fast-light performance for PIA. While the 

cascade-based method has been used previously to 

enhance plasmonic-induced transparency (PIT) [15], 

to the best of our knowledge, no studies exist that 

focus on the cascade-based method in association 

with PIA. Our results confirm the feasibility of this 

approach. This study opens a new door for the 

development of ultracompact high-performance 

fast-light devices in high-speed optical 

communication networks [16, 17]. 

2. Device design 

The proposed cascading device for fast-light 

transmission uses a dual-rectangular cavity system 

as its building block. Every dual-rectangular cavity 

system is represented by a meta-atom. Two 

meta-atoms are placed in a cascade to enhance 

fast-light performance, as shown in Fig. 1. Each 

meta-atom, surrounded by a blue dashed line in  

Fig. 1, consists of two MIM waveguides, a fixed 

rectangular cavity (FRC), and an adjustable 

rectangular cavity (ARC). The fixed rectangular 

cavity is placed between the input and output MIM 

waveguides with a coupling distance g1. The 

adjustable rectangular cavity is placed next to the 

fixed rectangular cavity to generate the PIA response. 

Here, g2 is the coupling distance between the fixed 

and the adjustable rectangular cavities. To ensure 

fundamental transverse-magnetic (TM0) mode 

propagation in the MIM waveguide, the widths of 

the MIM waveguides, fixed rectangular cavity, and 

adjustable rectangular cavity are fixed at 50 nm, i.e., 

Wg=Wfrc=Warc=50 nm. Lfrc and Larc are the lengths of 

the fixed and adjustable rectangular cavities, 

respectively. The white area in Fig. 1 represents the 

air in the waveguides and cavities. When this device 

is used as a refractive-index sensor, the liquid 

analytes with refractive indices of about 1.33 are 

filled into FRC and ARC. The gray area represents 

silver, which has a frequency-dependent complex 

relative permittivity as described by the Drude 

model [18]: 

   

2

=
i

p
  

    
           (1) 

where =3.7  represents the dielectric constant at 

the infinite frequency, 13=2.73 10 Hz   is the 

electron collision frequency, 161.38 10 Hzp    is 

the bulk plasma frequency, and   stands for the 

angular frequency of the incident light. 
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Fig. 1 Proposed cascade scheme using a dual-rectangular 

cavity system as building block.  

3. Results and discussion 

3.1 Non-cascading Device 

To assess the performance of a single meta-atom, 

the transmission (T), reflection (R), and absorption 
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(A) spectra were investigated by using FEM with a 

perfectly matched layer (PML) boundary condition. 

R and T are calculated by using the scattering matrix 

elements of the device: 
2 2

11 21,  .R S T S             (2) 

Here, absorption can be deduced using A=1RT. 

The obtained results for Lfrc=Larc=200 nm and 

g1=g2=15 nm are shown in Fig. 2. For a clear 

comparison, the transmission spectrum of the device 

without an adjustable rectangular cavity is also 

marked, as shown by the gray-dashed line in Fig. 2. 

A distinct PIA window appears around the 

transmission peak of the device without an 

adjustable rectangular cavity. In addition, two new 

transmission peaks with incident wavelengths of 

659.91 nm and 733.18 nm appear around the PIA 

window. The insets of Fig. 2 show the field 

distribution of Hz at the wavelengths of 659.91 nm, 

674.92 nm, and 733.18 nm, respectively. Based on 

these results, we can infer that the reason for PIA is 

the destructive interference in the fixed rectangular 

cavity. There are two propagation paths for the 

optical signal in this device. The first path is the 

direct coupling of optical signals between the fixed 

rectangular cavity and the input/output MIM 

waveguides. The second path is the indirect 

coupling of optical signals that occurs between the 

adjustable rectangular cavity and the input/output 

waveguides. The fixed rectangular cavity acts as 

intermediary. Consequently, the destructive 

interference between these two pathways suppresses 

the fixed rectangular cavity. However, the adjustable 

rectangular cavity can still be activated efficiently, 

which causes very low transmittance at =674.92 nm, 

and the PIA effect is successfully generated in our 

proposed device. Two new peaks appear in the 

transmission spectrum, which can be attributed to 

in-phase coupling and out-of-phase coupling 

between the fixed and adjustable rectangular cavities. 

The in-phase coupling resonance results in the peak 

at =659.91 nm, whereas the out-of-phase coupling 

resonance produces the peak at =733.18 nm. 

The fast-light performance of the MIM devices 

is usually characterized by an abnormal dispersion 

and group delay time. The group delay time is 

defined by the following equation:  gt d d    

[19, 20], where     is the transmitted phase of 

the right MIM waveguide. 
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Fig. 2 Transmission and absorption spectra of the 
dual-rectangular cavity system, the insets show the field 
distribution of Hz at the wavelength of 659.91 nm, 674.92 nm 
and 733.18 nm, respectively. 
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Fig. 3 Variations of the transmitted phase and the group 

delay time with respect to the wavelength of incident light. 

Figure 3 shows the variations of the transmitted 

phase and the group delay-time with respect to the 

wavelength. A distinct  phase-shift occurs at the 

PIA window in the proposed device. Considering the 

relationship (derivative) between the transmitted 

phase and the group delay-time, it can be concluded 
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that abnormal dispersion occurs for the PIA window. 

As illustrated in Fig. 3 with the red-solid line, a 

group delay-time of up to ‒0.146 ps was observed 

for the central wavelength of the PIA window. 

Thanks to this unique property, one can easily 

manipulate the on-chip fast-light transmission with 

this subwavelength MIM waveguide device. 

3.2 Cascade device 

In this section, we investigate the cascade device. 
Two meta-atoms were arranged in a cascade to 
improve fast-light performance, as shown in Fig. 1. 
To achieve this goal, we set Lfrc=Larc=200 nm and 
g1=g2=15 nm. The distance between two meta-atoms 
was 200 nm. Figure 4(a) shows the transmission 
spectrum for the cascade device. For comparison, 
the transmission spectrum of the non-cascading 
device is also shown. Due to the introduction of an 
extra meta-atom, the maximum transmittance of our 
proposed MIM device is slightly reduced. The 
fast-light performance of the proposed cascade 
device is shown in Fig. 4(d). Using this figure, a 
group delay-time of up to ‒0.3014 ps can be 
obtained with the cascade device. It is very clear that, 
by combining up two meta-atoms as depicted in  
Fig. 1, the fast-light performance of the proposed 
plasmonic device can be substantially improved and 
adjusted. 

As a result, we investigate if it is possible to 
control the fast-light performance by using subtle 
structural modifications. One factor that affects the 
fast-light performance is the distance between the 
cascade resonators. Figures 5(a)‒5(e) show the 
transmission spectra for different distances.   
Figure 5(f) shows the corresponding maximum 
modulus of tg. According to the calculation, the 
distance between two meta-atoms increases from 
100 nm to 200 nm, with 25 nm increments. Using 
these results, we find that the maximum 
transmittance decreases with the distance, while the 
corresponding resonant wavelength of the PIA 
window shows a slight red shift when the distance 
increases. In this paper, we limit the distance 
between 100 nm and 200 nm. In fact, the dielectric 

spacer in the center would disappear if the distance 
between the cascade resonators was below 80 nm. 
Considering the already obtained results, the 
fast-light performance of the proposed device would 
be seriously degraded in this case. When the 
distance between the cascade resonators is too large, 
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Fig. 4 Transmission spectrum (a) and group delay time (d) of 

the proposed cascade device. For convenience, corresponding 
results of the non-cascading device are also shown using 
blue-dashed line in these figures. (b), (c) Corresponding 
magnetic field distributions for the two resonance peaks. 
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the dielectric spacer in the center induces 

Fabry-Pérot resonance. In the following, if not 

otherwise stated, the distance between the cascade 

resonators was fixed at 200 nm. 
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Fig. 5 Transmission spectra (a)(e) and the maximum group 

delay time (f) of the cascade device for different distances. 

Another important factor affecting the fast-light 

performance is the length of the adjustable 

rectangular cavities. The variations of the group 

delay-time with respect to Larc are shown in Figs. 6(a) 

and 6(b) for a single resonator and a cascade device. 

For the calculation of these results, the central 

position of the adjustable rectangular cavity is fixed 

and Larc varies between 170 nm and 210 nm with an 

increment of 10 nm. Apart from the apparent 

red-shift of the PIA window, it can be also found 

that the maximum modulus of tg increases with the 

length Larc. This reinforcing effect is particularly 

strong in the cascade device. According to Fig. 6(b), 

the group delay-time at the center wavelength of the 

PIA window could be further enhanced to ‒0.314 ps, 

when Larc=210 nm. For a single resonator, the 

enhancement of Larc with respect to the fast-light 

performance still exists. However, the increase is 

much smaller than that for the cascade device. The 

fast-light performance of our proposed device, 

however, cannot be infinitely enhanced by 

modifying Larc. When Larc is too high, the adjustable 

rectangular cavities start coupling to the dielectric 

spacer in the center and other parts of this device. 

These interactions can reduce the fast-light 

performance of this cascade device. 
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Fig. 6 Group delay time versus Larc for (a) the non-cascading 

device and (b) cascade device. 

Until now, two meta-atoms were cascaded to 

form a single-period pattern. From now on, we 

investigate whether the fast-light performance can 

be improved by adding more periods to the cascade 

resonators. For this purpose, three meta-atoms were 
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cascaded to produce a two-period pattern. The 

transmission and absorption spectra for the 

two-period pattern are shown in Fig. 7(a). To enable 

a better comparison, the results for the single-period 

patterns are also shown. Figures 7(b) and 7(c) show 

the field distribution by Hz at the transmission peaks. 

The corresponding group delay-times are plotted in 

Fig. 7(d). To obtain these results, we set Larc=200 nm 

and g1=g2=15 nm. These results indicate that the 

maximum transmittance could decrease further if 

more periods of the cascade resonators were added. 

However, we also found that the maximum modulus 

of tg increases to ‒0.456 ps under this condition, 

which means that the fast-light performance of our 

proposed device is improved. We also study the 

fast-light performance of three-period pattern which 

is produced by cascading four meta-atoms together. 

Obtained results show that the maximum modulus of 

tg is further increased to ‒0.618 ps, while the 

maximum transmittance is reduced to a very small 

value. All results show that the cascade method can 

effectively realize plasmonic-induced absorption and 

improve fast-light transmission. As we can see from 

above results, the propagation loss is the obstacle 

that hinders the practical application of the cascade 

scheme. The more meta-atoms are cascaded, the 

larger propagation loss conspicuously becomes. One 

possible solution is to introduce the gain material 

[21] or nonlinear material [22, 23] into the cascade 

device. We can replace the passive dielectric part of 

the cascade device with gain material to compensate 

for propagation loss. This topic is beyond the scope 

of this paper and needs further investigation in the 

future. 

3.3 Ultra-compact refractive index sensor 

The PIA effect can be used for many different 

scenarios including ultrafast optical switching in 

photonic integrated devices [24] and fast-light 

applications [25]. One very important application is 

a high-performance sensor [26]. In this paper, we 

propose a new design of a refractive-index sensor, 

which uses cascaded plasmonic resonators. We use  
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Fig. 7 Tansmission/absorption spectra: (a) and group delay 

time, (d) of the proposed device with one period (blue line) and 
two period (red line), and (b)(c) Hz field distribution 
corresponding to the wavelengths of 662.31 and 736.79 nm. 

the single-period device and fill liquid analytes with 

refractive indices of about 1.33 in FRC and ARC. 

The liquid analytes can be filled into FRC and ARC 
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via standard microfluidic pumps or via capillary 

forces [27]. Here, Lfrc=200 nm and Larc=210 nm. 

Figure 8(a) shows the effect of the analyte refractive 

index on the transmission spectrum of this sensor. A 

substantial red-shift is achieved for the resonance 

peak wavelengths, when the analyte refractive index 

increases. The resonance peak wavelength as a 

function of the analyte refractive index change is 

shown in Fig. 8 (b). The refractive index sensitivity 

of this sensor is 634 nm/RIU and 701 nm/RIU for the 

resonance peaks, Peak I and Peak II, respectively. 
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Fig. 8 Refractive index sensing performance of our proposed 

device: (a) transmission spectra of the proposed device for 
different refractive indices of the liquid analytes filled in FRC 
and ARC and (b) the resonance peak wavelengths versus analyte 
refractive index change for Larc=210 nm. 

In Table 1, the fast-light performance and 

sensitivity of different devices are compared with 

those of our proposed device. One can see that our 

proposed device can provide a large group delay 

time of ‒0.456 ps when three meta-atoms are 

cascaded to produce a two-period pattern. The 

refractive-index sensor based on the proposed 

device has a comparable sensitivity with that in [26]. 

The devices in [24] and [30] exhibit very high 

sensitivity. However, the excellent sensing 

performance is usually achieved at the expense of 

the large sensor size. The plasmonic cavity length in 

[24] is about 1020 nm which is much larger than 

ours (210 nm). Our results demonstrate that the PIA 

effect has a great potential for applications in 

plasmonic sensors. 

Table 1 Comparison of the proposed device and other 
published solutions. 

Reference Group delay time (ps) Sensitivity (m/RIU) 
[5] –0.098 NA 
[20] –0.29 NA 
[7] –0.30 NA 
[28] –0.40 NA 
[29] –0.25 615 
[26] NA 859 
[30] NA 1150 
[24] NA 2025 

This work –0.456 701 

4. Conclusions 

In summary, we introduce and investigate a 

cascading nanodevice to enable fast-light 

transmission by using a dual-rectangular cavity 

system as building block. Numerical simulations 

using FEM are carried out to investigate the 

transmission spectra and field distribution. We find 

that the fast-light transmission using cascades is 

significantly higher than that without cascades. The 

effect of important parameters on the fast-light 

performance, such as period and cavity length, is 

studied and a refractive-index sensor is designed 

based on the proposed device. The device has a 

refractive-index sensitivity of 701 nm/RIU. This 

study opens a new door for the development of 

ultracompact high-performance fast-light devices. 
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