Skip to main content
Log in

Molecular diversity in the barley pathogen Bipolaris sorokiniana (Cochliobolus sativus)

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Spot blotch, caused by Bipolaris sorokiniana, is a prevalent disease of barley in Canada and elsewhere in the world. To evaluate the genetic variation among pathogen isolates, 93 isolates of B. sorokiniana representative of eight different virulence groups (VIGs) identified in a previous study, were subjected to an AFLP assay. AFLP analysis indicated that pathogen isolates collected from different regions of Canada and from other countries had a high level of genetic variability. Isolates possessing low virulence (VIG 0.0.0.0) and differential virulence (VIG 6.0.0.0) on barley genotypes were clearly discernible from other pathogenic isolates. However, molecular analysis did not provide a robust differentiation among the other six VIGs identified by the classical method of pathotype designation. There was a closer correlation between the AFLP patterns and virulence than between AFLP pattern and geographic origin of isolates. To evaluate causes of genetic variation among isolates, the influence of mutation, migration and gene flow, and recombination on the B. sorokiniana population were discussed. The genetic profiles of the three isolates of VIG 6.0.0.0, which were located between low virulence and high virulence isolates, invited speculation that such a virulence group may be the result of genetic recombination between isolates possessing extreme virulences in the population of the pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asigbetse KB, Fernandez D, Dubois MP, Geiger JP (1994) Differentiation of Fusarium oxysporum f. sp. vasinfectum races on cotton by random amplified polymorphic DNA analysis. Phytopathology 84:622–626

    Article  Google Scholar 

  • Bulat SA, Mironenko NV (1993) Genetic differentiation of the phytopathogenic fungus Cochliobolus sativus (Ito and Kurib.) Drechsl. ex Dastur (Bipolaris sorokiniana (Sacc.: Sorok.) Shoem.) revealed by a universally primed polymerase chain reaction UP-PCR technique: Correlation with host-specificity. (In Russian). Genetika 29:1295–1301

    CAS  Google Scholar 

  • Burdon JJ, Silk J (1997) Sources and patterns of diversity in plant pathogenic fungi. Phytopathology 87:664–669

    Article  PubMed  CAS  Google Scholar 

  • Burdon JJ, Roelfs AP (1985a) Isozyme and virulence variation in asexually reproducing populations of Puccinia graminis and P. recondita on wheat. Phytopathology 75:907–913

    Article  CAS  Google Scholar 

  • Burdon JJ, Roelfs AP (1985b) The effect of sexual and asexual reproduction on the isozyme structure of populations of Puccinia graminis. Phytopathology 75:1068–1073

    Article  CAS  Google Scholar 

  • Chand R, Pandey SP, Singh HV, Kumar S, Joshi AK (2003) Variability and its probable causes in natural populations of spot blotch pathogen Bipolaris sorokiniana of wheat (T. aestivum L.) in India. Z Pflanzenkr Pflanzenschutz 110:27–35

    Google Scholar 

  • Christensen JJ, Davies FR (1937) Nature of variation in Helminthosporium sativum. Mycologia 29:85–99

    Article  Google Scholar 

  • Clark RV (1979) Yield losses in barley cultivars caused by spot blotch. Can J Plant Pathol 2:113–117

    Article  Google Scholar 

  • de Moura Nascimento EJ, Van Der Sand ST (2008) Restriction analysis of the amplified ribosomal DNA spacers ITS1 and ITS2 of Bipolaris sorokiniana isolates. World J Microbiol Biotechnol 24:647–652

    Article  Google Scholar 

  • de Oliveira AM, Matsumura AT, Prestes AM, Van Der Sand ST (2002) Intraspecific variability of Bipolaris sorokiniana isolates determined by random-amplified polymorphic DNA (RAPD). Genet Mol Res 1:350–358

    PubMed  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Dostaler D, Couture L, Pelletier GJ (1987) Étude de la tolérance de cultivars d’ orge à la tache helminthosporienne. Can J Plant Sci 67:153–157

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fetch TG, Steffenson BJ (1994) Identification of Cochliobolus sativus isolates expressing differential virulence on two-row barley genotypes from North Dakota. Can J Plant Pathol 16:202–206

    Article  Google Scholar 

  • Fordyce M, Meldrum S (2001) Verification of conventional pathotype screening for Australian isolates of Cochliobolus sativus using molecular fingerprinting. In: Proc of the 10th Australian Barley Technical Symposium, 16–20 September 2001. Canberra, Australia. [Online article].

  • Ghazvini H, Tekauz A (2004) Yield loss in barley inoculated with high and low virulence isolates of Bipolaris sorokiniana. In: Proc of the 9th International Barley Genetic Symposium, June 20–26, 2004, Brno, Czech Republic, pp. 774–780

  • Ghazvini H, Tekauz A (2007) Virulence diversity in the population of Bipolaris sorokiniana. Plant Dis 91:814–821

    Article  Google Scholar 

  • Ghazvini H, Tekauz A (2008) Host–pathogen interactions among barley genotypes and Bipolaris sorokiniana isolates. Plant Dis 92:225–233

    Article  Google Scholar 

  • Harding H, Tinline RD (1983) The existence of differentially fertile strains in two populations of Cochliobolus sativus. Can J Plant Pathol 5:17–20

    Article  Google Scholar 

  • Hosford RM Jr, Solangi GRM, Kiesling RL (1975) Inheritance in Cochliobolus sativus. Phytopathology 65:699–703

    Article  Google Scholar 

  • Knight NL, Platz GJ, Lehmensiek A, Sutherland MW (2010) An investigation of genetic variation among Australian isolates of Bipolaris sorokiniana from different cereal tissues and comparison of their abilities to cause spot blotch on barley. Australas Plant Pathol 39:207–216

    Article  Google Scholar 

  • Kolmer JA (2001) Molecular polymorphism and virulence phenotypes of the wheat leaf rust fungus Puccinia triticina in Canada. Can J Bot 79:917–926

    CAS  Google Scholar 

  • Kolmer JA, Liu JQ, Sies M (1995) Virulence and molecular polymorphism in Puccinia recondita f. sp. tritici in Canada. Phytopathology 85:276–285

    Article  CAS  Google Scholar 

  • Leisova-Svobodova L, Minarikova V, Kucera L, Pereyra SA (2011) Structure of the Cochliobolus sativus population variability. Plant Pathol. doi:10.1111/j.1365-3059.2011.02547.x

  • Levy M, Romao J, Marchetti MA, Hamer JE (1991) DNA fingerprinting with a dispersed repeated sequence resolves pathotype diversity in the rice blast fungus. Plant Cell 3:95–102

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Correa-Victoria FJ, Zeigler RS, Xu S, Hamer JE (1993) Genetic diversity of the rice blast fungus in a disease nursery in Columbia. Phytopathology 83:1427–1433

    Article  CAS  Google Scholar 

  • Limpert E, Muller K (1994) Designation of pathotypes of plant pathogens. J Phytopathol 140:346–358

    Article  Google Scholar 

  • Liu JQ, Kolmer JA (1998) Molecular and virulence diversity and linkage disequilibria in asexual and sexual populations of the wheat leaf rust fungus, Puccinia recondita. Genome 41:832–840

    CAS  Google Scholar 

  • Majer D, Mithen R, Lewis BG, Vos P, Oliver RP (1996) The use of AFLP fingerprinting for the detection of variation in fungi. Mycol Res 100:1107–1111

    Article  CAS  Google Scholar 

  • McDonald BA, McDermott JM, Goodwin SB, Allard RW (1989) The population biology of host-pathogen interactions. Annu Rev Phytopathol 27:77–94

    Article  Google Scholar 

  • Meldrum SI, Ogle HJ, Platz GJ (2004) Pathotypes of Cochliobolus sativus on barley in Australia. Australas Plant Pathol 33:109–114

    Article  Google Scholar 

  • Michelmore RW, Hulbert SH (1987) Molecular markers for genetic analyses of phytopathogenic fungi. Annu Rev Phytopathol 25:383–404

    Article  CAS  Google Scholar 

  • Mironenko NV, Bulat SA (2001) Genetic structure of Cochliobolus sativus (Bipolaris sorokiniana) populations isolated from different hosts as revealed by UP-PCR (RAPD-like) technique. J Russ Phytopathol Soc 2:25–30

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Pongam P, Osborn CT, Williams PH (1999) Assessment of genetic variation among Leptosphaeria maculans isolates using pathogenicity data and AFLP analysis. Plant Dis 83:149–154

    Article  Google Scholar 

  • Posada D, Crandall KA, Holmes EC (2002) Recombination in evolutionary genomics. Annu Rev Genet 36:75–97

    Article  PubMed  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Raemaekers RH (1988) Helminthosporium sativum: disease complex on wheat and sources of resistance in Zambia. In: Klatt AR (ed) Wheat production constraints in tropical environments. CIMMYT, Mexico, DF, Mexico, pp 175–185

    Google Scholar 

  • Rau D, Brown AHD, Brubaker CL, Attene G, Balmas V, Saba E, Papa R (2003) Population genetic structure of Pyrenophora teres Drechs. the causal agent of net blotch in Sardinian landraces of barley (Hordeum vulgare L.). Theor Appl Genet 106:947–959

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Shoemaker RA (1955) Biology, cytology and taxonomy of Cochliobolus sativus. Can J Bot 33:562–576

    Article  Google Scholar 

  • Simcox KD, Nickrent D, Pedersen WL (1992) Comparison of isozyme polymorphism in races of Cochliobolus carbonum. Phytopathology 82:621–624

    Article  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco, p 573

    Google Scholar 

  • Swofford DL (2002) PAUP* phylogenetic analysis using parsimony and other programs, version 4.0b10. Sinauer Associates, Sunderland

    Google Scholar 

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics, 2nd edn. Sinauer Associates, Sunderland, pp 407–514

    Google Scholar 

  • Tekauz A. 2002. Spot blotch (Cochliobolus sativus) infection responses in selected North American barley cultivars at the seedling and adult-plant stages. In: Proc. 2nd Int. Workshop Barley Leaf Blights. ICARDA, Aleppo, Syria, pp. 428–435

  • Terekhova VA, Rochev MV (1989) Comparative characterization of mycelial isozymes of Bipolaris sorokiniana Shoem. isolates of different origin. Moscow Univ Biol Sci Bull 44:77–81

    Google Scholar 

  • Tinline RD (1951) Studies of the perfect stage of Helminthosporium sativum. Can J Bot 29:467–478

    Article  Google Scholar 

  • Tinline RD (1961) Cochliobolus sativus. IV. Drug-resistant, color, and nutritionally exacting mutants. Can J Bot 39:1695–1704

    Article  CAS  Google Scholar 

  • Tinline RD (1962) Cochliobolus sativus. V. Heterokariosis and parasexuality. Can J Bot 40:425–437

    Article  CAS  Google Scholar 

  • Tinline RD (1988) Cochliobolus sativus, a pathogen of wide host range. In: Ingram DS, Williams PH (eds) Advances in plant pathology, vol 6. Academic, London, pp 113–122

    Google Scholar 

  • Tinline RD, Dickson JG (1958) Cochliobolus sativus. I. Perithecial development and inheritance of spore color and mating type. Mycologia 50:697–706

    Article  Google Scholar 

  • Valim-Labres ME, Porto MD, Matsumura ATS (1997) Effects of host resistance on the isozymatic patterns of Bipolaris sorokiniana (Dematiaceae, Moniliales). Braz J Genet 20:541–545

    Article  CAS  Google Scholar 

  • Valjavec-Gratian M, Steffenson BJ (1997) Pathotypes of Cochliobolus sativus on barley. Plant Dis 81:1275–1278

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acid Res 23:4407–4414

    Article  CAS  Google Scholar 

  • Welz HG, Kohler W, Leonard KJ (1994) Isozyme variation within and among pathogenic races of Cochliobolus carbonum on corn in North Carolina. Phytopathology 84:31–38

    Article  CAS  Google Scholar 

  • Yoder OC (1988) Cochliobolus heterostrophus, cause of southern corn leaf blight. In: Ingram DS, Williams PH (eds) Advances in plant pathology, vol 6. Academic, London, pp 93–112

    Google Scholar 

  • Zeigler RS, Cuoc LX, Scott RP, Bernardo MA, Chen DH, Valent B, Nelson RJ (1995) The relationship between lineage and virulence in Pyricularia grisea in the Philippines. Phytopathology 85:443–451

    Article  Google Scholar 

  • Zhong S, Steffenson BJ (2001) Virulence and molecular diversity in Cochliobolus sativus. Phytopathology 91:469–476

    Article  PubMed  CAS  Google Scholar 

  • Zhong S, Steffenson BJ (2002) Identification and characterization of DNA markers associated with a locus conferring virulence on barley in the plant pathogenic fungus Cochliobolus sativus. Theor Appl Genet 104:1049–1054

    Article  PubMed  CAS  Google Scholar 

  • Zhong S, Steffenson BJ (2007) Molecular karyotyping and chromosome length polymorphism in Cochliobolus sativus. Mycol Res 111:78–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Bruce Ford, Dr. Michele Piercey-Normore and Dr. Anne Worley, Dept of Botany, University of Manitoba, for their valuable comments and suggestions and also the help they provided with data analysis of this study. We also would like to thank Leslie Bezte for her valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tekauz.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 179 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghazvini, H., Tekauz, A. Molecular diversity in the barley pathogen Bipolaris sorokiniana (Cochliobolus sativus). Australasian Plant Pathol. 41, 283–293 (2012). https://doi.org/10.1007/s13313-012-0131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-012-0131-9

Keywords

Navigation