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Abstract
Poly-arginine peptide-18 (R18) is neuroprotective in different rodent middle cerebral artery occlusion (MCAO) stroke models. In
this study, we examined whether R18 treatment could reduce ischemic brain injury and improve functional outcome in a
nonhuman primate (NHP) stroke model. A stroke was induced in male cynomolgus macaques by MCAO distal to the
orbitofrontal branch of the MCA through a right pterional craniotomy, using a 5-mm titanium aneurysm clip for 90 min. R18
(1000 nmol/kg) or saline vehicle was administered intravenously 60 min after the onset of MCAO. Magnetic resonance imaging
(MRI; perfusion-weighted imaging, diffusion-weighted imaging, or T2-weighted imaging) of the brain was performed 15 min,
24 h, and 28 days post-MCAO, and neurological outcome was assessed using the NHP stroke scale (NHPSS). Experimental
endpoint was 28 days post-MCAO, treatments were randomized, and all procedures were performed blinded to treatment status.
R18 treatment reduced infarct lesion volume by up to 65.2% and 69.7% at 24 h and 28 days poststroke, respectively. Based on
NHPSS scores, R18-treated animals displayed reduced functional deficits. This study confirms the effectiveness of R18 in
reducing the severity of ischemic brain injury and improving functional outcomes after stroke in a NHP model, and provides
further support for its clinical development as a stroke neuroprotective therapeutic.
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Introduction

The development of a clinically effective and safe neuropro-
tective drug for the treatment of ischemic stroke remains an

urgent unmet need. Furthermore, given the demonstrated ef-
fectiveness of timelymechanical thrombectomy in large artery
cerebral occlusion [1, 2], and the potential for an extended
time window for alteplase thrombolysis in ischemic stroke
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patients with a favorable perfusion image [3], neuroprotective
therapies also have the potential to prolong the therapeutic
window for reperfusion prior to endovascular interventions
[4]. Such a therapy would preserve salvageable tissue in the
penumbra, increasing the window in which recanalization can
be achieved; decreasing tissue damage and potentially de-
creasing risk of hemorrhagic- and edema-related complica-
tions associated with prolonged ischemic times prior to reper-
fusion [5].

A series of studies from the Meloni laboratory have
shown that the class of cationic arginine-rich peptides
(CARPs) have potent neuroprotective properties [6–13].
In particular, poly-arginine-18 (R18; 18-mer of arginine;
net charge +18) is a promising neuroprotective agent un-
der development. R18 has been tested in in vitro and
in vivo studies with strong neuroprotective efficacy ob-
served in rodent models of middle cerebral artery occlu-
sion [7, 9–12]. CARPs, including R18, are likely to pos-
sess a multimodal neuroprotective mechanism of action
including the capacity to protect neurons from glutamate
excitotoxicity and intracellular calcium influx [7], and re-
duce neuronal surface expression of the N-methyl-D-as-
partate (NMDA) receptor subunit protein NR2B9c [14].
CARPs also reduce the activity and/or surface expression
of other ion channels and receptors (e.g., AMPAR,
TRPV1, NCX, CaV3.2, TNFR) that may exacerbate
excitotoxicity following stroke [15–19]. This class of pep-
tide also targets mitochondria and can reduce mitochon-
drial reactive oxygen species production and apoptosis
[20, 21], scavenge free radicals [22, 23], inhibit the pro-
teasome [24], and proprotein convertases that activate ma-
trix metalloproteinases [25], modulate inflammatory re-
sponses [26, 27], and activate pro-cell survival signaling
[28, 29].

Another more thoroughly characterized cationic pep-
tide neuroprotectant, which is currently in phase III clin-
ica l t r i a l s [30 , 31] , i s TAT-NR2B9c/NA-1 (H-
YGRKKRRQRRR-KLSSIESDV-OH; net charge +7).
Tat-NR2B9c has demonstrated neuroprotective efficacy
in multiple rodent [32–35] and nonhuman primate
(NHP) [36 , 37 ] s t roke mode l s , and fo l lowing
endovascular aneurysm repair procedures in a phase II
human trial (ENACT trial) [38]. In a comparative study
between R18 and Tat-NR2B9c using a model of transient
middle cerebral artery occlusion (MCAO) in rats at a dose
of 1000 nmol/kg, R18 reduced infarct volume by 35.1%
compared with a 26.1% reduction for Tat-NR2B9c [12].

Therefore, given the strong profile for neuroprotection of
R18 from multiple rodent stroke models, the next step in the
translational pipeline [39, 40] is to undertake a preclinical
evaluation in a high-quality gyrencephalic NHP stroke model.
In the present study, we examined the effectiveness of R18
following transient MCAO in the cynomolgus macaque.

Material and Methods

R18 Peptide

R18 (H-RRRRRRRRRRRRRRRRRR-OH) was synthesized
to at least 98% purity, and subjected to peptide hydrolysis and
amino acid liquid chromatography analysis to obtain a precise
measure of peptide content (Mimotopes, Australia). The pep-
tide was resuspended in 0.9% sodium chloride for injection,
and 5 mL volumes transferred to 10 mL syringes and stored at
− 20 °C until use.

Blinding and Randomization Procedures

A double-blinded approach was utilized for this study to
maintain blinding of drug and placebo from technical
staff, behavioral assessors, and imaging assessors. This
was achieved by receiving lyophilized drug vials direct
from the Meloni lab to the Queen’s University facility.
Then, a single technician, otherwise unrelated to the
study, reconstituted all drug vials and randomly assigned
a sequential identification number to drug and placebo
vehicle (0.9% sodium chloride for injection) syringes that
corresponded to the order of animal surgeries. The syringe
assigned to the animal was confirmed by the principal
investigator and one veterinary technician prior to admin-
istration. Syringe identification was recorded with animal
identification at each step. Unblinding occurred after all
experimental data had been collected and was performed
by sending blinded data (i.e., animal identification and
data) and the unblinding key (i.e., animal identification
and treatment status) to an investigator not involved in
the blinding process, treatment administration, or data
collection.

Animals and Stroke Model

The study protocol was reviewed and approved by the Animal
Use Subcommittee of Queen’s University Council on Animal
Care. All animal husbandry and experimental procedures
were in conformance with the guidelines established by the
Canadian Council for Animal Care (http://www.ccac.ca/en_/
standards/guidelines).

Animals were pair-housed prior to MCAO in home cages
under controlled conditions with 12-h light/dark cycle, water
ad libitum, and a daily diet in the form of Monkey Chow
(Purina) and mixed dietary enrichment in the form of nuts,
fresh fruit, and vegetables. Twenty healthy male captive-
bred cynomolgus macaques (Macaca fascicularis; 2.3–
2.7 kg) underwent surgery for MCAO (R18, N = 10 and sa-
line, N = 10) as previously described [36]. Briefly, animals
fasted the evening prior to surgery were sedated using a mix-
ture of ketamine (5 mg/kg) and dexmedetomidine
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(0.05 mg/kg), intubated and ventilated, and maintained by
isoflurane anesthesia (1.0–1.5%; O2 flow rate of 2 L/min).
Blood pressure (leg cuff) and body temperature (rectal probe)
were monitored and maintained within normal physiological
ranges during the procedure (Supplementary Table). Femoral
arterial sampling was used intermittently to provide blood
gases. MCAO in cynomolgus macaques was performed using
a right pterional craniotomy and occluding the right MCA in
the Sylvian fissure with a 5-mm titanium aneurysm clip distal
to the orbitofrontal branch. Animals were transferred to the
MRI 15 min after MCAO onset to confirm occlusion by per-
fusion and diffusion-weighted imaging. At the end of the 90-
min duration of MCAO, the aneurysm clip was removed in
order to restore blood flow. Animal body temperature was
maintained (37 ± 0.5 °C) throughout the surgery and MRI
scanning by heating blanket.

R18 (1000 nmol/kg) or saline vehicle was infused
(1 mL/kg over 10 min) intravenously to animals through
the saphenous vein, 60 min after the onset of MCAO.
This timing was chosen to mimic an optimal human
stroke treatment scenario, in which treatment is delayed
from occlusion onset to presentation at a medical facility,
followed by rapid reperfusion. In addition, the dose of
R18 was selected based on a previous dose-response
study performed in the Meloni laboratory using a rat mod-
el of transient MCAO demonstrating high efficacy at
1000 nmol/kg [12].

Postsurgery, animals were individually placed in clean
cages, continually monitored until fully recovered from
anesthesia and allowed free access to food and water.
Once fully recovered, animals were returned to their home
cages and housed as described above. Animal exclusion
criteria consisted of nonreperfusion following reversal of
MCAO, significant weight loss (> 20% presurgery
weight), continuous seizure, or severe disability requiring
continuous care for basic functions.

MRI Acquisition

Magnetic resonance scanning was performed at the Queen’s
University Centre for Neuroscience Studies using a 3T
Siemens Trio scanner with a 32-channel head coil. For the
acquisition of MRI images, the animals were intubated and
anesthetized (isoflurane 1.0–1.5%) throughout the scanning.
Baseline MRI acquisitions (perfusion-weighted imaging
(PWI) and diffusion-weighted imaging (DWI)) were made
15 min after MCAO, and poststroke MRI acquisitions (DWI
and T2-weighted imaging (T2WI)) were obtained 24 h and
28 days post-MCAO.

All images were acquired in DICOM format and converted
to NIfTI format using dcm2nii fromMRIcron [41]. NIfTI files
were imported to analysis software for segmentation and vol-
umetric measurements.

Lesion Volume Analysis

Methods for volumetric analysis have been described previ-
ously [36]. Briefly, NIfTI image stacks were imported to ITK-
SNAP software for semi-automated segmentation and auto-
mated contouring [42]. User-guided 3D active contour seg-
mentation of anatomical structures significantly improved ef-
ficiency and reliability. Perfusion volumes were measured
using cerebral blood flow maps in which lesional tissue was
defined as having a flow less than 20 cc/100 g/min; DWI and
T2WI volumes were measured by segmenting and contouring
region of hyperintensity in the MCA territory.

Neurological Assessment

Neurological outcomes were monitored using the nonhuman
primate stroke scale (NHPSS) as previously validated and
described for this stroke model [36, 43]. The NHPSS score
consists of an 11-part assessment of neurological function
comprising state of consciousness, defense reaction, grasp re-
flex, extremity movement, gait, circling, bradykinesia, bal-
ance, neglect, visual field cut/hemianopsia, and facial weak-
ness. From a total of 41 points, 0 corresponds to normal be-
havior and 41 to severe bilateral neurological impairment.
Previous experiments in macaques subjected to a 90-min
MCAO typically show an initial peak in NHPSS scores that
persisted for the first 36 h and then gradually improved over
time [36].

Statistical Analyses

Ischemic lesion volume measurements (DWI and T2WI) for
the R18 treatment group was compared with the vehicle con-
trol group by one-way analysis of variance (StatView; version
4.51, Abacus Concepts Inc., Berkeley, CA, USA). At each
time point, data from the NHPSS was analyzed using the
Mann–Whitney U test (StatView). A linear mixed model
(LMM) was used to investigate the longitudinal NHPSS data,
as this analysis is able to account for repeated measures for
each animal (SPSS Statistics for Windows; version 25, IBM
Corp., Armonk, NY, USA). A Bonferroni correction factor
was applied with the LMM and adjusted p values are reported.
The experiment group (R18 or vehicle) and time (days) were
included in the linear mixed model, with dependent variable
outcome being the composite NHPSS score. A residual check
for normality as per the LMM assumption was conducted on
the final models. A value of p < 0.05 was considered signifi-
cant for all data sets. Data in the figures are presented as mean
± standard error (SE). Sample size (N = 10; i.e., intention-to-
treat) was calculated based on previous data for the stroke
model [36] and a 40% treatment effect (infarct volume reduc-
tion), power 80%, and alpha level = 0.05.
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Results

Animal Exclusions and Baseline Data

In the 24- to 36-h acute poststroke phase, two animals died;
one saline-treated (due to edema), and one R18-treated (due to
seizure) that also did not reperfuse. In addition, two other R18-
treated animals did not reperfuse and were excluded from the
study. No other animals exhibited significant weight loss or
disability requiring additional care. Final sample size
consisted of nine saline- and seven R18-treated animals.

Perfusion (PWI) and diffusion (DWI) imaging 15 min after
MCAO to quantify the tissue at risk and identify initial lesion
development, respectively, did not differ in R18 and vehicle
treatment animals (Figs. 1a and 2).

Infarct Lesion Outcomes

At 24-h poststroke, based on DWI, R18 reduced infarct lesion
volume by 61.5% (p = 0.0002) (Figs. 1b and 2). Similarly, at
28 days poststroke, based on T2WI, R18 reduced infarct le-
sion volume by 66.6% (p < 0.0001) (Figs. 1c and 2).
Furthermore, to account for infarct variability after MCAO,
the infarct volume of each animal was normalized to its MRI
perfusion deficit (i.e., tissue at risk) measured 15 min after
MCAO. Normalization to tissue at risk revealed that R18 at
24 h and 28 days poststroke reduced infarct lesion volume by
65.2% (p = 0.0003) and 69.7% (p < 0.0001), respectively
(Fig. 1d, e). Based on DWI and T2WI, there was no evidence
of hemorrhagic transformation in saline- and R18-treated
animals.

Functional Outcome

The R18 treatment group recorded a lower NHPSS score com-
pared with the vehicle treatment group at all poststroke time
points (Fig. 3). When observing repeated measures over the
course of the 28-day poststroke period, the linear mixed model
analysis revealed a significant reduction of 2.682 points in the
NHPSS in the R18-treated group when compared with vehicle
(p = 0.002; Table 1). For each unit of time (day), a 0.343 point
reduction in the NHPSS was observed (p < 0.001), indicating
a greater improvement in functional deficits in R18-treated
animals over the 28 days after stroke. Based on the Mann–
Whitney analysis, differences in the NHPSS on any individual
poststroke time point were not statistically significant.

Discussion

This study provides further validation of the neuroprotective
properties of R18 after stroke, and highlights its potential as an
acute ischemic stroke therapeutic, particularly in the setting of

large vessel occlusion and recanalization. For example, this
and our previous studies have demonstrated that R18 has the
capacity to reduce infarct volume, cerebral hemisphere swell-
ing and functional deficits in several different rodent stroke
models (permanent and transient MCAO, and ET-1-induced
MCAO), in different rat strains (Sprague-Dawley, Wistar) and
now in a NHP (macaque) [9–12, 44].

In this study, treatment with R18 was highly effective in
reducing infarct volume at both 24 h and 28 days after stroke,
confirming that the neuroprotective effects are maintained,
and also improved functional outcomes. Moreover, as
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Fig. 1 MRI imaging data for R18 (1000 nmol/kg) and saline vehicle
treatment groups at different time points after middle cerebral artery
occlusion (MCAO). (a) Perfusion volume deficits and DWI lesion
volumes 15 min after MCAO. (b) Stroke lesion volumes as measured
by DWI 24 h after MCAO. (c) Stroke lesion volumes as measured by
DWI normalized to the initial perfusion deficit for each animal 24 h after
MCAO. (d) Stroke lesion volumes as measured by T2WI 28 days after
MCAO. (e) Stroke lesion volumes as measured by T2WI and normalized
to the initial perfusion deficit for each animal 28 days after MCAO. N = 7
for R18 and N = 9 for saline. Values are means ± SE
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treatment was commenced 60 min after stroke onset and be-
fore reperfusion, this suggests that the peptide would have the
capability of extending the therapeutic time window for
thrombolysis and endovascular thrombectomy after a throm-
boembolic stroke.

Whereas this study did not investigate neuroprotective
mechanisms of action, we and others have previously
demonstrated that R18 and other CARPs are likely to
have a multimodal mechanism of action. For example,
R18 has been shown to reduce excitotoxic neuronal intra-
cellular calcium influx [7] and to reduce inflammatory
responses, caspase activation, and autophagy following
traumatic brain injury [45, 46], whereas shorter poly-
arginine peptides such as R4, R7, or R9 can assist in
maintaining mitochondrial integrity during oxidative and
calcium-induced stress [20, 21, 47], inhibit matrix metal-
loproteinase activation [25], and provide cellular protec-
tion from hydrogen peroxide injury [48]. However, we

acknowledge that further studies are required to confirm
these mechanisms of action and basis for the neuroprotec-
tive effects of R18 in vivo in the NHP stroke model.

In addition, we did not investigate R18 uptake into the
brain or other pharmacodynamic and pharmacokinetic as-
pects of the peptide distribution and metabolism following
intravenous administration. However, with respect to
brain uptake, it is known that CARPs can cross the
blood–brain barrier [49, 50] and are often used as carriers
to deliver other molecular cargoes (e.g., proteins, pep-
tides, nucleic acids) into the CNS [51, 52]. For example,
in the case of the NA-1 peptide, the cationic arginine-rich
TAT peptide (YGRKKRRQRRR) is used as a carrier mol-
ecule [32]. Furthermore, following intravenous adminis-
tration in mice, the poly-arginine-11 peptide (R11) enters
the intact brain, and brain uptake is further enhanced
when administered after MCAO [53]. Therefore, based
on the high neuroprotective efficacy of R18 observed in
this study and the known capacity of CARPs to enter the
brain, it is likely that R18 does enter the brain, particular-
ly in areas in which the blood–brain barrier is compro-
mised. Thus, it would be of interest for future studies to
determine R18 brain tissue concentrations in healthy ani-
mals and in animals after stroke, as well as determine
concentrations of the peptide that provide maximum
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Table 1 Linear mixed model parameter estimates for total NHPSS with
experimental group as the independent variable

Variable Coefficient Standard error t p

Intercept 8.915 0.729 12.232 < 0.001

Vehicle 2.682 0.844 3.178 0.002

R18 0* – – –

Time − 0.343 0.046 − 7.526 < 0.001

*Indicates comparison group
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therapeutic effect. In this regard, whereas the 1000 nmol/
kg dose of R18 was selected based on a dose-response
study performed in rats [12], the optimal dose of R18 in
the macaque and in humans may in fact be significantly
lower, as extrapolating intravenous doses from small ani-
mals (e.g., rats) to larger animals (e.g., humans) should be
based on body surface area [54], rather than weight. On
this basis, the 1000 nmol/kg dose in the rat would be
equivalent to a 325 nmol/kg and 165 nmol/kg dose in
the macaque and an adul t human, respect ively.
Importantly, in humans, a lower therapeutic dose of R18
would have the advantage of minimizing any potential
adverse side effects of the peptide.

Based on the serum pharmacokinetics of the CARP prot-
amine (PRRRRSSSRPVRRRRRPRVSRRRRRRGGRRRR;
net charge +21), the serum half-life of free R18 peptide is
likely to be in the order of 7–24 min [55, 56]. In support of
this, in a pharmacokinetic study performed in our laboratory
using R18D (D-enantiomer of R18), free peptide was detect-
able by HPLC-mass spectrometry 5-min postintravenous in-
fusion, but not at 10 min or later (unpublished data). However,
in contrast to free peptide, R18 is likely to bind to serum
proteins such as albumin, with the effect of extending its se-
rum half-life for several hours, as has been demonstrated for
R9D/ALX40-4C (D-enantiomer of R9: Ac-rrrrrrrrr-NH2; net
charge +9) [57]. This is likely to be significant from a thera-
peutic standpoint, as protein bound R18 provides a reservoir
of the peptide to exert its neuroprotective actions over an
extended time period, which would be highly beneficial in
ischaemic stroke because brain injury can proceed over many
hours. Therefore, future preclinical serum pharmacokinetic
studies with R18 should examine both free and protein bound
peptide.

Whereas analysis of the NHPSS data using a linear
mixed model to investigate the longitudinal improvement
in neurological deficits confirmed a highly significant R18
treatment effect, improvement at different time points
poststroke appeared to be relatively modest. This is most
likely because of the smaller than expected ischemic le-
sions, resulting in milder functional deficits associated
with this model, and consequently a reduced sensitivity
of the NHPSS to detect treatment effects. Whereas the
exact reasons for the milder strokes observed in this study
are not known, it is noteworthy that the animals were
smaller and younger, and obtained from a different source
to those used in previous studies in our laboratory.
Furthermore, the recovery in functional deficits observed
in both R18- and vehicle-treated animals by day 21
poststroke most likely reflects their greater capacity for
plasticity and to regain lost function after stroke, compared
with aged animals. Therefore, additional studies will be
needed to confirm that R18 can sustain long-term func-
tional benefits in older animals.

Conclusion

This study has confirmed the capacity of R18 to reduce brain
injury and improve functional outcomes following MCAO in
the macaque stroke model, and paves way for further devel-
opment of the peptide as a potential standalone stroke thera-
peutic or an adjunct treatment to extend the therapeutic time
window for endovascular interventions, particularly after
large artery occlusion ischemic stroke. Whereas experience
to date with the CARP group of peptides including NA-1
[38], ALX40-4C [57], and CN-105 (Ac-VSRRR-NH2; net
charge +3) [58] has not identified any significant toxicity is-
sues, more intensive pharmacokinetic and safety studies of
R18 will be a prerequisite prior to consideration of evaluation
in clinical stroke trials.
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