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Abstract Acquired pediatric demyelinating diseasesmanifest
acutely with optic neuritis, transverse myelitis, acute dissem-
inated encephalomyelitis, or with various other acute deficits
in focal or polyfocal areas of the central nervous system.
Patients may experience a monophasic illness (as in the case
of acute disseminated encephalomyelitis) or one that may
manifest as a chronic, relapsing disease [e.g., multiple sclero-
sis (MS)]. The diagnosis of pediatric MS and other demyelin-
ating disorders of childhood has been facilitated by consensus
statements regarding diagnostic definitions. Treatment of pe-
diatric MS has been modeled after data obtained from clinical
trials in adult-onset MS. There are now an increasing number
of new therapeutic agents for MS, and many will be formally
studied for use in pediatric patients. There are important effi-
cacy and safety concerns regarding the use of these therapies
in children and young adults. This review will discuss acute
management as well as chronic immunotherapies in acquired
pediatric demyelination.

Keywords Pediatric multiple sclerosis . Acute disseminated
encephalomyelitis . Treatment . Acquired demyelinating
syndrome

Introduction

A first demyelinating attack in childhood or adolescence is
known as an acquired demyelinating syndrome (ADS). The
course of a first demyelinating attack may be monophasic or
may represent the sentinel attack of an underlying, chronic
demyelinating disorder such as multiple sclerosis (MS) or
neuromyelitis optica (NMO). Pediatric ADS occurs with a
reported incidence of 0.5–1.66 per 100,000 children [1–4],
and may present as optic neuritis, transverse myelitis, acute
disseminated encephalomyelitis (ADEM), or as various other
monofocal or polyfocal deficits. In pediatric ADS cohorts,
optic neuritis constitutes 22–36 %, transverse myelitis 3–
22 %, and ADEM 19–32 % of cases. Other monofocal or
polyfocal presentations (21–46 %) comprise the remainder
of ADS cases [1–3, 5].

The reported proportion of children with ADS that are ul-
timately diagnosed with MS is variable and ranges from 15 %
to 45 % [2, 3, 6–9]. Up to 10.5 % of all patients with MS
experience the clinical onset of MS before the age of 18 years
[10]. Though the pathobiology appears similar to that of adult-
onset MS, MS in childhood manifests almost exclusively as a
relapsing–remitting MS (RRMS) phenotype. When compared
with patients with adult-onset MS with similar disease dura-
tion, pediatric patients experience a relapse rate 2–3 times
higher than that of adults in the first few years of disease
[11, 12]. The mechanisms underlying higher relapse rates
may conceptually relate to greater immune activation, to dif-
ferences in the balance of effector and regulatory immune
cells, to age-related differences in immune cell access into
the central nervous system (CNS), or to intracerebral factors
that influence the formation of lesions. Comprehensive, com-
parative biological studies are required to better understand
the impact of age on clinical disease expression. The more
inflammatory initial course of pediatric-onset MS highlights
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the rationale for prompt initiation of immunomodulatory ther-
apies in children.

There are now 12 Food and Drug Administration (FDA)-
approved medications for the treatment of RRMS, with 1 new
injectable therapy, 3 oral medications, and 1 infusion therapy
approved in the last 5 years. With aims of greater disease
suppression comes a higher risk of adverse, and poten-
tially fatal, side effects. Though safety and efficacy data
within adult cohorts have been demonstrated, the effects and
safety profiles of these new therapies have yet to be deter-
mined in pediatric patients.

In this review, we will focus on current diagnostic tools
available for differentiating and diagnosing the spectrum of
ADS of childhood, with specific attention to that of ADEM
and MS. We will review data on the acute care of a demyelin-
ating attack in addition to current and upcoming therapies for
MS. Particular attention will be paid to upcoming clinical
trials in pediatricMS and the unique obstacles we face as these
trials are conceptualized and commenced.

Making a Diagnosis: History, Examination,
Laboratory, and Radiologic Evaluation

At initial presentation, there is inherent difficulty in
distinguishing monophasic, self-limited ADS from those that
will go on to manifest with a chronic neuroinflammatory con-
dition. The International Pediatric MS Study Group (IPMSSG)
has proposed consensus guidelines to assist in the diagnosis of
the major neuroinflammatory diseases of childhood and supply
a common terminology for all providers [13].

ADEM

Polyfocal ADS can manifest with or without encephalopathy.
If the patient presents without encephalopathy, a diagnosis of
polyfocal clinically isolated syndrome is conferred and the
patient is subsequently considered at high risk for going on
to meet diagnostic criteria for MS. Children with encephalop-
athy (mental status changes or behavioral alterations) and con-
current multifocal demyelination, manifesting with
polysymptomatic neurologic symptoms, meet diagnostic
criteria for ADEM [13]. The differential diagnoses include
CNS infection, mitochondrial disease, antibody-associated
encephalopathies, and metabolic syndromes.

Patients with ADEM tend to be prepubertal, with 80 % of
childhood cases occurring in those aged 10 years or younger.
ADEM has a peak incidence at 5–8 years [14–18]. There is a
seasonal predilection for fall-to-winter occurrence, and there
is often a history of preceding infection or vaccination; how-
ever, up to a quarter of cases may lack a clear history of either
[17, 19]. There are no current serum or cerebrospinal fluid
biomarkers for ADEM; however, cerebrospinal fluid often

demonstrates a mild-to-moderate pleocytosis and elevated
protein. Oligoclonal bands may be transiently seen in up to
10 % of patients [15, 20]. Autoantibodies, including anti-
myelin oligodendrocyte glycoprotein and anti-aquaporin-4,
have been reported in children who meet criteria for ADEM,
though the exact implications of these antibodies have yet to
be fully elucidated [21, 22]. The presence of anti-aquaporin-4
antibodies should prompt consideration of NMO, as the pres-
ence of the antibody strongly predicts future relapse.

Typical magnetic resonance imaging (MRI) changes noted
in ADEM include multifocal fluid attenuation inversion
recovery (FLAIR) and T2-hyperintense lesions that predomi-
nately involve the white matter of the brain and spinal cord.
Lesions are often large (>1–2 cm) with poorly defined
borders. Deep gray matter involvement is often observed.
Imaging abnormalities frequently resolve as the patient
sustains clinical recovery [8, 15, 17, 18]. Monophasic
ADEM, at times, may be difficult to distinguish from the
first attack of MS; however, MRI findings of diffuse,
bilateral T2-hyperintense lesions in addition to absence of
T1-hypointense Bblack holes^ and lack of periventricular
lesions weigh heavily in favor of a diagnosis of ADEM [23,
24].

ADEM is most often a monophasic illness and the vast
majority of patients make a complete recovery; however, a
small subset (6–29 %) of children with an initial diagnosis
of ADEM will have future demyelinating attacks characteris-
tic of MS [6, 25]. A small percentage (≤ 10 %) of
patients with ADEM will experience a biphasic course,
with a subsequent second attack of ADEM—termed
multiphasic ADEM [15, 26]. Rarely, ADEMmay be followed
by monophasic or recurrent optic neuritis and may also pre-
cede or follow a diagnosis of anti-N-methyl-D-aspartate
(NMDA) receptor encephalitis [27, 28].

MS

MS is characterized by multifocal areas of demyelination
within the CNS and by accrual of these lesions over time.
By recent diagnostic criteria, MSmay be diagnosed at the time
of a first clinical attack, as long as imaging at baseline scan
demonstrates evidence of Bdissemination in time and space^
(Fig. 1) [29]. Dissemination in space (DIS) is evidenced by the
presence of at least one T2-hyperintense lesion in at least 2 of
4 CNS areas: periventricular, juxtacortical, infratentorial, or
spinal cord. Dissemination in time (DIT) is demonstrated at
baseline not only by the presence of a clinically silent, enhanc-
ing lesion, as well as nonenhancing lesion(s), but may also be
confirmed by the appearance of a new T2 or gadolinium-
enhancing lesion on follow-up MRI.

Importantly, the use of the 2010McDonald criteria for MS,
when applied at the time of a first attack and single MRI scan,
have similar negative and positive predictive values when
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applied to youth as they do for patients with adult-onset MS.
However, application of the 2010 criteria for DIS and DIT at
onset in children younger than 11 years of age has a much
lower positive predictive value, and thus should be utilized
with caution in this context [30]. It is advisable in young
children to confirm DIT by serial imaging if diagnostic
certainty is in question. Furthermore, the 2010 criteria do not
apply in the context of an ADEM presentation (as the high
volume of T2 lesions often involves the areas required to
fulfill DIS criteria, and variable enhancement of regions that
may be considered Basymptomatic^ could fulfill DIT criteria).

Figure 1 outlines the means of confirming a diagnosis of
MS in pediatric patients with an ADEM-like first attack.
Briefly, a diagnosis of MS may be conferred if the child has
≥2 non-ADEM attacks involving different CNS areas separat-
ed by at least 30 days or 1 non-ADEM attack >90 days from
initial ADEM along with MRI features that meet McDonald
2010 dissemination in time and space criteria [13]. The 90-day
consideration was agreed upon by consensus based upon clin-
ical experience in caring for children with ADEM, in whom
clinical symptoms of a single event can wax and wane over a
period of >30 days.

The likelihood that ADS represents the first attack of MS
can be stratified by initial presentation, age of disease onset,
and presence of findings on brain MRI. MS risk is influenced
by sex, genetic predisposition, and environment. Female sex
and an age of disease onset greater than 10 years old at initial
ADS are associated with a higher likelihood ofMS [6, 25]. An
abnormal brain MRI with clinically silent T2-hyperintense
and T1-hypointense lesions at the time of first ADS along with
the presence of intrathecal synthesis of oligoclonal bands are
also associated with a high likelihood of MS [6, 24]. The
presence of encephalopathy or a normal brain MRI at the time

of ADS (i.e., optic neuritis or transverse myelitis without de-
myelinating lesions within the brain parenchyma) portends a
lower risk of MS [6, 25, 26]. Additionally, the presence of the
HLA-DRB1*1501 allele, remote Epstein–Barr virus infec-
tion, and low serum vitamin D appear to be predisposing
factors for MS [6].

As mentioned above, pediatric patients with MS tend to
have a more inflammatory course within the first 2 years of
onset [11], manifesting with more frequent clinical relapses
and a higher brain T2- and T1-weighted lesion volume
[31–34]. Patients with pediatric-onset MS generally maintain
good recovery from relapses with minimal-to-no progression
in disability within the first 10 years of disease onset; howev-
er, irreversible disability and secondary progression ultimately
occur at a much earlier age than in adult-onset MS [35].
Despite the lack of early measurable physical disability, cog-
nitive impairment can be noted in up to one-third of pediatric
patients with MS [36–38]. Impairments in information pro-
cessing speed, verbal memory, verbal fluency, and receptive
language are seen with resultant negative effects on the pa-
tient’s scholarship and daily life activities [39]. Longitudinal
data are required to determine patterns of cognitive loss or
improvement over time, the impact of treatment on cognitive
function, and the impact of early-onset MS on academic and
vocational achievement into adulthood.

Acute Management of Demyelinating Attacks

Mild symptoms, not impairing daily function, may be sufficient-
ly managed with reassurance, rehabilitation, and ongoing mon-
itoring. For most presentations, intravenous (IV) corticosteroids
are considered first-line treatment [40]. Corticosteroids have

First demyelinating attack
(Non-ADEM)

First demyelinating attack
(ADEM)

MRI does not 
meet criteria for  

DIS or DIT

MRI meets criteria 
for DIS or DIT (but 

not both)

MRI meets criteria 
for DIS and DIT

Diagnosis: Multiple Sclerosis 

Follow-up MRI shows 
evidence of a new lesion 
that meets criteria for  

DIS and DIT

Second clinical event 
>30 days from the first 
involving a different 

area of the CNS

Second 
demyelinating 
attack (non-
ADEM), >3 

months after 
ADEM, with new  

MRI lesions,  
fulfilling DIS and 
DIT criteria for 

MS

Second 
demyelinating 
attack (non-
ADEM), >3 

months after 
ADEM, that 

does not fulfill 
DIS/DIT 
criteria

Third demyelinating 
attack (non-ADEM), 

>30 days from second 
event that fulfills DIS 

criteria

Fig. 1 Algorithm for diagnosis of
multiple sclerosis (MS) in a
pediatric patient. ADEM = acute
disseminated encephalomyelitis;
MRI = magnetic resonance
imaging DIS = dissemination in
space with presence of at least one,
T2-hyperintense lesion in at least 2
of the following 4 central nervous
system areas: periventricular,
juxtacortical, infratentorial, or
spinal cord; DIT = dissemination in
time demonstrated by new T2 or
gadolinium-enhancing lesions on a
follow-up MRI compared with a
baseline scan or simultaneous
asymptomatic gadolinium-
enhancing and nonenhancing
lesions on a single scan [13, 29]
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been shown to accelerate the speed of recovery in addition to
reducing the number of active, gadolinium-enhancing lesions
on MRI within a few days post-treatment [41–44]. The putative
mechanism of action includes modification of cytokine re-
sponses; reduction in T-cell activation; reduction in blood–brain
barrier permeability that, in turn, limits extravasation of immune
cells into the CNS; and facilitating apoptosis of activated im-
mune cells [45]. International consensus favors doses of 20–
30 mg/kg (up to 1 g/day) of IV methylprednisolone daily for
3–5 days. Oral prednisone, starting at 1 mg/kg/day and tapered
over 1–4 weeks, is considered for patients with incomplete res-
olution of symptoms after IV treatment. There is evidence that
high-dose oral corticosteroids (1250 mg of prednisone for
adults) may be as beneficial as the IV form for treating acute
inflammatory, demyelinating attacks of the CNS [46–48]. In
children, oral steroids are less commonly used for treating an
acute attack as appropriate dosing is unclear.

In cases where steroid therapy is contraindicated or the
patient fails to respond adequately to appropriately dosed IV
corticosteroids, intravenous immunoglobulin (IVIg) or plasma
exchange (PLEX) have been utilized. The benefit of IVIg in
acute demyelinating attacks is limited to case reports and
small case series [49–53], and is thought to provide benefit
by directly affecting cytokine production and T-cell prolifera-
tion and by binding potential autoantibodies targeted against
myelin [54, 55]. IVIg is given at a dose of 2 g/kg divided over
2–5 days. Side effects include headache, myalgia, fever, and,
rarely, aseptic meningitis. Premedication with acetaminophen
and diphenhydramine may help reduce infusion-based side
effects. There is potential for a severe allergic reaction with
IVIg in patients with IgA deficiency; thus, obtaining a serum
IgA level prior to initiating treatment is advised.
Thromboembolism is another rare side effect associated with
IVIg therapy.

PLEX has been used increasingly for treatment of patients
with severe or life-threatening demyelination, such as patients
with myelitis or brainstem involvement. PLEX is an invasive
therapy. Side effects include infection (typically related to the
need for an indwelling catheter), alteration of electrolyte pro-
files, and depletion of coagulation factors. The benefit of
PLEX is likely secondary to its therapeutic removal of circu-
lating autoantibodies and immune complexes from the blood.
Typical PLEX therapy is 5–7 exchanges over the course of
10–14 days. The benefit of PLEX is likely greatest in a pri-
marily antibody-driven pathology (such as NMO); yet, bene-
fits have been seen in all types of inflammatory disorders,
including MS [56, 57].

Comprehensive Management of Pediatric-onset MS

A multidisciplinary team, consisting of neurology, neuropsy-
chology, social work, and physical and occupational therapy,

is essential for the care of every pediatric patient withMS. The
management of known environmental factors that affect dis-
ease course is important. Studies in children have found an
association of low serum vitamin D with a heightened risk of
developing MS [6], and an increase in relapse rates in patients
with confirmedMS [58]. The optimal serum concentration for
25-hydroxyvitamin D remains unknown; however, oral doses
of 1000-4000 IU daily in a child to achieve a serum concen-
tration of 30–80 ng/ml is likely appropriate. Second-hand
smoke, as a result of parental smoking, appears to increase
the risk of developing MS, as does the duration of exposure
[59]. In addition, adolescent obesity appears to be associated
with an increased risk of subsequent adult-onset MS [60, 61],
though the impact of obesity upon established disease is un-
clear. Thus, family counseling on the importance of diet and
lifestyle changes along with cessation of smoking is always
indicated.

Currently, there are varied views on the concept of
Badequate^ disease control in MS. Clinical relapse, reduction
in new, T2-bright or gadolinium-enhancing lesions on MRI,
and sustained increases in the Expanded Disability Status
Scale score are frequently used markers of treatment efficacy.
Given the low likelihood of sustained increases in Expanded
Disability Status Scale in pediatric MS, only clinical and MRI
data were incorporated into the IPMSSG consensus statement,
which proposed that an inadequate treatment response in a
compliant pediatric patient on full-dose therapy for 6 months
be defined as: 1) an increase or lack of reduction in annualized
relapse rates (ARR) or new T2 or gadolinium-enhancing le-
sions onMRI when compared with the pretreatment period; or
2) ≥2 confirmed relapses (as evidenced by clinical or MRI)
within a 12-month period or less [40]. As the arsenal of more
potent therapies increases, the aims of treatment have shifted
towards the potential goal of Bno evidence of disease
activity^—a metric defined by elimination of clinical relapses,
the absence of new/enlarging T2- or gadolinium-enhancing
lesions, and lack of increasing sustained disability [62]. The
use of Bno evidence of disease activity^ as a marker of treat-
ment adequacy in children, though provocative and desirable,
is a concept that continues to evolve as the treatment land-
scape of pediatric MS advances.

First-Line Therapies for Pediatric MS

Standard, accepted immunomodulatory therapy in MS, in the
form of injections (either subcutaneous or intramuscular), has
been commercially available for >20 years. Over time, these
therapies have proven to be safe and well-tolerated (Table 1).
Additionally, their therapeutic benefits have been shown in
multiple adult studies to reduce relapse frequency and de-
crease accrual of new lesions on MRI. Important aspects of
care in using these injectables include patient education on
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administration of the therapy in addition to the general care of
injection site reactions should they occur.

It is recognized that adherence to first-line therapy in young
patients with MS is not optimal [63, 64]. This, in part, likely
relates to the age-appropriate need for autonomy in addition to
the social stigma of being diagnosed with a chronic disease at
a time where Bsocial camouflage^ is a strong desire. For these
reasons, it is important to give pediatric patients with MS a
sense of control and normalcy by encouraging adherence to
therapy but not allowing the therapy to significantly limit their
need for independence. The authors’ practice is to encourage
travel and engagement in collegiate activities, despite the fact
that such activities, at times, come at the cost of a single
missed dose of therapy.

Retrospective or open-label studies have informed on the
safety and efficacy of the current, first-line injectable therapies
in children, specifically glatiramer acetate and the interferons
(IFNs) (Fig. 2) [40]. At this time, there are no studies available
assessing the safety and efficacy of the new oral MS drugs;
however, international clinical trials are currently underway.

Glatiramer Acetate

Originally developed to simulate myelin basic protein proper-
ties, glatiramer acetate is composed of a mixture of synthetic
polypeptides derived from each of 4 amino acids: L-alanine,
L-glutamic acid, L-lysine, and L-tyrosine [65]. The mecha-
nism of action is not clear but evidence suggests that it pref-
erentially induces differentiation of CD4+ Tcells into T helper
2 cells, thus promoting an anti-inflammatory state. In addition,
glatiramer acetate may interact with cytokine-secreting cells
prompting a shift from a proinflammatory to a more anti-
inflammatory cytokine profile [66, 67].

Glatiramer acetate is given subcutaneously at 20 mg daily
or 40 mg thrice weekly. Patients should be educated on com-
mon adverse events, including injection site reactions. A tran-
sient systemic reaction, occurring within minutes postinjec-
tion, is typically associated with shortness of breath, chest
pressure, anxiety, and flushing, and can last up to 30 mins.
This phenomenon, which often occurs once but can recur with
subsequent injections, has been reported in 7–14 % of pediat-
ric patients. Several retrospective studies in pediatric MS have
shown this therapy to be well tolerated, with reductions in
ARR similar to that reported in adult trials [68–70].
Glatiramer acetate is perhaps the most favored disease-
modifying therapy in young women attempting pregnancy,
with no known adverse events reported on the fetus [71].

IFN-β

The IFNs are a group of disease-modifying therapies that like-
ly work via several mechanisms including shifting the cyto-
kine balance to a more anti-inflammatory profile and reducing

the trafficking of inflammatory cells across the blood–brain
barrier [72]. There are 2 subclasses of IFN-β—IFN-β1a and
IFN-β1b. IFN-β1a can be given subcutaneously 3 times
weekly at a dose of 22 or 44 μg or intramuscularly at a dose
of 30 μg weekly. A pegylated version of IFN-β1a is now
available and is given at a dose of 125 μg every other week.
IFN-β1b is administered subcutaneously at 0.25 mg every
other day.

Multiple retrospective studies have demonstrated the safety
and efficacy of the IFNs in pediatric MS [68, 69, 73–77].
Potential side effects include influenza-like symptoms (noted
in up to 65 % of patients), injection site reactions, elevated
transaminases, decreased leukocytes, worsening depression,
and headaches. Influenza-like symptoms can often be mitigat-
ed with nonsteroidal premedication. Expert opinion suggests
that IFNs are better tolerated if they are initiated at 25–50% of
the target dose followed by gradual escalation to full dose over
1–3 months [78]. Fetal exposure to IFN-β in utero may be
associated with preterm birth and a lower mean birth weight
and length [71].

Second-line Therapies for Pediatric MS

When first-line therapies fail to treat a pediatric patient with
MS effectively, second-line therapies are often employed.
BFailure^ of first-line therapies is often secondary to break-
through disease, poor tolerance/adherence to the therapy, or a
combination of both. An estimated 44 % of pediatric patients
experience treatment failure with a single first-line therapy.
Nearly 80 % of these patients are given a second injectable
with a different mechanism of action. The remaining 20 % are
offered second-line therapies [79].

The decision to escalate treatment to second-line therapies
is not straightforward and remains dependent on several fac-
tors, including severity of relapse and degree of recovery from
a relapse, safety and adverse event profile of a given treatment
option, and the child and family’s goals and expectations
(Fig. 2). There are currently a handful of therapies utilized
for refractory pediatric MS (Table 1). Selection should con-
sider the mechanism of action of a given therapy, the treatment
duration required to reach maximal therapeutic benefit, the
sustainability of the therapeutic strategy, and the potential ef-
fect of the therapy on a young, developing patient’s
neuroimmunologic system.

Infusion Therapies

Natalizumab

Natalizumab is a monoclonal antibody that is directed against
the α-4 subunit of very late activating antigen-4—a cell sur-
face adhesion molecule found on the majority of leukocytes.
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By blocking this integrin’s interaction with the vascular endo-
thelium, natalizumab reduces trafficking of immune cells
from the periphery into the CNS [80]. Natalizumab is
administered as a once-monthly infusion and has dem-
onstrated a high level of efficacy in adults with RRMS; how-
ever, the association of natalizumab with progressive multifo-
cal leukoencephalopathy (PML) has limited its use in children
and adults. PML is a potentially fatal opportunistic infection
of the CNS caused by reactivation of latent John Cunningham
(JC) polyomavirus, occurring in immune-suppressed patients.
With JC virus infection of oligodendrocytes, cellular lysis oc-
curs and results in widespread, multifocal demyelination [81].
A positive anti-JC virus antibody titer, prior use of immune-
suppressant medications, and increased duration of treat-
ment with natalizumab increase the risk of PML [82].
PML risk also appears to correlate directly with anti-JC
virus antibody titers [83]. Currently, there are no report-
ed cases of PML secondary to natalizumab use in pediatric
patients with MS.

In randomized, placebo-controlled trials in adult MS, com-
parison of treated patients with those who received placebo
revealed an ARR reduction of 68 % over 2 years, sustained
reduction in disability progression of 42 %, reduction of new
or enlarging T2-hyperintense lesions by 83 %, and reduction
inMRI gadolinium-enhancing lesion number by 92% [84]. A
number of cohort studies evaluating the use of natalizumab in
pediatric RRMS have demonstrated that natalizumab is well
tolerated and appears to reduce ARR effectively, and sustain
disability progression, and T2-hyperintense and gadolinium-
enhancing lesion accrual [85–91].

Alemtuzumab

Alemtuzumab, a monoclonal antibody directed against CD52,
received European Medicines Agency (EMA) approval in
2013 followed by FDA approval in 2014 as therapy for
RRMS patients who have inadequately responded to ≥2 MS
therapies. A single, 5-day pulse of this treatment rapidly de-
pletes mature, circulating B and T lymphocytes. This deple-
tion is followed by gradual repopulation of these cells over
many months, with CD4+ T lymphocytes recovering last.
Phase 3 studies in adult RRMS have shown reduction in re-
lapse rates and sustained disability when compared with
IFN-β1a [92, 93]. The side effect profile is noteworthy and
includes infusion reactions, infection, secondary malignan-
cies, and autoimmune disorders (thyroid disease in up to
34 % of patients, nephropathies in 0.3 %, and immune throm-
bocytopenia in 1 %) [94]. The safety of this therapy in pedi-
atric MS has not been evaluated.

Cyclophosphamide

Cyclophosphamide is a synthetic anti-neoplastic alkylating
agent that interferes with DNA transcription of actively divid-
ing cells. Cyclophosphamide is typically infused monthly (with
or without induction) and works as an immunosuppressing
agent affecting cytokine expression (with pronounced effects
on IL-12) along with T-cell and B-cell function [95]. In adults
with RRMS, cyclophosphamide appears to reduce relapse rate
and the accrual of new lesions on MRI [96, 97]. A single,
multicenter retrospective study of 17 cyclophosphamide-
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treated pediatric patients with MS demonstrated improvements
in relapse-related neurologic deficits in the acute setting, in
addition to decreased relapse rates and stabilization of disability
scores 1 year after treatment initiation [98]. The side effect
profile of this therapy limits its use in children and includes
nausea/vomiting, alopecia, amenorrhea, osteoporosis, hemor-
rhagic cystitis, and the risk of secondary malignancy and infer-
tility in both males and females.

Mitoxantrone

Mitoxantrone is approved for the treatment of worsening adult
RRMS; however, given the risk of cardiotoxicity and
high rates of leukemia [99], use of this therapy in pediatric
MS is discouraged.

Rituximab

It is now accepted that autoimmune B cells play key roles in
establishing MS pathogenesis [100]. A rising interest in the
role of humoral immunity occurred when rituximab, a B-cell-
depleting drug, was shown to reduce relapse rates and the
number of gadolinium-enhancing lesions effectively in pa-
tients with RRMS [101]. Rituximab is a chimeric monoclonal
antibody against CD20, a protein on the surface of pre-B cells
and mature B cells. Two retrospective studies assessing the
use of rituximab in children with various neuroinflammatory
diseases (including 6 pediatric RRMS cases) showed mixed
benefits, with only 3 of the 6 patients with RRMS demonstrat-
ing evidence of definite clinical improvement. Infusion-
related reactions occurred in 12.5 % [102, 103]. Given these
small numbers, more data are needed to determine its utility in
the treatment of pediatric MS.

Ocrelizumab

Similar to rituximab, ocrelizumab is a monoclonal antibody
directed against CD20; however, while structurally similar to
rituximab, this antibody is more humanized than chimeric. A
single phase 2 study in adults with RRMS showed significant
reductions in gadolinium-enhancing lesions and relapse rates
compared with placebo [104]. Phase 3 adult studies are cur-
rently underway.

Oral Therapies

Fingolimod

Fingolimod, the first oral drug to receive FDA approval in
North America and Europe for adults with RRMS, is a
sphingosine-1-phosphate receptor modulator that prevents T-
cell egress from peripheral lymphoid tissue into the peripheral
and central circulation [105]. Phase 3 studies have shown that

fingolimod significantly reduced ARR andMRI activity when
compared with placebo and IFN-β1a [106, 107]. Safety issues
have been identified, including first-dose bradycardia, the risk
of herpes virus dissemination, and macular edema. Three
cases of PML in adult patients with RRMS treated with
fingolimod (not previously treated with natalizumab) have
been reported. The safety in children is unknown, and the
effect of fingolimod in patients who are young with active
thymic maturation is of concern. A prospective, double-blind,
randomized, active-controlled study has begun to evaluate the
efficacy and safety of fingolimod versus IFN-β1a (30 μg once
weekly) in pediatric patients with MS (PARADIGMS), with a
primary endpoint of annualized relapse rate reduction.

Dimethyl Fumarate

Dimethyl fumarate is an oral fumaric acid ester that also re-
cently gained FDA approval for the treatment of RRMS in
adults. Dimethyl fumarate is thought to work by activating
nuclear factor erythroid 2-Y-related factor 2, which thereby
upregulates antioxidative pathways and reduces expression
of inflammatory cytokines, chemokines, and adhesion mole-
cules [108]. Two phase 3 studies have shown that dimethyl
fumarate is effective at significantly reducing relapse rate and
the number of new or enlarging T2-hyperintense lesions [109,
110]. Though the safety profile was initially thought to be
favorable, other than flushing and gastrointestinal disturbance,
reports of PML in the setting of dimethyl fumarate have been
released [111, 112]. An open-label, randomized, active-
controlled study of dimethyl fumarate versus IFN-β1a
(30 μg once weekly) in pediatric patients with MS
(CONNECT) is currently recruiting. This study’s primary
endpoint is the proportion of subjects free of new or newly
enlarging T2-hyperintense lesions on brain MRI. A random-
ized, placebo-controlled trial evaluating the efficacy and safe-
ty of dimethyl fumarate (IMAGINE) is in development. In this
trial, time to first relapse will serve as the primary endpoint.
Finally, an open-label study evaluating the effect of dimethyl
fumarate on brain MRI lesions in pediatric patients with MS
(FOCUS) is actively enrolling.

Teriflunomide

Teriflunomide, an FDA-approved oral therapy for adults with
RRMS, reversibly inhibits a key mitochondrial enzyme that is
involved in pyrimidine synthesis, required for DNA replica-
tion. It is thought that this drug preferentially diminishes acti-
vation and proliferation of T- and B-cells (fast-replicating
cells) while sparing the proliferation of slow-dividing cells
[113]. Studies have shown that teriflunomide significantly re-
duces relapse rate, disability progression (at higher dose), and
MRI evidence of disease activity compared with placebo
[114–116]. When looking at risk of treatment failure,

Pediatric Demyelinating Disease Therapy 91



teriflunomide was not statistically superior to IFN-β1a [117].
Hair thinning and gastrointestinal upset are potential side ef-
fects in addition to a black box warning, given the potential for
hepatotoxicity and teratogenicity. A washout with cholestyr-
amine or activated charcoal is used to hasten removal of
teriflunomide in the event of side effects or an unplanned
pregnancy. A randomized, double-blind, placebo-controlled
trial is currently underway to evaluate the safety and efficacy
of teriflunomide in pediatric MS (TERIKIDS), with time to
first clinical relapse serving as the primary outcome measure.

Conclusions and Future Directions

The need for prospective, randomized, controlled studies for
therapies in pediatric MS is paramount. FDA and EMA regu-
lations mandate the inclusion of a pediatric investigation plan
for new therapies in attempts to ensure safe access to the new
therapeutic agents for pediatric use. Given the rarity of pedi-
atric MS, international efforts to recruit an adequate number of
patients for clinical trials is required. In addition, trial design
must consider the number of concurrent trials that can feasibly
be launched if target trial enrollment is to be achieved.

Acute management of pediatric ADS is essential to maxi-
mize recovery. Consensus definitions for adequate and inade-
quate disease control in pediatric-onset MS are emerging, and
are likely to vary when balancing risks and benefits of differ-
ent therapies. A rationale and evidence-based strategy for se-
rial therapy selection has yet to be proposed or studied and the
cumulative risks of multiple therapeutic exposures re-
main unknown. The goal of preventing future physical
and cognitive disability remains paramount, but long-term
observation will be required to determine such outcomes.
The IPMSSG (www.ipmssg.org) was formed to help address
these priorities.
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