Neurotherapeutics (2015) 12:584—-608
DOI 10.1007/s13311-015-0355-9

REVIEW

Therapeutic Strategies in Fragile X Syndrome: From Bench

to Bedside and Back

Christina Gross' - Anne Hoffmann? - Gary J. Bassell® - Elizabeth M. Berry-Kravis*

Published online: 19 May 2015
© The American Society for Experimental NeuroTherapeutics, Inc. 2015

Abstract Fragile X syndrome (FXS), an inherited intel-
lectual disability often associated with autism, is caused
by the loss of expression of the fragile X mental retar-
dation protein. Tremendous progress in basic, preclini-
cal, and translational clinical research has elucidated a
variety of molecular-, cellular-, and system-level defects
in FXS. This has led to the development of several
promising therapeutic strategies, some of which have
been tested in larger-scale controlled clinical trials.
Here, we will summarize recent advances in understand-
ing molecular functions of fragile X mental retardation
protein beyond the well-known role as an mRNA-
binding protein, and will describe current developments
and emerging limitations in the use of the FXS mouse
model as a preclinical tool to identify therapeutic tar-
gets. We will review the results of recent clinical trials
conducted in FXS that were based on some of the pre-
clinical findings, and discuss how the observed out-
comes and obstacles will inform future therapy develop-
ment in FXS and other autism spectrum disorders.
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Fragile X syndrome (FXS) is one of the first single gene dis-
orders manifesting features of autism spectrum disorder
(ASD) in which extensive study of the neurobiology and syn-
aptic mechanisms of disease in cellular and animal models has
been possible. The enormous progress in basic and preclinical
and clinical translational work in FXS in the last several de-
cades has allowed FXS to emerge as an important model to
illustrate successes and hurdles in the development of future
targeted treatments for autism and related developmental dis-
orders. FXS is the most common known genetic cause of
intellectual disability and ASD, with an estimated frequency
of about 1 in 4000-5000 [1]. The disorder affects all ethnic
groups worldwide.

Genetics and Phenotype of FXS

FXS is one of the fragile X-associated disorders (FXDs), all of
which arise from a trinucleotide repeat (CGG) expansion mu-
tation in the promoter region of FMRI. The CGG sequence is
transcribed into the 5° untranslated region of FAMRI mRNA and
thus length of the repeat sequence does not affect the sequence
of the protein product of FMRI [fragile X mental retardation
protein (FMRP)] [2]. Small expansions in the gene (55-200
CGQG repeats), termed the “premutation”, occur in about 1 in
430468 males and 1 in 151-209 females in the USA [3, 4],
and is associated with risk for fragile X-associated tremor/ataxia
syndrome and fragile X-associated primary ovarian insufficien-
cy. Although the premutation is transcribed and translated to
give FMRP, toxicity in fragile X-associated tremor/ataxia
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syndrome and fragile X-associated primary ovarian insufficien-
cy is thought to occur through a mechanism related to elevated
cellular FMRI mRNA levels and resultant CGG repeat-
mediated RNA toxicity [2]. Large expansions in FMR (>200
CGQG repeats), termed the “full mutation,” cause FXS, which
results from methylation and transcriptional silencing of FMR1
with consequent loss or significant reduction in expression of
FMRP [2]. Expansion mutations in FMR]I tend to increase in
size as they are inherited through the generations, so fragile X-
associated disorders affect families in multiple generations,
with more individuals affected with FXS in later generations.

Males with FXS typically present with developmental delay,
particularly language delay, and ultimately display intellectual
disability that can range from mild to severe [5]. Hypotonia is
often seen early in life and evolves into coordination and praxis
problems in older children and adults. Physical features include
macro-orchidism in most men, and variable presence of cranio-
facial characteristics, including prominent ears, macrocephaly,
long face, prominent jaw and forehead, midfacial hypoplasia,
and high arched palate. Loose connective tissue leads to
hyperextensible joints, flat feet, and soft redundant skin on the
palms [5]. Females with a full mutation are more variably and
usually more mildly affected than males because of production
of FMRP in cells that express the normal X chromosome with
the nonmutated FMR] allele. The severity of cognitive impair-
ment in females with a full mutation is inversely related to the
activation ratio for the normal FMRI allele and levels of
expressed FMRP [6]. Males with size (full and premutation)
or methylation (partially unmethylated full mutation) mosai-
cism may be more mildly affected, with severity related to the
percent of unmethylated FMR/ alleles and FMRP levels.

A number of medical problems appear to be more prevalent
in FXS than in the general population, based on prior small
studies from individual or small groups of centers, and con-
firmed in a large dataset collected from a natural history study
being conducted through the Fragile X Clinic and Research
Consortium, a consortium of fragile X clinics in the USA [7].
These problems include seizures, strabismus, frequent otitis
media, gastroesophageal reflux, and sleep apnea and other
sleep disorders (Table 1).

Cognitive, Behavioral and Language Features
of FXS

The majority of males with FXS will meet criteria for mild-to-
severe intellectual disability [8]. The average IQ in men with
FXS is 40-50, with a mental age of about of 56 years. Fe-
males with FXS are often less affected than males with about
25 % having cognitive impairment and others frequently be-
ing diagnosed with learning disabilities [9]. Average IQ in
women is about 80, with a range from severe impairment to
normal or even superior ability. There is a relatively consistent
pattern of intellectual weaknesses (generally milder in severity
in females) and strengths distinct to both males and females
with FXS [10]. Relative weaknesses include visuospatial
skills, working memory, processing of sequential information,
and attention [10], while there are relative strengths in simul-
taneous processing and long-term memory.

Multiple studies have shown a decrease in full-scale 1Q
scores with age as children with FXS become older [11-13].
Standard scores on the Vineland Adaptive Behavior Scale for
overall adaptive behavior as well as subdomains have also
been shown to decline with age during childhood, in males
more so than in females with FXS [14]. Decline in standard
scores for intelligence and adaptive function is not the results
of loss of skills or regression but rather failure to keep pace
with the normal rate of intellectual development. Scores are
felt to be fairly stable in adulthood.

The behavioral phenotype in males with FXS covers a wide
spectrum, although there are certain behaviors that are very
commonly seen. These behaviors fall into the broad categories
of attention/hyperactivity, hyperarousal, anxiety, and aggres-
sion. As in other areas, females with FXS have the same
spectrum of behavioral difficulties but with milder
symptomology.

Attention disorders, including impulsivity, hyperactivity
and inattention, are extremely common in FXS and result in
a comorbid attention deficit hyperactivity disorder diagnosis
in as many as 73 % of males and 30-63 % of females [10,
15-18]. Impulsivity in boys with FXS does not seem to im-
prove with age, which means that this behavior has the

Table 1  Frequency (%) of medical problems in fragile X syndrome (FXS)
FXS males (FXCRC) FXS females (FXCRC) FXS all (FXCRC) FXS (past) General population

Seizures 12 3 10 15 1
Frequent ear infections 55 46 53 56 14
Strabismus/lazy eye 18 13 16 30 3
Sleep problems 26 30 27 40 17
Sleep apnea 7 7 7 34 1
Gastroesophageal reflux 10 14 11 31 5

Data were adapted from Kidd et al. 2014 [7]. FXS past study data is taken from the largest study published before the Fragile X Clinic and Research

Consortium (FXCRC) Database study

@ Springer



586

Gross et al.

potential to present long-term challenges to the individual and
their caregivers [19].

Anxiety disorders have been reported in 86.2 % of males
with FXS and 76.9 % of females with FXS [20]. Although
individuals with FXS manifest high rates of generalized anx-
iety and of virtually all subtypes, the anxiety disorders most
frequently found in the literature are specific phobias and so-
cial anxiety [10, 18, 20].

Hyperarousal, an over-reaction to sensory input, can be
triggered in FXS by a wide range of situations, including
noises, new environments, crowds, interpersonal distance,
eye contact, and new people [21]. The effects of this hyper-
arousal are widespread, and include high levels of motor ac-
tivity (e.g., running, jumping), stereotypic motor movements
(e.g., hand-flapping), gaze aversion, and perseverative behav-
iors [21-23].

Aggression and self-injurious behavior are often linked to
hyperarousal or anxiety. These problem behaviors are espe-
cially detrimental to family functioning as they can signifi-
cantly impede an individual’s ability to participate in daily
activities. Self-injurious behavior typically appears fairly early
in development; onset for most individuals (both male and
female) occurs at 1-3 years of age [24]. Aggression typically
occurs later, mostly during the pubescent and postpubescent
period [25].

Language development is globally delayed for most indi-
viduals with FXS. It is not uncommon for individuals with
FXS to remain prelinguistic communicators until much later
in life than is seen in typical development [26]. However, the
majority of males and females with FXS will obtain spoken
language at some point, and they will continue to gain lan-
guage skills throughout their lifespan, albeit at a slower pace
than typically developing individuals [27, 28].

In general, individuals with FXS have stronger receptive
than expressive language skills. While receptive language
skills are usually below chronological age expectations, they
are commensurate with nonverbal mental age [29], and recep-
tive vocabulary, a major strength, can be well above mental
age. However, individuals with comorbid FXS and autism
have receptive language skills below their nonverbal mental
age, and as autism severity increases so do the deficits in
receptive vocabulary and grammar [30, 31]. Expressive lan-
guage is delayed, with nonverbal mental age being a strong
predictor of expressive vocabulary [29].

Pragmatic language (communication in social interactions)
is delayed very early in development. Young children with
FXS have been shown to have difficulty with joint attention,
reciprocating positive facial expressions, eye gaze, and turn-
taking [28, 32]. Deficits in pragmatic skills continue to surface
as individuals develop. Studies indicate that males with FXS
demonstrate high rates of tangential (off-topic) language,
overly literal interpretation of language, as well as decreased
topic initiation and maintenance [23]. Repetitive language
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(also called perseverative) is a hallmark of FXS and one that
causes significant social difficulty.

Autism and FXS

About a half to two-thirds of males and about 20 % of females
with FXS meet criteria for ASD [33]. These two disorders
share multiple behaviors (Table 2), including pragmatic defi-
cits, language delays, reduced eye contact, difficulty with reg-
ulation of attention and activity level, and additional problem-
atic behaviors (e.g., self-injurious behaviors and aggression).

Characteristics that tend to differ between the FXS behav-
ioral phenotype from the phenotype of idiopathic ASD in
general include a higher rate of intellectual disability, more
severe motor coordination deficits, worse expressive than re-
ceptive language, generally higher interest in socialization (al-
though limited by anxiety), and better imitation skills in FXS
relative to idiopathic ASD (Table 2).

Current Supportive Treatment of FXS

Current treatment of FXS is supportive with therapy, educa-
tional strategies that take into account cognitive and behavior-
al strengths and weaknesses in FXS, treatment of medical
problems, behavioral modification, and psychopharmacology
for behaviors creating dysfunction [33].

Given the global developmental delay most individuals
with FXS display, it is likely that they will qualify for multiple
services at a young age. Occupational therapy, physical ther-
apy, and speech therapy should all be accessed at the maxi-
mum level allowed so as to maximize early growth. Therapy
techniques that have been validated for autism are often help-
ful for FXS but must be modified based on what is known
about the FXS phenotype.

Individuals with FXS have been shown to display better
behavioral and adaptive functioning when their environment
and supportive programming is well matched to their needs
[37], and therefore a highly individualized behavioral, thera-
peutic, and educational intervention plan is needed both for
home and school or work environments.

Psychopharmacologic treatment with medications such as
stimulants for attention and hyperactivity, selective serotonin
reuptake inhibitors for anxiety, alpha-agonists for hyperactiv-
ity and overarousal, and antipsychotics for irritable and ag-
gressive behaviors appears to be helpful by assessment in a
clinical setting in approximately 50-70 % of patients [34].
Response is not complete, however, and data from a national
survey on FXS showed that approximately 10-20 % of re-
spondents thought that medication was not helpful at all for
behavior problems, whereas only approximately 40 % felt the
medication was helping a lot [38]. Thus, there is a clear unmet
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Table 2 Phenotypic differences between autism spectrum disorder (ASD) and fragile X syndrome (FXS)

ASD

FXS (with and without ASD)

* <50 % qualify for an intellectual disability
* 1Q scores are relatively stable over time

* 90 % have 1Qs that qualify as an intellectual disability

Cognition

* Typically a decline in IQ with age in adolescence and early

adulthood secondary to slowed development compared

with typical peers
« Expressive language worse than receptive

* More perseverative language

* Receptive language worse than expressive

* More echolalia

Language and communication

* Greater impairment in social skills

* Less impairment in social skills such as social smiling, joint

attention, and engagement
« Higher rates of anxiety

« Higher rates of complex obsessive/compulsive behavior

Behavior

« Higher rates of attention deficits/hyperactivity

* Higher rates of perseverative behavior

* Early motor development is typically unaffected,

« Significant delays in fine and gross motor skills

Motor

although mild motor difficulties may surface later

Information taken from Abbeduto et al. [35] and Ozonoff et al. [36]

need in FXS for better treatments for behavior and for any
treatments that target cognitive deficits; thus, treatments that
modify the underlying disorder would be an extremely impor-
tant advance.

Molecular Functions of FMRP: Targets
and Molecular Mechanisms

FMRP Domain Function and Human Missense Mutations
Provide Insight into Canonical and Noncanonical
Mechanisms

FMRP is an mRNA binding protein that regulates the transla-
tion of mRNAs encoding proteins that play important roles in
neuronal development and synaptic function [39]. An under-
standing of molecular mechanisms of FMRP domains and
target mRNA binding has provided important insight into
mechanisms of translational control that go awry in FXS.
These mechanisms have been reviewed extensively elsewhere
[40]. Here, we will thus focus on recent discoveries and non-
canonical mechanisms of FMRP-mediated regulation. FMRP
contains three canonical RNA binding domains, two ribonu-
cleoprotein K homology domains (KH1, KH2), and an argi-
nine-glycine—glycine repeat-containing RGG box. An isoleu-
cine 304 to asparagine missense mutation (Ile304Asn) in the
KH2 domain, associated with severe clinical symptoms of
FXS, has been shown to behave like a null mutation with
reduced RNA binding and polyribosome association in a
mouse model [41]. More recently, a patient diagnosed with
FXS was found to have a glycine 266 to glutamic acid
(Gly266Glu) missense mutation in the KH1 domain, which
also disrupted RNA binding and polyribosome association
[42]. Moreover, the Gly266Glu mutant was unable to rescue
the excess «-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor internalization in Fmrl knockout
(Fmr1%°) neurons, which is a key cellular phenotype attributed
to loss of translational control by FMRP [43]. The C-terminal
RGG box has been shown to bind to G-quadruplex structures
using multiple approaches [44—47], although the cellular func-
tion of this interaction is unknown. As G-quadruplex structures
can facilitate mRNA localization to neuronal processes [48],
and FMRP-target mRNAs have impaired activity-regulated
mRNA localization in FmrI®° neurons [49], this suggests a
possible role for the RGG box in mediating mRNA localiza-
tion. Future work is needed to understand possible mechanistic
inter-relationships between the RGG box and KH domains for
regulation of FMRP-target mRNA translation.

The role of the amino terminus of FMRP in RNA binding
has been reported in several studies, despite the lack of a well-
conserved RNA binding domain [40]. Recent crystal struc-
tures of the amino terminus uncovered the existence of a novel
KHO domain (residues 126-202) [50]. Of potential interest,
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KHO overlaps with the minimal domain (residues 180-217)
required for FMRP binding to the small noncoding RNA,
BC1 RNA [51]. The role of FMRP-BCI1 interactions in trans-
lational regulation in neurons has been characterized [52, 53].
More work on the RNA targets and species recognized by
KHO may further clarify its role in mRNA regulation. The
KHO domain has recently been implicated in functions outside
of FMRP’s established role in regulating mRNA translation.
Of interest, a patient with developmental delay, but not show-
ing the clinical phenotype of FXS, has been identified with an
R138Q missense mutation in KHO [54]. This mutation does
not impair canonical functions of FMRP involved in mRNA
translation control but does impair presynaptic function and
the protein—protein interaction between FMRP and BK chan-
nels [54].

FMRP contains nuclear localization and export sequences
that facilitate nucleocytoplasmic shuttling [55]. FMRP binds
mRNA in the nucleus [56], and has been shown to regulate
RNA editing [57, 58]. Two FMRP isoforms (ISO6, ISO12)
contain a unique C-terminus, which is absent in common iso-
forms, for example ISO1, ISO7, and contains a sequence that
localizes FMRP to nuclear Cajal bodies [59]. A recent study
has shown that the tandem Agenet (Tudor) domain mediates
FMRP binding to chromatin involved in the DNA damage
response [60]. It will be interesting to further explore possible
noncanonical nuclear mechanisms of FMRP.

Mechanisms of FMRP-Mediated Regulation of mRNA
Translation in Neurons

Perhaps the most extensively studied function for FMRP has
been to repress mRNA translation [39]. Consistent with this
role are numerous reports of excess mRNA translation and
protein synthesis in animal models of FXS and cells from
humans with FXS [61-66]. Recent studies suggest that
FMRP-mediated repression involves its association with poly-
ribosomes and ribosome stalling or direct interaction with the
80S ribosomal subunit [39, 67, 68]. Regardless of whether
FMRP acts to stall ribosomes by binding indiscriminately
along coding sequences [67] or directly to the ribosome
[68], these models are unlikely to explain how FMRP selec-
tively binds only 4 % of mRNA in brain [69]. The search for
cis-elements is an important direction to pursue, and the role
of short sequence motifs in FMRP targets has been reported.
The identified motifs included a 7-nucleotide sequence con-
taining a conserved GAC core in one study [70], and 2 shorter
motifs ACUK (K = G/U) and WGGA (W = A/U) in another
study [71]. Recent bioinformatics analysis of these 2 target
mRNA data sets suggests enrichment of GACR and WGGA
but not ACUK motifs in FMRP target mRNAs [72], the latter
of which would contribute to G-quadruplex structures. Further
work is needed to understand the role of cis-elements and
secondary structures to confer translational regulation of
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FMRP target mRNAs. It will be interesting to see if different
mRNA binding modalities of FMRP may act together to reg-
ulate mRNA translation of specific targets.

FMRP has also been shown to be a positive regulator of
mRNA translation in cultured neurons and in the brain
[73-76]. In these examples, mRNA targets were observed to
have decreased polyribosome association and protein expres-
sion in Fmr1*© mice. More work is needed to characterize the
molecular mechanisms involved in the role of FMRP to stim-
ulate translation.

For FMRP to play a key role in protein synthesis-
dependent synaptic plasticity underlying learning and memo-
ry, it must be capable of reversible regulation of mRNA trans-
lation. Few studies have addressed the important question of
how FMRP-mediated repression is removed. In one model,
activation of group 1 metabotropic glutamate receptors results
in the dissociation of cytoplasmic FMR 1 -interacting protein, a
noncanonical eI[F4E-BP, from the translationally repressed
messenger ribonucleoprotein particle complex [53]. Post-
translational modifications of FMRP play key roles in regu-
lating translational repression. Multiple studies have shown
that phosphorylation of FMRP at serine 499 in mouse (500
in human) results in translational repression [77-81]. Dephos-
phorylation of FMRP by PP2A in response to mGlul/5 acti-
vation removes translational repression [82]. FMRP can also
be ubiquitinated in response to mGlul/5 activation [83], and
this mechanism can occur locally within dendrites and at syn-
apses [84]. These studies suggest that dephosphorylation and
ubiquitination of FMRP are linked mechanistically to the re-
moval of translational repression and receptor-induced protein
synthesis.

FMRP Interactions with the microRNA Pathway

FMRP has been shown by several studies to associate with
mature microRNAs (miRNAs) and Argonaute proteins, which
are part of the RNA-induced silencing complex (RISC) [79,
85-89], and also to interact with other components of the
miRNA pathway, including Dicer and miRNA precursors
[90]. More recently, interactions between FMRP and RISC/
miRNAs have been shown to regulate dendritic protein syn-
thesis and spine morphology [79, 85]. It will be interesting if
future studies show that FMRP interactions with G-
quadruplexes provide a common mechanism to regulate
miRNA seed site accessibility [91]. The tight association of
phosphorylated FMRP with RISC/miRNAs may promote
translational repression, whereas dephosphorylation of FMRP
in response to activation of mGlul/5 receptor results in release
of miRISC and concomitant activation of translation [79]. A
role for FMRP phosphorylation to regulate miRNA-mediated
repression was recently observed in a non-neuronal culture
system [92], which further supports the proposed model.
FMRP may also play a role in miRNA stability or turnover,
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and a recent report suggests dysregulation of several miRNAs
in the hippocampus from Fmr/*® mice [93]. Of interest,
FMRP was recently shown to have differential effects on
mRNA translation, acting either positively or negatively, de-
pending on the type of molecular interactions between FMRP
and the RNA helicase, Mov10, with miRNA recognition ele-
ments and hairpin secondary structure [94]. Such interactions
could result in either facilitation of RISC-mediated silencing
or its inhibition. Taken together these studies suggest a mech-
anistic cooperation between FMRP and miRNAs that may
influence translation in a bidirectional manner. Moreover, the-
se studies suggest that dysregulation of miRNAs may underlie
impairments in regulation of protein synthesis in FXS.

FMRP-mediated Regulation of Voltage-gated Ion
Channels

Fmr1*° neurons display increased neocortical network activity
[95-98]. Recent evidence suggests that this hyperexcitability in
the absence of FMRP may be caused by dysfunctions in
voltage-gated ion channels [98, 99]. In vitro screening assays
have identified several voltage-gated potassium, sodium, and
calcium channels as potential FMRP mRNA targets [44, 67,
100, 101]. Two of them, the voltage-gated potassium channels
Kv3.1b and Kv4.2, were validated in independent studies as
FMRP mRNA targets [74, 102, 103]. While Kv3.1b was shown
to be translationally repressed by FMRP, the exact modalities of
FMRP-mediated regulation of Kv4.2 are not fully understood
yet, and it is still controversial if FMRP acts as a translational
suppressor or activator of Kv4.2 [74, 103]. Kv4.2 is the major
mediator of A-type currents in the CA1 region of the hippo-
campus, and a recent study showed reduced A-type currents
and increased backpropagating action potentials in CA1 pyra-
midal neurons in FmrI%° mice [104], suggesting that absence
of FMRP decreases Kv4.2 function. Interestingly, apart from
translational regulation, FMRP also directly binds to ion chan-
nels, which has revealed noncanonical functions. FMRP binds
and activates Slack [105, 106], and FMRP’s association with
BK channels alters their calcium sensitivity in a protein
synthesis-independent manner [98, 107]. A recent study also
showed that FMRP interacts with the voltage-gated N-type cal-
cium channel Cay2.2 and modulates its function and expression
[108]. Taken together, these studies broaden our view of FMRP
as a central regulator of ion channels suggesting novel routes of
therapeutic strategies in FXS targeted at these channelopathies.

Preclinical Studies in the FXS Mouse Model

The underlying genetic cause of FXS, a trinucleotide expan-
sion in the 5’ untranslated region of FMRI, which leads to
transcriptional silencing, is difficult to replicate in animal
models. Instead, Fmrl KO mice, in which a genetic deletion

leads to complete lack of FMRP expression in all cells, are
the predominantly used animal model for FXS [109, 110].
FmrI®© mice display FXS-like phenotypes (Table 3), and
have been widely used to identify and assess potential thera-
peutic strategies (Table 4). Owing to space limitations we will
not discuss the two invertebrate models of FXS, Drosophila
and zebrafish [181-184], although these models, as far as they
have been studied, show many of the same characteristics and
rescue phenomena seen in the mouse model.

Recent Developments in the Characterization of F mr1*©
Mice as a Preclinical Model for FXS

FmrI®° mice have been used to analyze the molecular func-
tions of FMRP, to identify mechanisms underlying FXS and to
test potential therapeutic strategies. Major efforts have been
made to identify robust and reliable phenotypes in the mouse
model that reflect the human disease and pathology and thus
can be used to identify and test potential treatment strategies.
These phenotypes range from molecular, cellular and network
alterations to behavioral and cognitive deficits. However,
many of these phenotypes are moderate, difficult to reproduce
in different laboratories, and might thus not be reliable tools to
evaluate potential therapeutic strategies in preclinical studies.
The most frequently used and robust phenotypes are summa-
rized in Table 3. Below, we will discuss recent developments
in the phenotypic characterization of the FXS mouse model,
which may enable more rigorous and physiologically relevant
preclinical testing of therapeutic strategies in the future.

Molecular Defects as Potential Biomarkers

Fragile X is a disease of dysregulated signal transduction and
lost control of general and target mRNA translation [39, 185].
Impairments in several signaling pathways and altered expres-
sion of many FMRP targets have been detected in the FXS
mouse model. Recently, molecular defects that were originally
observed in the brains of FXS animal models were also detect-
ed in peripheral blood lymphocytes, lymphoblastoid cell lines,
and fibroblasts from patients with FXS. Thus, these molecular
defects may serve as biomarkers to evaluate the efficiency of
disease-targeting therapies in humans. Potential biomarkers for
FXS include altered signaling activity of extracellular signal-
regulated kinase (ERK)1/2 and phosphoinositide-3-kinase
(PI3K) [64—66, 186—188], or altered protein expression or ac-
tivity of FMRP targets [e.g., amyloid-f3 precursor protein
(ABPP) or matrix metalloproteinase 9 (MMP-9) [162, 189]].
Not all defects in signaling in the mouse model have been
reproducible across laboratories. In particular, reports about
ERK1/2 and PI3K/mammalian target of rapamycin (mTOR)
activation have been conflicting (e.g., [62, 63]). These discrep-
ancies might be explainable by different tissues or tissue prep-
arations used for analysis, but they also show that future work
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is needed to fully understand ERK1/2 and PI3K signaling de-
fects in FXS in order to be able to comprehensively assess their
potential as biomarkers in studies with humans. Nonetheless,
impaired ERK1/2 activation and increased A3PP or MMP-9
levels have already been used as outcome measure in open-
label clinical trials [189—192]. In the future, analyses of these
biomarkers could help to assess if a specific drug treatment
targets the underlying molecular mechanisms.

Synaptic, Neuronal, and Network Defects to Test Treatment
Strategies

Phenotypes of animal disease models are considered particu-
larly useful if they recapitulate a symptom in human patients. In
the case of FXS, increased density and immature appearance of
dendritic spines were detected in patients and mouse models
[171, 193], and have been widely used to test therapeutic strat-
egies. Pharmacologic and genetic modification of many molec-
ular targets, including neurotransmitter receptors, intracellular
signaling molecules and direct targets of FMRP have been
shown to rescue this phenotype (Table 4), but it is unclear if
correction of altered dendritic spine morphology in the mouse
model is a good predictor of the success of a certain therapeutic
strategy in patients [194]. More recently, Cruz-Martin et al.
[195, 196] have identified defects in activity-induced dendritic
spine dynamics in the FXS mouse model in vitro and in vivo,
which may be a direct correlate of synaptic plasticity underly-
ing learning and memory. Stimulus-insensitive dendritic spine
dynamics and increased turnover of dendritic spines were also
observed in two other reports [197, 198]. Of note, defects in
dendritic spine dynamics were not rescued, but rather exagger-
ated, by chronic in vivo administration of the mGlu5 negative
allosteric modulator (NAM) 2-methyl-6-(phenylethynyl) pyri-
dine [195]. This is of special interest, because recent clinical
trials with mGlu5 NAMs did not show significant behavioral
improvements in adolescents and adults with FXS compared
with placebo, although cognition and functional outcomes were
not tested (Table 5) [194, 210]. In the future, it will be important
to identify pharmacologic interventions that restore dynamic
alterations in dendritic spine morphology in FmrI*° mice in
response to extracellular stimuli, as those might be particularly
promising therapeutic strategies for patients with FXS.
Recent Developments in the Characterization of Fmr1%©
Mice as a Preclinical Model for FXS

Fmr1®° mice have been used to analyze the molecular func-
tions of FMRP, to identify mechanisms underlying FXS and to
test potential therapeutic strategies. Major efforts have been
made to identify robust and reliable phenotypes in the mouse
model that reflect the human disease and pathology and thus
can be used to identify and test potential treatment strategies.
These phenotypes range from molecular, cellular and network
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alterations to behavioral and cognitive deficits. However,
many of these phenotypes are moderate, difficult to reproduce
in different laboratories, and might thus not be reliable tools to
evaluate potential therapeutic strategies in preclinical studies.
The most frequently used and robust phenotypes are summa-
rized in Table 3. Below, we will discuss recent developments
in the phenotypic characterization of the FXS mouse model,
which may enable more rigorous and physiologically relevant
preclinical testing of therapeutic strategies in the future.

Molecular Defects as Potential Biomarkers

Fragile X is a disease of dysregulated signal transduction and
lost control of general and target mRNA translation [39, 185].
Impairments in several signaling pathways and altered expres-
sion of many FMRP targets have been detected in the FXS
mouse model. Recently, molecular defects that were originally
observed in the brains of FXS animal models were also de-
tected in peripheral blood lymphocytes, lymphoblastoid cell
lines, and fibroblasts from patients with FXS. Thus, these
molecular defects may serve as biomarkers to evaluate the
efficiency of disease-targeting therapies in humans. Potential
biomarkers for FXS include altered signaling activity of ex-
tracellular signal-regulated kinase (ERK)1/2 and
phosphoinositide-3-kinase (PI3K) [64—66, 186—188], or al-
tered protein expression or activity of FMRP targets [e.g.,
amyloid-f3 precursor protein (ARPP) or matrix metallopro-
teinase 9 (MMP-9) [162, 189]]. Not all defects in signaling
in the mouse model have been reproducible across laborato-
ries. In particular, reports about ERK1/2 and PI3K/
mammalian target of rapamycin (mTOR) activation have been
conflicting (e.g., [62, 63]). These discrepancies might be ex-
plainable by different tissues or tissue preparations used for
analysis, but they also show that future work is needed to fully
understand ERK1/2 and PI3K signaling defects in FXS in
order to be able to comprehensively assess their potential as
biomarkers in studies with humans. Nonetheless, impaired
ERK1/2 activation and increased ABPP or MMP-9 levels
have already been used as outcome measure in open-label
clinical trials [189—192]. In the future, analyses of these bio-
markers could help to assess if a specific drug treatment tar-
gets the underlying molecular mechanisms.

Synaptic, Neuronal, and Network Defects to Test Treatment
Strategies

Phenotypes of animal disease models are considered particu-
larly useful if they recapitulate a symptom in human patients.
In the case of FXS, increased density and immature appear-
ance of dendritic spines were detected in patients and mouse
models [171, 193], and have been widely used to test thera-
peutic strategies. Pharmacologic and genetic modification of
many molecular targets, including neurotransmitter receptors,
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intracellular signaling molecules and direct targets of FMRP
have been shown to rescue this phenotype (Table 4), but it is
unclear if correction of altered dendritic spine morphology in
the mouse model is a good predictor of the success of a certain
therapeutic strategy in patients [194]. More recently, Cruz-
Martin et al. [195, 196] have identified defects in activity-
induced dendritic spine dynamics in the FXS mouse model
in vitro and in vivo, which may be a direct correlate of synaptic
plasticity underlying learning and memory. Stimulus-
insensitive dendritic spine dynamics and increased turnover
of dendritic spines were also observed in two other reports
[197, 198]. Of note, defects in dendritic spine dynamics were
not rescued, but rather exaggerated, by chronic in vivo admin-
istration of the mGlu5 negative allosteric modulator (NAM) 2-
methyl-6-(phenylethynyl) pyridine [195]. This is of special
interest, because recent clinical trials with mGlu5 NAMs did
not show significant behavioral improvements in adolescents
and adults with FXS compared with placebo, although cogni-
tion and functional outcomes were not tested (Table 5) [194,
210]. In the future, it will be important to identify pharmaco-
logic interventions that restore dynamic alterations in dendritic
spine morphology in FmrI*° mice in response to extracellu-
lar stimuli, as those might be particularly promising therapeu-
tic strategies for patients with FXS.

A prominent defect in synaptic plasticity in Fmr
mice is exaggerated and protein synthesis-independent me-
tabotropic glutamate receptor-dependent long-term depres-
sion [83, 172]. However, this synaptic deficiency is diffi-
cult to translate into a specific defect in patients, and thus
might not be ideal to test therapeutic strategies. In con-
trast, patients with FXS show symptoms of neuronal hy-
perexcitability, such as increased susceptibility to seizures
and hyperarousal. This neuronal hyperexcitability may be
reflected by a heightened susceptibility to audiogenic sei-
zures in FXS mice [211], a widely used phenotype to
assess therapeutic strategies in preclinical analyses. More
recent efforts have focused on identifying measurable de-
fects in neuronal network activity in FmrI®° mice that
can be used to test therapeutic strategies. For example,
prolonged neocortical UP states, a network defect in
FXS that reflects the overall neuronal hyperexcitability
[95, 96], have been successfully decreased with genetic
or pharmacological reduction of mGlu5, genetic removal
of Homer 1A, genetic reduction of the PI3K enhancer
(PIKE), but not pl110f [97, 150, 237, 238]. Of note, a
recent study has identified a potential neuronal correlate of
hyperarousal in the somatosensory cortex of FmrI®® mice
that was rescued pharmacologically using a BKc4 channel
opener [98]. The same BKc, activator has been used
previously to rescue behavioral impairments in the FXS
mouse model [166], suggesting that neuronal network hy-
perexcitability is a useful phenotype to evaluate therapeutic
strategies in FXS.

IKO

@ Springer

Assessing Activity-Dependent Neuronal Defects to Test
Therapeutic Strategies in FXS

Many molecular and cellular phenotypes in Fmr1<° mice are
subtle, difficult to reproduce in different laboratories and often
discussed controversially. These problems most likely arise
from differences in genetic background, handling, and hous-
ing of the mice, which may alter the steady-state levels of
intracellular signaling, protein synthesis, and dendritic spine
morphology. A prominent feature of FMRP-deficient cells is
the impairment in stimulus-induced neuronal responses. This
has been shown on the molecular level (protein synthesis and
signal transduction; e.g., [62, 63]), the cellular level (dendritic
spine dynamics [196, 198]), and more recently on the network
level (hypersensitivity of neocortical responses to tactile stim-
uli [98]). Exploring defects of stimulus sensitivity in animal
models of FXS as phenotypes to test therapeutic strategies is
particularly attractive because of their relevance for synaptic
plasticity underlying learning, memory, and behavior. More-
over, these defects may be observed regardless of the
“baseline” constitutive phenotype. Of note, impairments in
stimulus-induced ERK and Akt signaling and protein synthe-
sis have also been shown in fresh blood lymphocytes and
lymphoblastoid cell lines from patients with FXS [64, 187].

Behavioral and Cognitive Phenotypes in the FXS Mouse
Model

Behavioral analyses of Fmr/*° mice are mainly focused on
autism-associated defects, for example perseverative behav-
ior, anxiety, and impairments in social interaction (see Table 3;
reviewed in [180]). Behavioral phenotypes of FXS mice vary
considerably across laboratories, and even defects in the op-
posite directions have been reported frequently [179]. To im-
prove comparability of results, a future challenge will be to
establish rigorous protocols and standards for behavioral test-
ing in FXS that can be applied in various laboratories. More-
over, it will be important to identify more robust and reliable
behavioral defects. Here, recent advances in analyzing social
behavior and social interactions in FXS mice may hold some
promise [119, 161, 212].

FXS is an intellectual disability, and the ultimate goal for
the development of therapeutic strategies is to improve cogni-
tive function in patients. Initial analyses to assess defects in
hippocampal dependent learning and memory using classic
Morris water maze assays revealed only subtle and varying
defects in Fmr1®° mice [213]. Recently, more robust defects
in novel object recognition were reported by several laborato-
ries [111, 145, 214], making this paradigm a promising tool to
test therapeutic strategies for the improvement of cognition in
FXS. Of note, patients with FXS are mostly impaired in higher
cognition, behavioral flexibility, and inhibitory control, which
depend on the prefrontal cortex. To date, very few studies
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have reported defects in prefrontal cortex-dependent higher-
order cognition in Fmrl KO mice [215, 237]. A recent study
showed that defects in higher cognition in FXS mouse models
were rescued by genetic reduction of the PI3K catalytic sub-
unit p110f3 in the prefrontal cortex [237]. An important future
direction will be to use defects in higher cognition in FXS
mouse models to assess the efficacy of pharmacological res-
cue strategies in improving intellectual capabilities in FXS.

Therapeutic Targets and Rescue Strategies in the FXS
Mouse Model

Rescue strategies in the FXS mouse model have been based
on the analysis of molecular pathomechanisms (e.g., dysreg-
ulated mGlul/5 signaling and protein synthesis), identifica-
tion of specific FMRP targets that are dysregulated in FXS
(e.g., increased protein levels of MMP-9 or striatal-enriched
protein tyrosine phosphatase), or have been guided by obser-
vations in human patients, and the availability of Food and
Drug Administration-approved drugs (N-methyl-D-aspartate
antagonists [149]; lovastatin [112]).

Rescue strategies that were tested in the FXS mouse model
target virtually every step of cellular signal transmission: neuro-
transmitter receptors, scaffolding proteins that connect receptors
with downstream signaling, intracellular signaling molecules,
and regulators of protein synthesis. In some cases, the pharma-
cologically or genetically modified molecules were confirmed
FMRP targets, making these rescue strategies particularly prom-
ising. A summary of rescue strategies tested in the mouse model
is shown in Table 4. In the following sections, we will discuss a
few emerging themes and challenges arising from these studies.

Neurotransmitter Receptors Versus Intracellular Signaling
and mRNA Translation

Significant effort has focused on manipulating neurotransmitter-
dependent receptors as a therapeutic strategy in FXS. The most
widely studied rescue approach targets dysregulated mGlul/5
signaling in FXS using mGlu5 NAMs [216], which were shown
to rescue many phenotypes in both mouse and fly models of
FXS. Clinical trials using this approach have, so far, been un-
successful in showing an improvement of FXS-associated phe-
notypes in humans, possibly because only behavioral pheno-
types were addressed in older patients [194]. Of note, recent
studies in the mouse model showed that chronic treatment with
mGluS NAMs is necessary to improve memory deficits [120,
121, 129], suggesting that prolonged treatment in patients may
also be beneficial. Notably, targeting mGlu5 seems to be more
efficient in rescuing phenotypes in the FXS mouse model than
targeting other G-coupled receptors that were also shown to be
dysregulated in FXS [217], such as mGlul or muscarinic recep-
tors M1 and M4 [118, 131, 136-138].

Another strategy has been to increase the signaling activity
of certain receptors that may have reduced function in FXS,
such as gamma-aminobutyric acid (GABA), dopamine and
serotonin receptors, or tropomyosin receptor kinase B
(Table 4). Here, agonists to GABA and to dopamine receptors
are specifically promising because signaling through them
was shown to be altered in FXS animal models [144, 169].

In general, neurotransmitter receptors are preferred phar-
macological targets; however, in the case of FXS their thera-
peutic potential maybe limited. A hallmark of FXS animal
models and patient cells is the lack of stimulus-induced intra-
cellular signaling and protein synthesis. Dampening the up-
stream receptor may successfully reduce basal activity but
may not restore stimulus sensitivity. Instead, recent studies
suggest that strategies targeted at intracellular molecules
may be more efficient in restoring the stimulus-induced re-
sponse of signal transduction and protein synthesis [62,
159]. Extensive efforts have been made to identify signaling
molecules or receptor scaffolding molecules that play impor-
tant roles in the FXS phenotype. Genetic deletion of scaffold-
ing molecules downstream of mGlul/5 (Homerla) or general
G-coupled proteins (RGS4) have shown rescue of select phe-
notypes [150, 218]; however, so far it is not clear how they can
be used as a pharmacological target in FXS. Furthermore,
broad spectrum inhibitors of ERK1/2 and PI3K showed im-
provement of a few phenotypes in FXS mice but, owing to
expected side effects, will not be suitable for treatment in
humans [62, 63, 152]. Other efforts have focused on selective
phenotypes of FXS, such as, for example, dendritic spine
morphology by targeting p21-activating kinase [156, 157],
or altered cyclic adenomonophosphate levels in patients with
FXS by targeting phosphodiesterase-4 [158, 219].

The absence of FMRP leads to dysregulated protein syn-
thesis, and a general protein synthesis inhibitor was shown to
rescue phenotypes in a fly model of FXS [220]. In line with
this observation, genetic or pharmacological reduction of cen-
tral molecules involved in the regulation of general mRNA
translation (mTOR [121], S6K1 [111], tuberous sclerosis 2
[160]) and molecules involved in the mRNA translation of
select targets (cytoplasmic Poly(A)-binding protein [161])
have been used successfully in the mouse model to rescue
many phenotypes. Future studies will have to show if general
reduction of mRNA translation is a safe therapeutic strategy in
humans.

Manipulating Specific Targets of FMRP

Other approaches have pharmacologically or genetically ma-
nipulated select targets of FMRP, such as A(3PP, striatal-
enriched protein tyrosine phosphatase, MMP-9, and the BK 5
channel (Table 4). These strategies led to reversal of several
phenotypes in the mouse model. In the future, it will be inter-
esting to further analyze how targeting one out of many
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FMRP-regulated proteins with restricted and specialized func-
tions in the cell can be therapeutic in FXS. Of particular inter-
est will be strategies that modify FMRP targets with known
central functions in intracellular signaling, such as the
PI3K enhancer (PIKE), the PI3K catalytic subunit p1103 or
the glycogen synthase kinase-33 (GSK3f3) [62, 122, 155,
221, 237, 238]. Both signaling molecules were identified in
recent screens for FMRP targets [67, 71], and p110f3 has been
validated in independent studies as an FMRP target [62, 221].
Moreover, lithium, an antagonist of GSK3f3, is already ap-
proved for use in humans, and p1103-selective inhibitors have
been developed for cancer research. While mouse studies with
lithium and a specific GSK3{3 antagonist already show prom-
ising effects on behavior and cognition in FXS mice [122,
123, 134, 155], so far, p1103-selective inhibitors have only
been validated in vitro in mice and in vivo in patient-derived
cell lines [64, 66].

Challenges and Future Outlook for Preclinical Studies

As outlined above, an extensive number of pharmacologic and
genetic rescue strategies have been tested in Fmr1*° mice and
most of them show rescue of a wide range of phenotypes.
However, several of these studies also report that specific de-
fects in the mouse model are not rescued by the tested strategy
(Table 4). The comparison of defects that were and were not
rescued in these different approaches may help to clarify un-
derlying molecular mechanisms, evaluate the potential effi-
ciency to improve core deficits in human patients, and, lastly,
suggest potential combinatory therapies using drugs targeting
different pathways. Currently, such analyses are complicated
by the fact that virtually none of the studies has tested (and/or
reported) the same battery of phenotypes, making a direct
comparison nearly impossible. Future studies evaluating the
effect of different drug treatments in side-by-side experiments
will be instrumental to further assess therapeutic strategies.
The identification and development of potential treatment
strategies in FXS has been driven substantially by the use of
FmrI®© mice. These have been a valuable tool to delineate
molecular mechanisms underlying FXS and to reveal the cel-
lular functions of FMRP. However, a major problem for pre-
clinical studies in FXS has been that most phenotypes in the
mouse model are rather subtle and difficult to reproduce in
different laboratories. So, while many different genetic or
pharmacological rescue strategies have shown improvements
in these phenotypes (see Table 4), the overall effects have been
small owing to the subtle nature of the analyzed neuronal and
behavioral deficits. This might have contributed to the disap-
pointing results of recent clinical trials that were based on
these studies (see following sections) [194]. Thus, a better
comprehension of the benefits and limitations of the FXS
mouse model is necessary to be able to utilize it as a reliable
preclinical tool. One study, for example, revealed differences
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in autistic-like behaviors of FmrI®° mice depending on the
genetic background, and argued that some phenotypes might
rather represent the specific strain than the absence of FMRP
expression [222]. In the future, it will be essential to better
understand how genetic background affects phenotypes in the
FXS mouse.

Recently, an Fmrl KO rat model was generated, but, so far,
very few studies using this new animal model have been pub-
lished. One study showed altered speech representation in the
auditory cortex of FmrI®© rats [223], and another study dis-
covered some autistic-like behaviors but no defects in basic
memory tasks [224]. As rats are generally the preferred model
to test more complex cognitive function, Fmr<© rats hold great
promise to evaluate therapeutic strategies for improving intel-
lectual impairments and deficits in higher cognition in FXS.

Another promising novel tool for preclinical studies of
brain disorders are human neurons that were generated from
patient-derived induced pluripotent stem cells (iPSCs). The
recent advances in the use of iPSCs derived from human cells
enable the testing of therapeutic strategies “in a dish” [225].
Early studies in FXS patient-derived iPSCs suggest that some
FXS-associated defects are replicated in these cells
[226-228], although the classic phenotypes reported in the
mouse model, for example exaggerated protein synthesis
and altered dendritic spine morphology, have yet to be exam-
ined in FXS iPSC-derived neurons. In the future, it will be
important to identify robust phenotypes in human iPSC-
derived neurons from FXS that are suitable to test or screen
for therapeutic drugs.

Translation of Targeted Treatments to Humans
with FXS

Based on the work with FXS models discussed in the previous
sections, treatment targets have been identified for potential
clinical development and directed at 1) reduction of excess
activity in signal transduction pathways connecting group 1
metabolic glutamate receptors (mGluRs) or other Gq-linked
receptors to the dendritic translational machinery, either
through (1A) receptor modulation at the cell surface or (1B)
through modulation of the intracellular signaling pathway; 2)
reduction of excessive activity of proteins normally regulated
by FMRP; 3) increasing expression and activation of surface
AMPA receptors; 4) modification of activity of GABA and
other receptors/proteins that regulate glutamate signaling or
translational signaling pathways; 5) using miRNAs to block
excessive translation of mRNAs normally regulated by
FMRP; and 6) correction of abnormal channel activities nor-
mally directly regulated by FMRP (see Table 5, which reviews
all targeted treatment trials in FXS with > 8 participants) [229,
230].



Therapeutics in Fragile X Syndrome

601

Successful preclinical testing in FXS models has led to
early proof-of concept clinical trials and subsequent larger
trials for some of the proposed targeted treatments (Table 5).
CX516, an AMPA activator, did not show efficacy but was
used most likely at a subtherapeutic dose, a conclusion that
would be supported by a suggestion of efficacy in patients co-
treated with antipsychotics, known to potentiate effects of
CX516 [199]. Lithium, thought to reduce excess mGluR-
dependent activation of translation by attenuating GSK33 ac-
tivity and possibly phosphatidyl-inositol turnover, resulted in
significant improvement in behavioral scales, verbal memory,
and abnormal ERK phosphorylation rates in lymphocytes in a
2-month pilot open-label proof-of-concept trial in children and
young adults with FXS [200]. A pilot placebo-controlled
crossover trial of minocycline, an antibiotic that inhibits
overexpressed synaptic MMP-9 in FXS models, conducted
in children with FXS demonstrated mild global clinical im-
provement and reduction of MMP-9 levels in the blood of
responders [205].

GABA-B agonist arbaclofen presumably lowers presynaptic
glutamate release with resultant reduction of group 1 mGluR
signaling (Table 5). In a phase II double-blind placebo-con-
trolled crossover trial [207], arbaclofen showed improvement
over placebo in the entire per-protocol group for social with-
drawal and parent-nominated problem behaviors. However, a
large phase III placebo-controlled trial in adolescents and adults
with FXS did not show benefits for arbaclofen over placebo in
the primary outcome of social withdrawal. An additional phase
MI trial in children with FXS showed promise but full analyses
are pending. Acamprosate, currently Food and Drug
Administration-approved for alcohol withdrawal, with agonist
properties at both GABA-A and GABA-B receptors, has
shown promise, in an open-label trial, for hyperactivity and
social functioning in FXS [209]. Acamprosate and the
GABA-A agonist ganaxolone are being tested in small
placebo-controlled trials in FXS [203].

Multiple negative modulators of the mGluRS5 receptor have
been in trials in FXS (Table 5). A single oral dose of fenobam
resulted in a significant improvement in abnormal prepulse
inhibition compared with untreated control participants with
FXS [201]. A phase II double-blind, placebo-controlled,
crossover trial of AFQ056 in 30 men with FXS treated for
28 days each with AFQ and placebo suggested improvement
in maladaptive behavior in a post hoc analysis in the subgroup
with full methylation of FMRI [206]. Larger multinational
trials of AFQ056 and RO4917523, another mGIuR5 negative
modulator (Roche), have not supported this behavioral out-
come but have not addressed cognitive or learning outcomes
[203]. Clinical observations from long-term extension studies
with both arbaclofen and AFQO056 have suggested there may
be long-term cognitive and functional benefits of these drugs
that were not captured by formal measures employed in the
trials [231].

Challenges and Future Outlook for Clinical Studies

Although many neuronal targets for treating the underlying
disorder in FXS have been identified, translational work has
begun, and, as can be seen in Table 5, early open-label and
some phase II trials have suggested benefits for multiple
targeted treatments, there have been problems with demon-
strating disease modification in subsequent larger trials be-
cause there are still many uncertainties about how to demon-
strate treatment effects optimally in a clinical trial setting [229,
232, 233]. Major trial design issues in FXS trials potentially
include variable but narrow dosing windows, timing (age) and
length of treatment necessary, potential need for cognitive or
behavioral interventions to see drug effects on synaptic plas-
ticity in the form of learning, large placebo effects, difficulty
predicting a primary outcome in a disease such as FXS with
diverse cognitive and behavioral manifestations for a drug that
reverses phenotypes in animal models, and lack of validated,
sensitive biomarkers, and functional outcome measures in
FXS [232]. These trial design issues will need to be resolved
to be able to demonstrate disease modification in FXS. It has
been recognized that more objective clinician-administered
and direct observational measures, measures that address cog-
nition and are validated for populations with intellectual dis-
ability, and biomarkers of central nervous system function are
needed to reduce placebo effect and establish that the drug is
“hitting the target”, and these measures are being increasingly
incorporated into more recent trials (Table 5). It is likely that
efficacy studies will need to focus on younger study popula-
tions, and intensive learning interventions will need to be
employed within the trial design in the drug and placebo
groups in order to see the enhancement of synaptic plasticity
seen in animal models within a time frame compatible with
placebo-controlled trials. Thus, the overall approach to pro-
cess of drug development in FXS needs to change such that
efficacy is no longer required in adults before studying chil-
dren, ways of analyzing global outcomes over multiple do-
mains are developed and accepted by regulatory authorities,
and good precedents are established and accepted for embed-
ding form of cognitive training within trial designs. If these
problems can be solved, hopefully, in the future, treatment to
reverse the underlying disorder will eventually replace or
complement supportive treatment.

There is significant overlap in molecular and cellular path-
ways involving FMRP and those including gene products as-
sociated with ASD [6, 230]. This overlap falls roughly into 3
categories: 1) defects in proteins linked to the signaling cas-
cade for regulation of FMRP-regulated translation such as
Shank, mTOR, p2l-activating kinase, and phosphatase and
tensin homolog; 2) defects in proteins regulated directly by
FMRP such as postsynaptic density protein 95 and Arc; and 3)
defects in proteins involved in the balance of activity in brain
glutamate and GABA systems. Indeed, the FMRP/ASD
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pathway overlap has been recently supported by the findings
that 1) in a meta-analysis of exome screening studies, FMRP
binds to about a third of all genes associated with ASD [234];
2) genes that code for FMRP target mRNAs are more likely
than other genes with similar expression patterns to contribute
to ASD [235]; and 3) common variants in genes involved in
postsynaptic regulation of FMRP activity (CAMK4, GRM1,
cytoplasmic FMR 1-interacting protein) are risk factors for
ASD [236]. Treatments directed at all of these pathway-
overlap areas are being explored in preclinical or clinical
translational work in FXS and, if successful, progress in de-
velopment of such targeted treatments for FXS may result in
treatments to reverse neural defects and clinical manifestations
of ASD and intellectual disability.
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