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Abstract Spinal muscular atrophies (SMAs) are a group of
inherited disorders characterized by motor neuron loss in the
spinal cord and lower brainstem, muscle weakness, and atro-
phy. The clinical and genetic phenotypes incorporate a wide
spectrum that is differentiated based on age of onset, pattern of
muscle involvement, and inheritance pattern. Over the past
several years, rapid advances in genetic technology have
accelerated the identification of causative genes and provided
important advances in understanding the molecular and bio-
logical basis of SMA and insights into the selective vulnera-
bility of the motor neuron. Common pathophysiological
themes include defects in RNA metabolism and splicing,
axonal transport, and motor neuron development and connec-
tivity. Together these have revealed potential novel treatment
strategies, and extensive efforts are being undertaken towards
expedited therapeutics. While a number of promising thera-
pies for SMA are emerging, defining therapeutic windows and
developing sensitive and relevant biomarkers are critical to
facilitate potential success in clinical trials. This review incor-
porates an overview of the clinical manifestations and genetics
of SMA, and describes recent advances in the understanding

of mechanisms of disease pathogenesis and development of
novel treatment strategies.

Keywords Spinal muscular atrophy . Hereditary motor
neuropathy . Motor neuron . Gene . Survival motor
neuron (SMN) . Biomarker

Introduction

The spinal muscular atrophies (SMAs) are a group of inherited
disorders characterized bymotor neuron loss in the spinal cord
and lower brainstem, muscle weakness, and atrophy. The
clinical phenotype incorporates a wide spectrum that is differ-
entiated based on age of onset, pattern of muscle involvement,
and inheritance pattern. Broad categories include proximal
SMA and distal SMA (DSMA, also known as hereditary
motor neuropathy or dHMN), demonstrating considerable
genetic and clinical heterogeneity. SMA often refers to the
most common form, caused bymutations of SMN1 [1], termed
SMA5q or survival of motor neuron (SMN)-related SMA.
SMA remains the leading genetic cause of infant death, and
without a disease-modifying treatment.

Recently, there have been important advances in under-
standing the genetic and molecular basis of SMA. Next-
generation sequencing technology has accelerated gene dis-
covery, with 13 SMA genes identified since 2011. In total, 33
causative genes have been identified to date. Common path-
ophysiological themes include defects in RNA metabolism
and splicing, axonal transport, and motor neuron development
and connectivity.

There is currently great promise to develop a successful,
disease-modifying treatment for SMN-related SMA, and ex-
tensive efforts are being undertaken towards this aim.
Promising therapeutic strategies in development include
small-molecule SMN enhancers, antisense oligonucleotides
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to correct SMN2 splicing, neuroprotectants, stem cell and gene
therapies, and regulators of muscle function. This review will
focus on recent genetic discoveries in SMA, cellular mecha-
nisms underlying motor neuron degeneration, under-
standing disease progression, and initiatives to address
“clinical trial readiness” and the development of novel
treatment strategies.

Clinical Presentations and Genetics

Proximal SMA

SMN1-related SMA

The most common form of SMA is caused by homozygous
disruption of SMN1 on chromosome 5q and results in insuf-
ficient levels of SMN protein in motor neurons. It is one of the
most common autosomal recessive diseases, with an inci-
dence of 1 in 6000–10,000 live births and a carrier frequency
of 1 in 40–60 adults [2]. The disease typically presents in
infancy or childhood, leading to severe physical disability.
The weakness is usually symmetrical, more proximal than
distal, the legs are more affected than the arms, and there is
relative sparing of the diaphragm, and extraocular and facial
muscles. Despite relative sparing of the diaphragm respiratory
insufficiency is an important complication of SMA5q. Deep
tendon reflexes are generally absent or diminished. There is a
broad spectrum of clinical severity, with phenotypes divided
into types 1–4 [3], determined principally by maximal motor
milestone attained and age of onset. Infants with SMA type 1,
or Werdnig–Hoffman disease, do not achieve independent
sitting, with onset before 6 months of age, and respiratory
failure usually leads to death within the first 2 years without
respiratory support. SMA type 2 displays weakness before the
age of 18 months. Patients achieve independent sitting, but are
not able to stand or walk independently, and life expectancy is
often into adulthood. Individuals with SMA type III (also
known as Kugelberg–Welander disease) attain the ability to
walk unaided and usually manifest after 18 months of age.
There is marked variability in the clinical course, with some
patients requiring wheelchair assistance in childhood and
others walking in adulthood. Life expectancy is normal.
SMA type 4 has onset in adulthood.

Non-SMN1-related SMA

Less than 5 % of infantile SMA is non-SMN-related, termed
infantile SMA variants or SMA “plus” syndromes, in which
additional clinical features may be evident, including
arthrogryposis, abnormalities of extraocular movements,
brainstem signs, or cardiomyopathy. These are characterized
by congenital hypotonia, progressive postnatal weakness and

areflexia with anterior horn cell degeneration. The differential
diagnosis includes X-linked infanti le SMA with
arthrogryposis (XL-SMA) [4, 5], SMA due to mitochondrial
dysfunction [6–8], SMA with pontocerebellar hypoplasia
(SMA-PCH/PCH1) [9–13], and SMAwith respiratory distress
(SMARD) (Table 1) [14–16]. SMARD1 (or HMN type VI) is
probably the second most commonly encountered pediatric
from of SMA due to mutations in IGHMBP2 [14]. SMARD1
typically presents with very early respiratory failure due to
diaphragmatic paralysis and weakness, which may be diffuse
or predominantly upper limb and distal muscles. The pheno-
type of SMARD1 has recently broadened and includes mild
weakness without severe signs of respiratory involvement
[17].

While the majority of proximal SMA cases are related to
recessive SMN1 mutations, the genetic heterogeneity of prox-
imal SMA beyond infancy has also been recognized for
several decades [2, 18, 19], with autosomal dominant SMA
accounting for <2 % of cases. This includes lower extremity-
predominant SMA types 1 and 2, caused by heterozygous
mutations in DYNC1H1 and BICD2, respectively [20, 21].
Muscle weakness and atrophy predominantly affect the prox-
imal lower limbs, although upper limb and distal lower limb
involvement may occur [22, 23]. Some patients may demon-
strate mild upper motor signs, foot deformities, or lower limb
contractures [23, 24]. Sensation, bulbar, and cognitive func-
tions are preserved. Lower extremity-predominant SMA may
be static or have very slow progression throughout life. Late-
onset autosomal dominant proximal SMA may also be asso-
ciated with dominant mutations in vesicle-associated mem-
brane-associated protein, protein B, allelic with amyotrophic
lateral sclerosis (ALS) type 8 [25]. Although LMNAmutations
are more commonly associated with muscle disease (particu-
larly Emery–Dreifuss muscular dystrophy), the phenotypic
spectrum also includes adult-onset autosomal dominant
SMA followed by cardiomyopathy [26]. Significantly, the
phenotype of tauopathies has recently broadened to include
lower motor neuron disease, with autosomal dominant muta-
tions in MAPT producing proximal weakness of the upper
limbs, and respiratory insufficiency without dementia, pyra-
midal, or bulbar involvement [27].

Proximal SMA may also be associated with recessive
mutations in PLEKHG5 [28]. Although classified as
DSMA4, the clinical characteristics are proximal muscle
weakness resulting in difficulty walking and climbing stairs
with onset by the age of 3 years.

Importantly, the most common adult-onset SMA is
bulbospinal muscular atrophy, also known as Kennedy’s dis-
ease, related to increased CAG repeats in the androgen recep-
tor [29]. This X-linked recessive neurodegenerative disorder
is characterized by widespread and prominent fasciculations,
muscle weakness and atrophy, dysarthria, and dysphagia. In
addition, patients may have endocrine manifestations,
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including gynecomastia, reduced fertility, and erectile dys-
function, related to androgen insensitivity, and diabetes
mellitus.

DSMA or HMN

In contrast to proximal SMA,DSMA also known as dHMNor
HMN, is characterized by a slowly progressive symmetrical
and predominantly distal limb weakness and atrophy. Since
2001, mutations in 19 genes for dHMN have been identified,
and it has emerged that they are clinically and genetically
heterogeneous, with various phenotypes related to individual
genes (Table 1). Harding originally classified dHMN into 7
categories, based on inheritance pattern, age of onset, severity,
and distinguishing clinical features (Fig. 1) [30]. Autosomal
dominant dHMN types I and II present with distal leg and
subsequent distal arm weakness in childhood and adulthood,

respectively, and are associated with mutations in HSPB1 and
HSPB8 [31–33], HSPB3 [34], GARS [35], FBXO38 [36], and
DYNC1H1 [37]. Linkage to 11q13 has been demonstrated in
the autosomal recessive types III and IV (synonymous with
DSMA type 3). HMN type V is distinguished by onset of
weakness in the hand muscles, and may be associated with
dominant mutations in BSCL2 [38], GARS [39], or REEP1
[40]. HMN type VII is distinguished by vocal cord paresis and
may be due to dominant mutations in SLC5A7 (CHT) [41], or
DCTN1 [42]. The genetic heterogeneity of HMN is further
highlighted with the identification of recessive mutations in
DNAJB2 (HSJ1) causing a nonspecific presentation of lower
limb predominant slowly progressive weakness with young
adult onset, known as DSMA type 5 [43].

The clinical spectrum of dHMN/SMA continues to expand
and may also include congenital onset and X-linked or mito-
chondrial inheritance. There may be minor sensory involve-
ment and/or pyramidal signs, and many of these disorders are
allelic with axonal Charcot-Marie-Tooth disease (HSPB1,
HSPB8, BSCL2, GARS, TRPV4), juvenile forms of ALS
(SETX) [44, 45], and hereditary spastic paraplegia (BSCL2,
HSPB1). In addition, autosomal recessive dHMN with pyra-
midal signs, linked to 9p21.1-p12, has been described origi-
nating from the Jerash region of Jordan (dHMN-J) [46]. X-
linked recessive dHMN/DSMA may be associated with mu-
tations in ATP7A (X-linked dHMN, allelic with Menkes
disease) [47, 48] and LAS1L (SMARD2) [16]. Recently, mu-
tations in TRPV4 have been associated with congenital distal
SMA and scapuloperoneal SMA [49, 50]. Associated
distinguishing clinical features may include vocal cord paral-
ysis, scoliosis, contractures, or proximal upper limbweakness.
Challenging the dogma of varied and multisystem involve-
ment in mitochondrial disease, mutations in MT-ATP6 and
MT-ATP8 have recently been shown to cause less severe
phenotypes, including recurrent attacks of symmetrical limb
paralysis and a later-onset distal motor neuropathy, mimicking
periodic paralysis due to channelopathies [51, 52].

Diagnostic Evaluation and Management

For any patient presenting with clinical symptoms consistent
with proximal SMA, testing for homozygous deletion of
SMN1 should be undertaken. This test has 95 % sensitivity
and nearly 100 % specificity in confirming the diagnosis of
SMN-associated SMA or SMA5q [1, 53]. A negative SMN1
prompts review of clinical features, measurement of creatinine
kinase, and neurophysiological studies with repetitive stimu-
lation to help distinguish between motor neuron disease, my-
opathy, and neuromuscular junction disorders. Compound
muscle action potentials (CMAPs) are typically reduced in
SMA while motor conduction velocities and distal latencies

Fig. 1 Clinical features of spinal muscular atrophies (SMAs). (a) Infant
with SMA type 1 with severe weakness, bell-shaped chest, and respira-
tory insufficiency. (b) Thoracolumbar radiograph of patient with SMA
type 2 demonstrating thoracolumbar scoliosis. (c–g) A 36-year-old patient
with distal hereditary motor neuropathy type 5C and mutation in BSCL2
demonstrating (c) distal wasting of the legs, (d–f) early and marked
weakness and atrophy in the hands with finger contractures, and (g) pes
cavus. (h) Chest radiograph of infant with SMAwith respiratory distress
type 1 demonstrating eventration of the right hemidiaphragm
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are normal, or only modestly reduced when the CMAP am-
plitude is substantially reduced. The identification of sensory
involvement is not expected in SMA and suggests Charcot-
Marie-Tooth disease, wherein patients may have minimal
sensory symptoms or signs. Electromyography shows chronic
denervation with motor units of increased amplitude and
duration, though in infants with severe SMA there may be
normal-sized residual voluntary motor units.

In patients without homozygous SMN1 deletions and prox-
imal SMA, measurement of SMN1 copy number will guide
further investigations. A single SMN1 copy may suggest
compound heterozygozity, with a deletion on 1 allele and a
point mutation on the other, and SMN1 sequencing is indicat-
ed [53, 54]. When 2 SMN1 copies are demonstrated, then
other motor neuron disorders such as SMARD, Kennedy’s
disease, distal SMA, and ALS should be considered.
Additional investigations including magnetic resonance im-
aging of brain and spinal cord, and metabolic and genetic
studies may be undertaken. Diagnostic algorithms based on
phenotype guide genetic testing in DSMA, although the yield
currently remains low [55]. If neurophysiological studies re-
veal characteristic patterns associated with diseases in muscle,
nerve, or neuromuscular junction then muscle or nerve biopsy
and edrophonium test may be undertaken.

Practice guidelines for patients with SMN-related
SMA have been established, with consensus on pulmo-
nary, gastrointestinal, and orthopedics/rehabilitation to
provide consistent management [56]. These incorporate
a multidisciplinary and supportive approach. The medi-
cal practice and goals of therapy vary according to the
patient’s level of function and philosophy of the patient
and family. The appropriate level of interventional sup-
port to prolong life, particularly in SMA type 1, is
controversial, and discussions with the family to explore
and define potential quality of life and palliative care
issues are important. Patients with SMA may have im-
paired cough and poor clearance of lower airway secre-
tions, hypoventilation, and recurrent infections related to
weakness. Respiratory management includes administra-
tion of routine immunizations, employing airway clear-
ance techniques and cough assistance as necessary.
Additionally, nocturnal noninvasive ventilation has been
routinely introduced for sleep-disordered breathing in
patients with SMA types 2 and 3. Inadequate oral intake
and malnutrition are managed proactively to avoid po-
tential complications. Treatment strategies may include
nutritional supplementation, modifying food consistency,
optimizing oral intake, positioning, and seating alter-
ations. Contractures and significant scoliosis from mus-
cle weakness are universal in SMA types 1 and 2, and
may also occur in SMA type 3. Provision of equipment
to assist with mobility, self-care and function, orthotics,
and scoliosis surgery are important interventions.

Insights into SMN1-related SMA Pathogenesis

Almost 2 decades after the identification of SMN1 as a SMA-
determining gene, substantial progress has been made in
unraveling the molecular, cellular, and physiological process-
es of disease. Common pathophysiological themes underlying
the various forms of SMA include defects in RNAmetabolism
and splicing, axonal transport, and motor neuron development
and connectivity. Taken together, these themes resonate more
generally amongst the motor neuron disease. Of further rele-
vance, SMN is a genetic risk factor for ALS [57–59].

The development of the most common type of SMA relates
to insufficient levels of SMN protein expression in motor
neurons by homozygous deletion/mutation of SMN1 [1].
Humans possess a variable copy number of SMN2 (0–8 cop-
ies) from which SMN is solely derived in patients with SMA
[53, 60]. SMN2 is almost identical to SMN1, except that a
single translationally silent C to T nucleotide transition causes
exon 7 skipping in the splicing of the majority of SMN2
transcripts, producing a truncated and unstable form of the
SMN protein [61]. This nucleotide change disrupts an exon
splice enhancer sequence and creates an exonic splicing si-
lencer element that binds the splicing repressor heterogenous
ribonuclear protein (hnRNP) A1 [62, 63]. A small fraction of
SMN2 transcripts are spliced to include exon 7 and produce
full-length SMN. The number of SMN2 copies and resultant
amount of full-length SMN protein produced in patients with
SMA (10–40% of normal SMN protein levels) correlates with
SMA disease severity. Consequently, SMN2 copy number
broadly predicts SMA phenotype with the majority of SMA
type 1 patients having 1 or 2 copies, type 2 patients usually
have 3 copies, and most type 3 patients have 3 or 4 copies.
Zero copies of SMN2 is embryonically lethal or associated
with SMA type 0 [64–66].

The ubiquitous SMN protein has numerous and diverse
functions in cells. The best characterized “housekeeping”
function of SMN is in the nucleus and cytoplasm as part of a
large macromolecular complex together with other proteins
known as gemins [67]. The SMN complex is important in the
production, recycling, and maintenance of small nuclear ribo-
nucleoproteins of the Sm class, which are involved in the
splicing of pre-mRNA into mRNA [68–70]. Recent studies
have provided insights into the selective vulnerability of lower
motor neurons to degeneration in SMA, including defective
splicing of a subset of lower motor neuron-specific genes
[71–73]. In addition, a negative feedback loop specific to
motor neurons has been demonstrated, in which SMN deple-
tion decreases exon 7 inclusion, further decreasing the splic-
ing of its own mRNA [74]. SMN also has a role in axonal
transport through its ability to regulate actin dynamics,
forming a complex with β-actin [75, 76]. SMN also interacts
with profilin (ALS18) to influence indirectly actin filament
stability [77, 78]. Animal models with SMN depletion are
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deficient in β-actin mRNA and protein, and numerous distur-
bances of motor neuron axonal growth and development have
been identified [75, 79, 80]. Significantly, plastin 3 has re-
cently been identified as a protective modifier of SMA in
females, coding for an actin-modifying protein [81].
Abnormalities in the neuromuscular junction also contribute
to SMA pathogenesis, with rapid and progressive dysfunction
occurring around the time of clinical disease onset [82–86].

While an important research focus is the direct effect of low
SMN on motor neurons, it is not the sole site of pathology.
Spinal motoneuronal function is modified by direct and indi-
rect sensory afferent input, such as the spinal reflex circuit
[87], and recent SMA animal models indicate that these inter-
actions are important in SMA pathogenesis, shifting the path-
ophysiological paradigm to one of motor circuit dysfunction.
Reduced SMNproduced early abnormalities in proprioceptive
synaptic input onto motor neurons that paralleled clinical
alterations in animal motor behavior [88, 89]. In this model,
these abnormalities occurred while motor neuron functionwas
relatively maintained and this suggested deafferentation of
motor neurons may be an early event in SMA pathogenesis.
In turn, alterations in synaptic inputs induced functional
changes in spinal motor neurons, with a compensatory hyper-
excitability that may be related to alterations in the activity of
ion channels at the cell membrane. Neurophysiological find-
ings in patients with SMA provide support to these observa-
tions, with alterations in spinal H reflexes, spinal circuitry ,and
ion channel function in motor nerves identified [90–92]. Of
therapeutic relevance, increasing the excitability of motor
circuits through the pharmacological inhibition of K+ chan-
nels ameliorated SMA in animal models [93]. Further evi-
dence of the wider impact of SMN deficiency in disease
pathogenesis comes from abnormalities in Schwann cells,
skeletal muscle, heart, bone, pancreas, liver, hippocampus,
thalamus, and the vascular system [94–101]. Controversy
remains over the relative contribution of organ systems other
than the motor neuron in SMN1-related SMA pathogenesis. It
may be debated that the motor neuron is the only significant
tissue, as specific elimination of SMN1 in motor neurons
recapitulates all features of SMA and neuronal SMN restora-
tion is necessary and sufficient for therapy [84, 102–104]. In
spite of this, SMN upregulation within both the central and
peripheral nervous systems may be necessary for optimal
therapeutic outcomes [84, 94]. The detrimental effects of
low SMN on neuromuscular circuitry raises a significant
challenge of solving where SMN targeted therapy will be
required and what will be best delivery mode in patients with
SMA.

The concept that the pathogenesis of SMA is associated
with ubiquitously expressed proteins involved in diverse cel-
lular pathways is reinforced by mechanisms underlying neu-
rodegeneration in non-SMN SMA. Mutations in SMA-related
genes are associated with defects in DNA/RNA metabolism

and protein synthesis, axonal guidance and transport, protein
misfolding and degradation pathways, ion channel function,
and energy production (Fig. 2, Table 2). These diverse func-
tional pathways suggest that motor neuron degeneration may
be a final common outcome with a number of upstream
causes. Future studies incorporating next-generation sequenc-
ing and functional models will provide further insights into
pathomechanisms underlying motor neuropathy.
Furthermore, the overlap among various motor neuron dis-
eases may make similar treatment strategies between these
disorders possible. A recent mouse model of ALS demonstrat-
ed improvement of neuromuscular function and motor neuron
survival with upregulation of SMN overexpression, encour-
aging further investigation of the potential SMN as a modifier
of ALS [105].

Challenges is SMN1-related SMATherapeutics

These pathophysiological insights have revealed potential
novel treatment strategies and extensive efforts are being
made towards expedited therapeutics, with clinical trials al-
ready in progress. Promising therapeutic strategies in devel-
opment include small-molecule SMN enhancers, antisense
oligonucleotides to correct SMN2 splicing, neuroprotectants,
stem cell and gene therapies, and regulators of muscle func-
tion (Sumner et al, this issue). To date, the 26 clinical trials that
have investigated the effect of 12 potential treatments in
patients with SMA have failed to show benefit owing to a
number of factors, yet have enabled expertise in trial design to
be developed [106, 107]. Experience has suggested that youn-
ger patients might be more responsive to treatment [107, 108].
Older patients may be refractive to treatment because they
have been living with their disease for longer periods of time
or because critical tissues have been irreversibly damaged.
Defining therapeutic windows and developing sensitive and
relevant biomarkers are critical to facilitating potential success
in clinical trials.

There remains a lack of consensus over the extent to which
SMA is progressively degenerative and over the rate of clin-
ical progression in SMA. Natural history studies and under-
standing pathophysiology reveal part of the problem and
suggest SMA manifests in 2 phases, with an initial rapid
decline followed by the development of a relative plateau
phase such that the rate of motor neuron loss in SMA is
nonlinear [109, 110]. Some studies suggest gradually progres-
sive degeneration throughout life [111–114], while others
suggest that gradual declines are due to the effects of physical
growth placing greater demands on the motor system [115]. In
further contrast, others describe a static course over a period of
up to 2.5 years [116, 117]. The slow rate of progression poses
a major challenge to clinical trials in SMA because most trials
need to be completed within 1–2 years. Even within SMA
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subtypes there is significant variation in severity and progres-
sion rate throughout the lifespan. Such heterogeneity among
clinical trial participants may potentially obscure treatment
effects. Further, the combination of clinical decline and pla-
teau phases with simultaneous motor development,
myelination, and physical growth complicates the assessment

of motor function. In addition, secondary complications such
as scoliosis and contractures further obscure the reliability of
clinical observations.

Neurophysiological studies have provided further insights
into the timing of SMA pathogenesis, with motor unit number
estimation (MUNE) and CMAP used to track disease

Fig. 2 Proposed mechanisms underlying spinal muscular atrophies
(SMAs). Most of these genes associated with SMA encode for ubiqui-
tously expressed proteins with diverse cellular functions: protein transla-
tion and synthesis (glycyl-tRNA synthetase, Bernardinelli-Seip congen-
ital l ipodystrophy 2), RNA/DNA metabolism (senataxin,

immunoglobulin μ-binding protein 2), axonal guidance and trafficking
[heat shock protein (HSP)27, dynactin 1, pleckstrin homology domain
containing, family G (with RhoGef domain) member 5], cellular protec-
tion (HSP22, HSP27), and apoptosis (HSP27). snRNP=small nuclear
ribonucleic particles; SMN=survival motor neuron

Table 2 Proposed mechanisms
underlying spinal muscular
atrophies

Pathogenic mechanism Implicated genes

RNA splicing and metabolism and protein
synthesis

SMN, SETX, IGHMBP2, DCNT1, GARS, BSCL2, EXOSC3,
TSEN54, RARS2, REEP1, LAS1L

Protein folding, aggregation and degradation
pathways (tau, ubiquitin)

HSPB1, HSPB8, BSCL2, UBE1, AR, VAPB, DCNT1, MAPT

Axonal guidance and transport DCNT1, DYNC1H1, PLEKHG5, HSPB1, SMN, BICD2,
FBX034

Ion channel function TRPV4

Mitochondrial function and neuronal
energy production

SCO2, mtATP6, mtATP8, ?GARS
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progression [109, 111, 118]. An age-dependent decline in
MUNE and CMAP amplitude occurs in both SMA 1 and 2,
and significant progressive denervation may be present before
the onset of symptoms [111, 119]. The capacity for prolonged
motor neuron survival has also been demonstrated by estab-
lishing relative stability of CMAP andMUNE values in cross-
sectional and longitudinal studies [112, 120]; however, this
may not always correlate with decrements in motor function
over the same period. In further contrast, while CMAP may
remain stable over time, MUNE has been shown to increase,
suggesting new motor unit development as a compensatory
process [118]. Axonal excitability studies also support a
mixed pathology comprising features of axonal degeneration
and regeneration [121].

While caution in translating data from preclinical studies
into humans remains a challenge, these provide further sup-
port for an initial rapid onset of disease, or “up-front course”,
coinciding with fetal and early postnatal neurodevelopment.
Disruption of neuronal growth, axon branching, and neuro-
muscular connectivity was observed in zebrafish [122]. While
developmental processes were maintained in mouse models,
denervation was evident during embryogenesis and early in
the postnatal course, around the time of disease onset [86,
123]. In SMA mouse models the temporal requirement for
SMN protein encompasses the early postnatal course, with
depletion of SMN in adults having minimal effect, coinciding
with relativematurity of the neuromuscular junction [82, 124].

Taken together these studies suggest a spectrum in the rate
of motor neuron denervation, survival, and potential compen-
sation in SMA that remains a challenge in defining therapeutic
windows that may prevent, stabilize, or reverse motor neuron
degeneration in humans. It may be expected that early or
presymptomatic therapies will provide optimal benefit, partic-
ularly in SMA type 1, such that advancing early diagnosis
(newborn screening) will be essential. In milder types of
SMA, a more extended period for intervention may also
possible. National and international SMA registries are ex-
pected to accelerate the recruitment process of patients with
SMA into new clinical trials, thereby facilitating potential
early interventions. Clinical trial design (defining who, when,
and where to treat, and expected outcomes) will be critical in
developing future treatments. Furthermore, success depends
on meeting the efficacy requirements of regulatory agencies,
such that outcomes must be both realistic and meaningful.

The search for biomarkers in SMA is one of several re-
search priorities. A number of clinical functional outcome
measures have been used in SMA trials; however, current
outcomemeasures may be unable to identify sensitively subtle
changes to demonstrate a significant effect. In addition, while
all of the scales demonstrate good reliability, the validity of
measurement of motor performance in children with different
severities of SMA is in question and the relationship to path-
ophysiology unclear. Ongoing Rasch analyses of multiple

motor function scales are expected to create more robust
scales [125]. MUNE, CMAP, electrical impedance
myography, and axonal excitability have potential as alterna-
tive outcome measures that may also enable individual char-
acterization of disease severity and reflect underlying patho-
physiology. Aligned with therapeutic approaches designed to
increase SMN levels, efforts to develop candidate biomarkers
have also concentrated on measurement of SMN protein ex-
pression. While this can reliably be measured in peripheral
blood and relates to SMA type, SMN protein levels do not
predict severity of motor function, and it remains to be deter-
mined if this reflects what is happening inmotor systems [126,
127]. Development of non-SMN molecular biomarkers using
proteomic, metabolomics, and transcriptomic approaches
holds promise for SMA, even though these measures may
not be able to distinguish primary (initiating) and secondary
(responsive) changes in gene expression. The recent
BforSMA study identified a new set of 27 validated plasma
protein SMA biomarkers significantly associated with motor
function and other measures of SMA disease activity, and a
commercial SMA-MAP biomarker panel was generated [128,
129]. Further studies will be required to investigate sensitivity
to change with disease progression, and assess potential im-
pact on clinical trial design.

Conclusion

SMA is a devastating genetic neuromuscular disorder, leading
to significant infant and childhood mortality and morbidity.
The most common mutation is homozygous disruption of
SMN1 and causative genes implicate altered RNA processing,
axonal transport, and protein degradation. Significant ad-
vances in patient care and knowledge of the genetics and
biology of SMA over the last 2 decades have revealed prom-
ising strategies for therapeutics development, with clinical
trials already in progress. Extensive efforts are being under-
taken towards translating these to reach the ultimate goal of
finding an effective treatment in the clinic. If there is hope of
identifying a treatment for this disease, a further under-
standing of the site and timing of disease progression,
and potential adaptations, in humans, as well as devel-
oping very sensitive and relevant biomarkers over this
period of time, is required.
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