Skip to main content

Advertisement

Log in

Pharmacotherapy for Attention-Deficit/Hyperactivity Disorder: From Cells to Circuits

  • Published:
Neurotherapeutics

Summary

Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent disorder of childhood and adulthood, with a considerable impact on public health. There is a substantial pharmacopoeia available for safe and effective treatment of ADHD, and newly available agents diversify the treatment options. With the burgeoning scientific literature addressing the genetic, neurochemical, and neural systems basis for this condition, increasing attention is directed at establishing the neural basis for the efficacy of existing treatments. ADHD remains the only highly prevalent, nondegenerative neuropsychiatric disorder for which effective medications remediate the principal cognitive disturbances in concert with clinical efficacy. Therefore, deeper insight into the neural mechanisms of cognitive remediation may serve to advance treatment development not only in ADHD, but across a wide range of neuropsychiatric disorders in which cognitive dysfunction is a cardinal feature and a strong predictor of clinical outcome. To date, all effective medications for ADHD act on 1 or both of the major catecholamine neurotransmitter systems in the brain. These 2 systems, which arise from subcortical nuclei and use norepinephrine (NE) or dopamine (DA) as transmitters, exert strong modulatory effects on widely distributed cortical–subcortical neural circuits, with important effects on cognition, mood, and behavior, in both health and illness. The present review outlines the actions of ADHD medications from subcellular effects to effects on neural systems and cognition in ADHD patients. This is a very active area of investigation at all phases of the translational cycle, and near-term work is poised to firmly link cellular neuropharmacology to large-scale effects, and point the way toward advances in treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biederman J, Faraone SV. Attention-deficit hyperactivity disorder. Lancet 2005;366:237-248.

    Article  PubMed  Google Scholar 

  2. Scahill L, Schwab-Stone M. Epidemiology of ADHD in school-age children. Child Adolesc Psychiatr Clin N Am 2000;9:541-555.

    PubMed  CAS  Google Scholar 

  3. Kessler RC, Adler L, Barkley R, et al. The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatry 2006;163:716-723.

    Article  PubMed  Google Scholar 

  4. Franke B, Neale BM, Faraone SV. Genome-wide association studies in ADHD. Hum Genet 2009;126:13-50.

    Article  PubMed  CAS  Google Scholar 

  5. Lesch KP, Timmesfeld N, Renner TJ, et al. Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm 2008;115:1573-1585.

    Article  PubMed  CAS  Google Scholar 

  6. Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M. Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005;57:1239-1247.

    Article  PubMed  Google Scholar 

  7. Winstanley CA, Eagle DM, Robbins TW. Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin Psychol Rev 2006;26:379-395.

    Article  PubMed  Google Scholar 

  8. Barkley RA. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 1997;121:65-94.

    Article  PubMed  CAS  Google Scholar 

  9. Boonstra AM, Oosterlaan J, Sergeant JA, Buitelaar JK. Executive functioning in adult ADHD: a meta-analytic review. Psychol Med 2005;35:1097-1108.

    Article  PubMed  Google Scholar 

  10. Hervey AS, Epstein JN, Curry JF. Neuropsychology of adults with attention-deficit/hyperactivity disorder: a meta-analytic review. Neuropsychology 2004;18:485-503.

    Article  PubMed  Google Scholar 

  11. Alderson RM, Rapport MD, Kofler MJ. Attention-deficit/hyperactivity disorder and behavioral inhibition: a meta-analytic review of the stop-signal paradigm. J Abnorm Child Psychol 2007;35:745-758.

    Article  PubMed  Google Scholar 

  12. Kenemans JL, Bekker EM, Lijffijt M, Overtoom CC, Jonkman LM, Verbaten MN. Attention deficit and impulsivity: selecting, shifting, and stopping. Int J Psychophysiol 2005;58:59-70.

    Article  PubMed  CAS  Google Scholar 

  13. Nigg JT, Casey BJ. An integrative theory of attention-deficit/ hyperactivity disorder based on the cognitive and affective neurosciences. Dev Psychopathol 2005;17:785-806.

    PubMed  Google Scholar 

  14. Uekermann J, Kraemer M, Abdel-Hamid M, et al. Social cognition in attention-deficit hyperactivity disorder (ADHD). Neurosci Biobehav Rev 2010;34:734-743.

    Article  PubMed  CAS  Google Scholar 

  15. Castellanos FX, Tannock R. Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 2002;3:617-628.

    PubMed  CAS  Google Scholar 

  16. Castellanos FX, Sonuga-Barke EJ, Milham MP, Tannock R. Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn Sci 2006;10:117-123.

    Article  PubMed  Google Scholar 

  17. Sonuga-Barke EJ. Psychological heterogeneity in AD/HD — a dual pathway model of behavior and cognition. Behav Brain Res 2002;130:29-36.

    Article  PubMed  Google Scholar 

  18. Castellanos FX, Lee PP, Sharp W, et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 2002;288:1740-1748.

    Article  PubMed  Google Scholar 

  19. Proal E, Reisds PT, Klein RG, et al. Brain gray matter deficits at 33-year follow-up in adults with attention-deficit/hyperactivity disorder established in childhood. Arch Gen Psychiatry 2011;68:1122-1134.

    Article  PubMed  Google Scholar 

  20. Valera EM, Faraone SV, Murray KE, Seidman LJ. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry 2007;61:1361-1369.

    Article  PubMed  Google Scholar 

  21. Durston S. Imaging genetics in ADHD. Neuroimage 2010;53:832-838.

    Article  PubMed  CAS  Google Scholar 

  22. Frodl T, Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand 2012;125:114-126.

    Article  PubMed  CAS  Google Scholar 

  23. Nakao T, Radua J, Rubia K, Mataix-Cols D. Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am J Psychiatry 2011;168:1154-1163.

    PubMed  Google Scholar 

  24. Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ. Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 1999;354:2132-2133.

    Article  PubMed  CAS  Google Scholar 

  25. Fusar-Poli P, Rubia K, Rossi G, Sartori G, Balottin U. Striatal dopamine transporter alterations in ADHD: pathophysiology or adaptation to psychostimulants? A meta-analysis. Am J Psychiatry 2012;169:264-272.

    Article  PubMed  Google Scholar 

  26. Volkow ND, Wang GJ, Newcorn J, et al. Brain dopamine transporter levels in treatment and drug naive adults with ADHD. Neuroimage 2007;34:1182-1190.

    Article  PubMed  Google Scholar 

  27. Volkow ND, Wang GJ, Kollins SH, et al. Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA 2009;302:1084-1091.

    Article  PubMed  CAS  Google Scholar 

  28. Swanson J, Baler RD, Volkow ND. Understanding the effects of stimulant medications on cognition in individuals with attention-deficit hyperactivity disorder: a decade of progress. Neuropsychopharmacology 2011;36:207-226.

    Article  PubMed  CAS  Google Scholar 

  29. Forssberg H, Fernell E, Waters S, Waters N, Tedroff J. Altered pattern of brain dopamine synthesis in male adolescents with attention deficit hyperactivity disorder. Behav Brain Funct 2006;2:40.

    Article  PubMed  CAS  Google Scholar 

  30. Ludolph AG, Kassubek J, Schmeck K, et al. Dopaminergic dysfunction in attention deficit hyperactivity disorder (ADHD), differences between pharmacologically treated and never treated young adults: a 3,4-dihdroxy-6-[18 F]fluorophenyl-l-alanine PET study. Neuroimage 2008;41:718-727.

    Article  PubMed  Google Scholar 

  31. Biederman J, Spencer T. Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol Psychiatry 1999;46:1234-1242.

    Article  PubMed  CAS  Google Scholar 

  32. Tzschentke TM. Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 2001;63:241-320.

    Article  PubMed  CAS  Google Scholar 

  33. Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res 1998;94:127-152.

    Article  PubMed  CAS  Google Scholar 

  34. Berridge CW, Devilbiss DM. Psychostimulants as cognitive enhancers: the prefrontal cortex, catecholamines, and attention-deficit/hyperactivity disorder. Biol Psychiatry 2011;69:e101-e111.

    Article  PubMed  CAS  Google Scholar 

  35. Wolraich M, Brown L, Brown RT, et al. ADHD: clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics 2011;128:1007-1022.

    Article  PubMed  Google Scholar 

  36. Kaplan G, Newcorn JH. Pharmacotherapy for child and adolescent attention-deficit hyperactivity disorder. Pediatr Clin North Am 2011;58:99-120.

    Article  PubMed  Google Scholar 

  37. Kooij SJ, Bejerot S, Blackwell A, et al. European consensus statement on diagnosis and treatment of adult ADHD: The European Network Adult ADHD. BMC Psychiatry 2010;10:67.

    Article  PubMed  Google Scholar 

  38. Nutt DJ, Fone K, Asherson P, et al. Evidence-based guidelines for management of attention-deficit/hyperactivity disorder in adolescents in transition to adult services and in adults: recommendations from the British Association for Psychopharmacology. J Psychopharmacol 2007;21:10-41.

    Article  PubMed  CAS  Google Scholar 

  39. Pliszka SR, Crismon ML, Hughes CW, et al. The Texas Children's Medication Algorithm Project: revision of the algorithm for pharmacotherapy of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2006;45:642-657.

    Article  PubMed  Google Scholar 

  40. Wilens TE, Morrison NR, Prince J. An update on the pharmacotherapy of attention-deficit/hyperactivity disorder in adults. Expert Rev Neurother 2011;11:1443-1465.

    Article  PubMed  Google Scholar 

  41. Pliszka SR. Pharmacologic treatment of attention-deficit/hyperactivity disorder: efficacy, safety and mechanisms of action. Neuropsychol Rev 2007;17:61-72.

    Article  PubMed  Google Scholar 

  42. Madras BK, Miller GM, Fischman AJ. The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiatry 2005;57:1397-1409.

    Article  PubMed  CAS  Google Scholar 

  43. Volkow ND, Fowler JS, Wang G, Ding Y, Gatley SJ. Mechanism of action of methylphenidate: insights from PET imaging studies. J Atten Disord 2002;6(suppl b1):S31-S43.

    Google Scholar 

  44. Eshleman AJ, Carmolli M, Cumbay M, Martens CR, Neve KA, Janowsky A. Characteristics of drug interactions with recombinant biogenic amine transporters expressed in the same cell type. J Pharmacol Exp Ther 1999;289:877-885.

    PubMed  CAS  Google Scholar 

  45. Kuczenski R, Segal DS, Cho AK, Melega W. Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci 1995;15:1308-1317.

    PubMed  CAS  Google Scholar 

  46. Gehlert DR, Schober DA, Hemrick-Luecke SK, et al. Novel halogenated analogs of tomoxetine that are potent and selective inhibitors of norepinephrine uptake in brain. Neurochem Int 1995;26:47-52.

    Article  PubMed  CAS  Google Scholar 

  47. Kuczenski R, Segal DS. Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem 1997;68:2032-2037.

    Article  PubMed  CAS  Google Scholar 

  48. Kuczenski R, Segal D. Concomitant characterization of behavioral and striatal neurotransmitter response to amphetamine using in vivo microdialysis. J Neurosci 1989;9:2051-2065.

    PubMed  CAS  Google Scholar 

  49. Hernandez L, Hoebel BG. Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci 1988;42:1705-1712.

    Article  PubMed  CAS  Google Scholar 

  50. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 1988;85:5274-5278.

    Article  PubMed  Google Scholar 

  51. Bymaster FP, Katner JS, Nelson DL, et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002;27:699-711.

    Article  PubMed  CAS  Google Scholar 

  52. Carboni E, Tanda GL, Frau R, Di Chiara G. Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: evidence that dopamine is taken up in vivo by noradrenergic terminals. J Neurochem 1990;55:1067-1070.

    Article  PubMed  CAS  Google Scholar 

  53. Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 2002;22:389-395.

    PubMed  CAS  Google Scholar 

  54. Berridge CW, Devilbiss DM, Andrzejewski ME, et al. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 2006;60:1111-1120.

    Article  PubMed  CAS  Google Scholar 

  55. Koda K, Ago Y, Cong Y, Kita Y, Takuma K, Matsuda T. Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J Neurochem 2010;114:259-270.

    PubMed  CAS  Google Scholar 

  56. Marsteller DA, Gerasimov MR, Schiffer WK, et al. Acute handling stress modulates methylphenidate-induced catecholamine overflow in the medial prefrontal cortex. Neuropsychopharmacology 2002;27:163-170.

    Article  PubMed  CAS  Google Scholar 

  57. Yatin SM, Miller GM, Norton C, Madras BK. Dopamine transporter-dependent induction of C-Fos in HEK cells. Synapse 2002;45:52-65.

    Article  PubMed  CAS  Google Scholar 

  58. Brandon CL, Steiner H. Repeated methylphenidate treatment in adolescent rats alters gene regulation in the striatum. Eur J Neurosci 2003;18:1584-1592.

    Article  PubMed  Google Scholar 

  59. Chase TD, Brown RE, Carrey N, Wilkinson M. Daily methylphenidate administration attenuates c-fos expression in the striatum of prepubertal rats. Neuroreport 2003;14:769-772.

    Article  PubMed  CAS  Google Scholar 

  60. Izenwasser S, Coy AE, Ladenheim B, Loeloff RJ, Cadet JL, French D. Chronic methylphenidate alters locomotor activity and dopamine transporters differently from cocaine. Eur J Pharmacol 1999;373:187-193.

    Article  PubMed  CAS  Google Scholar 

  61. Moll GH, Hause S, Ruther E, Rothenberger A, Huether G. Early methylphenidate administration to young rats causes a persistent reduction in the density of striatal dopamine transporters. J Child Adolesc Psychopharmacol 2001;11:15-24.

    Article  PubMed  CAS  Google Scholar 

  62. Sandoval V, Riddle EL, Hanson GR, Fleckenstein AE. Methylphenidate redistributes vesicular monoamine transporter-2: role of dopamine receptors. J Neurosci 2002;22:8705-8710.

    PubMed  CAS  Google Scholar 

  63. Heikkila RE, Orlansky H, Mytilineou C, Cohen G. Amphetamine: evaluation of d- and l-isomers as releasing agents and uptake inhibitors for 3 H-dopamine and 3 H-norepinephrine in slices of rat neostriatum and cerebral cortex. J Pharmacol Exp Ther 1975;194:47-56.

    PubMed  CAS  Google Scholar 

  64. Amara SG, Sonders MS, Zahniser NR, Povlock SL, Daniels GM. Molecular physiology and regulation of catecholamine transporters. Adv Pharmacol 1998;42:164-168.

    Article  PubMed  CAS  Google Scholar 

  65. Fleckenstein AE, Haughey HM, Metzger RR, et al. Differential effects of psychostimulants and related agents on dopaminergic and serotonergic transporter function. Eur J Pharmacol 1999;382:45-49.

    Article  PubMed  CAS  Google Scholar 

  66. Saunders C, Ferrer JV, Shi L, et al. Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc Natl Acad Sci U S A 2000;97:6850-6855.

    Article  PubMed  CAS  Google Scholar 

  67. Sulzer D, Rayport S. Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action. Neuron 1990;5:797-808.

    Article  PubMed  CAS  Google Scholar 

  68. Green AL, el Hait MA. Inhibition of mouse brain monoamine oxidase by (+)-amphetamine in vivo. J Pharm Pharmacol 1978;30:262-263.

    Article  PubMed  CAS  Google Scholar 

  69. Raiteri M, Cerrito F, Cervoni AM, Levi G. Dopamine can be released by two mechanisms differentially affected by the dopamine transport inhibitor nomifensine. J Pharmacol Exp Ther 1979;208:195-202.

    PubMed  CAS  Google Scholar 

  70. Sitte HH, Huck S, Reither H, Boehm S, Singer EA, Pifl C. Carrier-mediated release, transport rates, and charge transfer induced by amphetamine, tyramine, and dopamine in mammalian cells transfected with the human dopamine transporter. J Neurochem 1998;71:1289-1297.

    Article  PubMed  CAS  Google Scholar 

  71. Kahlig KM, Binda F, Khoshbouei H, et al. Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci U S A 2005;102:3495-3500.

    Article  PubMed  CAS  Google Scholar 

  72. Johnson LA, Guptaroy B, Lund D, Shamban S, Gnegy ME. Regulation of amphetamine-stimulated dopamine efflux by protein kinase C beta. J Biol Chem 2005;280:10914-10919.

    Article  PubMed  CAS  Google Scholar 

  73. Schiffer WK, Volkow ND, Fowler JS, Alexoff DL, Logan J, Dewey SL. Therapeutic doses of amphetamine or methylphenidate differentially increase synaptic and extracellular dopamine. Synapse 2006;59:243-251.

    Article  PubMed  CAS  Google Scholar 

  74. Florin SM, Kuczenski R, Segal DS. Regional extracellular norepinephrine responses to amphetamine and cocaine and effects of clonidine pretreatment. Brain Res 1994;654:53-62.

    Article  PubMed  CAS  Google Scholar 

  75. Shi WX, Pun CL, Zhang XX, Jones MD, Bunney BS. Dual effects of D-amphetamine on dopamine neurons mediated by dopamine and nondopamine receptors. J Neurosci 2000;20:3504-3511.

    PubMed  CAS  Google Scholar 

  76. Gnegy ME, Khoshbouei H, Berg KA, et al. Intracellular Ca2+ regulates amphetamine-induced dopamine efflux and currents mediated by the human dopamine transporter. Mol Pharmacol 2004;66:137-143.

    Article  PubMed  CAS  Google Scholar 

  77. Ingram SL, Prasad BM, Amara SG. Dopamine transporter-mediated conductances increase excitability of midbrain dopamine neurons. Nat Neurosci 2002;5:971-978.

    Article  PubMed  CAS  Google Scholar 

  78. Schmitz Y, Lee CJ, Schmauss C, Gonon F, Sulzer D. Amphetamine distorts stimulation-dependent dopamine overflow: effects on D2 autoreceptors, transporters, and synaptic vesicle stores. J Neurosci 2001;21:5916-5924.

    PubMed  CAS  Google Scholar 

  79. Bunzow JR, Sonders MS, Arttamangkul S, et al. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 2001;60:1181-1188.

    PubMed  CAS  Google Scholar 

  80. Geracitano R, Federici M, Prisco S, Bernardi G, Mercuri NB. Inhibitory effects of trace amines on rat midbrain dopaminergic neurons. Neuropharmacology 2004;46:807-814.

    Article  PubMed  CAS  Google Scholar 

  81. Miller GM, Verrico CD, Jassen A, et al. Primate trace amine receptor 1 modulation by the dopamine transporter. J Pharmacol Exp Ther 2005;313:983-994.

    Article  PubMed  CAS  Google Scholar 

  82. Xie Z, Westmoreland SV, Bahn ME, et al. Rhesus monkey trace amine-associated receptor 1 signaling: enhancement by monoamine transporters and attenuation by the D2 autoreceptor in vitro. J Pharmacol Exp Ther 2007;321:116-127.

    Article  PubMed  CAS  Google Scholar 

  83. Xie Z, Miller GM. Trace amine-associated receptor 1 is a modulator of the dopamine transporter. J Pharmacol Exp Ther 2007;321:128-136.

    Article  PubMed  CAS  Google Scholar 

  84. Devilbiss DM, Berridge CW. Low-dose methylphenidate actions on tonic and phasic locus coeruleus discharge. J Pharmacol Exp Ther 2006;319:1327-1335.

    Article  PubMed  CAS  Google Scholar 

  85. Nieuwenhuis S, Gilzenrat MS, Holmes BD, Cohen JD. The role of the locus coeruleus in mediating the attentional blink: a neurocomputational theory. J Exp Psychol Gen 2005;134:291-307.

    Article  PubMed  Google Scholar 

  86. Devilbiss DM, Berridge CW. Cognition-enhancing doses of methylphenidate preferentially increase prefrontal cortex neuronal responsiveness. Biol Psychiatry 2008;64:626-635.

    Article  PubMed  CAS  Google Scholar 

  87. Andrews GD, Lavin A. Methylphenidate increases cortical excitability via activation of alpha-2 noradrenergic receptors. Neuropsychopharmacology 2006;31:594-601.

    Article  PubMed  CAS  Google Scholar 

  88. Dommett EJ, Henderson EL, Westwell MS, Greenfield SA. Methylphenidate amplifies long-term plasticity in the hippocampus via noradrenergic mechanisms. Learn Mem 2008;15:580-586.

    Article  PubMed  CAS  Google Scholar 

  89. Tye KM, Tye LD, Cone JJ, Hekkelman EF, Janak PH, Bonci A. Methylphenidate facilitates learning-induced amygdala plasticity. Nat Neurosci 2010;13:475-481.

    Article  PubMed  CAS  Google Scholar 

  90. Zehle S, Bock J, Jezierski G, Gruss M, Braun K. Methylphenidate treatment recovers stress-induced elevated dendritic spine densities in the rodent dorsal anterior cingulate cortex. Dev Neurobiol 2007;67:1891-900.

    Article  PubMed  CAS  Google Scholar 

  91. Ruskin DN, Bergstrom DA, Shenker A, Freeman LE, Baek D, Walters JR. Drugs used in the treatment of attention-deficit/hyperactivity disorder affect postsynaptic firing rate and oscillation without preferential dopamine autoreceptor action. Biol Psychiatry 2001;49:340-350.

    Article  PubMed  CAS  Google Scholar 

  92. Gamo NJ, Wang M, Arnsten AF. Methylphenidate and atomoxetine enhance prefrontal function through alpha2-adrenergic and dopamine D1 receptors. J Am Acad Child Adolesc Psychiatry 2010;49:1011-1023.

    Article  PubMed  Google Scholar 

  93. Curet O, De Montigny C, Blier P. Effect of desipramine and amphetamine on noradrenergic neurotransmission: electrophysiological studies in the rat brain. Eur J Pharmacol 1992;221:59-70.

    Article  PubMed  CAS  Google Scholar 

  94. Graham AW, Aghajanian GK. Effects of amphetamine on single cell activity in a catecholamine nucleus, the locus coeruleus. Nature 1971;234:100-102.

    Article  PubMed  CAS  Google Scholar 

  95. Bunney BS, Walters JR, Kuhar MJ, Roth RH, Aghajanian GK. D & L amphetamine stereoisomers: comparative potencies in affecting the firing of central dopaminergic and noradrenergic neurons. Psychopharmacol Commun 1975;1:177-190.

    PubMed  CAS  Google Scholar 

  96. Szabo ST, Blier P. Effect of the selective noradrenergic reuptake inhibitor reboxetine on the firing activity of noradrenaline and serotonin neurons. Eur J Neurosci 2001;13:2077-2087.

    Article  PubMed  CAS  Google Scholar 

  97. Akaoka H, Roussel B, Lin JS, Chouvet G, Jouvet M. Effect of modafinil and amphetamine on the rat catecholaminergic neuron activity. Neurosci Lett 1991;123:20-22.

    Article  PubMed  CAS  Google Scholar 

  98. Pitts DK, Marwah J. Electrophysiological actions of cocaine on noradrenergic neurons in rat locus ceruleus. J Pharmacol Exp Ther 1987;240:345-351.

    PubMed  CAS  Google Scholar 

  99. Curtis AL, Conti E, Valentino RJ. Cocaine effects on brain noradrenergic neurons of anesthetized and unanesthetized rats. Neuropharmacology 1993;32:419-428.

    Article  PubMed  CAS  Google Scholar 

  100. Ishimatsu M, Kidani Y, Tsuda A, Akasu T. Effects of methylphenidate on the membrane potential and current in neurons of the rat locus coeruleus. J Neurophysiol 2002;87:1206-1212.

    PubMed  CAS  Google Scholar 

  101. Lacroix D, Ferron A. Electrophysiological effects of methylphenidate on the coeruleo-cortical noradrenergic system in the rat. Eur J Pharmacol 1988;149:277-285.

    Article  PubMed  CAS  Google Scholar 

  102. Pietrzak RH, Mollica CM, Maruff P, Snyder PJ. Cognitive effects of immediate-release methylphenidate in children with attention-deficit/hyperactivity disorder. Neurosci Biobehav Rev 2006;30:1225-1245.

    Article  PubMed  CAS  Google Scholar 

  103. Bidwell LC, McClernon FJ, Kollins SH. Cognitive enhancers for the treatment of ADHD. Pharmacol Biochem Behav 2011;99:262-274.

    Article  PubMed  CAS  Google Scholar 

  104. Advokat C. What are the cognitive effects of stimulant medications? Emphasis on adults with attention-deficit/hyperactivity disorder (ADHD). Neurosci Biobehav Rev 2010;34:1256-1266.

    Article  PubMed  CAS  Google Scholar 

  105. Minzenberg MJ, Carter CS. Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology 2008;33:1477-1502.

    Article  PubMed  CAS  Google Scholar 

  106. A 14-month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. The MTA Cooperative Group. Multimodal Treatment Study of Children with ADHD. Arch Gen Psychiatry 1999;56:1073-1086.

    Google Scholar 

  107. Jensen PS, Arnold LE, Swanson JM, et al. 3-year follow-up of the NIMH MTA study. J Am Acad Child Adolesc Psychiatry 2007;46:989-1002.

    Article  PubMed  Google Scholar 

  108. Molina BS, Hinshaw SP, Swanson JM, et al. The MTA at 8 years: prospective follow-up of children treated for combined-type ADHD in a multisite study. J Am Acad Child Adolesc Psychiatry 2009;48:484-500.

    Article  PubMed  Google Scholar 

  109. Biederman J, Seidman LJ, Petty CR, et al. Effects of stimulant medication on neuropsychological functioning in young adults with attention-deficit/hyperactivity disorder. J Clin Psychiatry 2008;69:1150-1156.

    Article  PubMed  Google Scholar 

  110. Powers RL, Marks DJ, Miller CJ, Newcorn JH, Halperin JM. Stimulant treatment in children with attention-deficit/hyperactivity disorder moderates adolescent academic outcome. J Child Adolesc Psychopharmacol 2008;18:449-459.

    Article  PubMed  Google Scholar 

  111. Gadow KD. Effects of stimulant drugs on academic performance in hyperactive and learning disabled children. J Learn Disabil 1983;16:290-299.

    Article  PubMed  CAS  Google Scholar 

  112. Swanson JM, Cantwell D, Lerner M, McBurnett K, Hanna G. Effects of stimulant medication on learning in children with ADHD. J Learn Disabil 1991;24:219-230.

    Article  PubMed  CAS  Google Scholar 

  113. McCracken JT, Biederman J, Greenhill LL, et al. Analog classroom assessment of a once-daily mixed amphetamine formulation, SLI381 (Adderall XR), in children with ADHD. J Am Acad Child Adolesc Psychiatry 2003;42:673-683.

    Article  PubMed  Google Scholar 

  114. McGough JJ, Wigal SB, Abikoff H, Turnbow JM, Posner K, Moon E. A randomized, double-blind, placebo-controlled, laboratory classroom assessment of methylphenidate transdermal system in children with ADHD. J Atten Disord 2006;9:476-485.

    Article  PubMed  Google Scholar 

  115. Biederman J, Boellner SW, Childress A, Lopez FA, Krishnan S, Zhang Y. Lisdexamfetamine dimesylate and mixed amphetamine salts extended-release in children with ADHD: a double-blind, placebo-controlled, crossover analog classroom study. Biol Psychiatry 2007;62:970-976.

    Article  PubMed  CAS  Google Scholar 

  116. Epstein JN, Conners CK, Hervey AS, et al. Assessing medication effects in the MTA study using neuropsychological outcomes. J Child Psychol Psychiatry 2006;47:446-456.

    Article  PubMed  Google Scholar 

  117. Castellanos FX, Kelly C, Milham MP. The restless brain: attention-deficit hyperactivity disorder, resting-state functional connectivity, and intrasubject variability. Can J Psychiatry 2009;54:665-672.

    PubMed  Google Scholar 

  118. Johnson KA, Barry E, Bellgrove MA, et al. Dissociation in response to methylphenidate on response variability in a group of medication naive children with ADHD. Neuropsychologia 2008;46:1532-1541.

    Article  PubMed  Google Scholar 

  119. Sobel LJ, Bansal R, Maia TV, et al. Basal ganglia surface morphology and the effects of stimulant medications in youth with attention deficit hyperactivity disorder. Am J Psychiatry 2010;167:977-986.

    Article  PubMed  Google Scholar 

  120. Semrud-Clikeman M, Pliśzka SR, Lancaster J, Liotti M. Volumetric MRI differences in treatment-naïve vs chronically treated children with ADHD. Neurology 2006;67:1023-1027. Erratum in: Neurology 2006;67:2091.

    Article  PubMed  Google Scholar 

  121. Bledsoe J, Semrud-Clikeman M, Pliszka SR. A magnetic resonance imaging study of the cerebellar vermis in chronically treated and treatment-naïve children with attention-deficit/hyperactivity disorder combined type. Biol Psychiatry 2009;65:620-624.

    Article  PubMed  Google Scholar 

  122. Castellanos FX, Lee PP, Sharp W, et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 2002;288:1740-1748.

    Article  PubMed  Google Scholar 

  123. Shaw P, Lerch J, Greenstein D, et al. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 2006;63:540-549.

    Article  PubMed  Google Scholar 

  124. Shaw P, Eckstrand K, Sharp W, et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci USA 2007;104:19649-19654.

    Article  PubMed  CAS  Google Scholar 

  125. Schweitzer JB, Lee DO, Hanford RB, et al. A positron emission tomography study of methylphenidate in adults with ADHD: alterations in resting blood flow and predicting treatment response. Neuropsychopharmacology 2003;28:967-973.

    PubMed  CAS  Google Scholar 

  126. Anderson CM, Polcari A, Lowen SB, Renshaw PF, Teicher MH. Effects of methylphenidate on functional magnetic resonance relaxometry of the cerebellar vermis in boys with ADHD. Am J Psychiatry 2002;159:1322-1328.

    Article  PubMed  Google Scholar 

  127. Rosa-Neto P, Lou HC, Cumming P, et al. Methylphenidate-evoked changes in striatal dopamine correlate with inattention and impulsivity in adolescents with attention deficit hyperactivity disorder. Neuroimage 2005;25:868-876.

    Article  PubMed  Google Scholar 

  128. Rubia K, Halari R, Cubillo A, Mohammad AM, Brammer M, Taylor E. Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task. Neuropharmacology 2009;57:640-652.

    Article  PubMed  CAS  Google Scholar 

  129. Shafritz KM, Marchione KE, Gore JC, Shaywitz SE, Shaywitz BA. The effects of methylphenidate on neural systems of attention in attention deficit hyperactivity disorder. Am J Psychiatry 2004;161:1990-1997.

    Article  PubMed  Google Scholar 

  130. Wong CG, Stevens MC. The effects of stimulant medication on working memory functional connectivity in attention-deficit/hyperactivity disorder. Biol Psychiatry 2012;71:458-466.

    Article  PubMed  CAS  Google Scholar 

  131. Prehn-Kristensen A, Krauel K, Hinrichs H, et al. Methylphenidate does not improve interference control during a working memory task in young patients with attention-deficit hyperactivity disorder. Brain Res. 2011 May 4;1388:56-68.

    Article  PubMed  CAS  Google Scholar 

  132. Sheridan MA, Hinshaw S, D'Esposito M. Stimulant medication and prefrontal functional connectivity during working memory in ADHD: a preliminary report. J Atten Disord 2010;14:69-78.

    Article  PubMed  Google Scholar 

  133. Kobel M, Bechtel N, Weber P, et al. Effects of methylphenidate on working memory functioning in children with attention deficit/hyperactivity disorder. Eur J Paediatr Neurol 2009;13:516-523.

    Article  PubMed  Google Scholar 

  134. Schweitzer JB, Lee DO, Hanford RB, et al. Effect of methylphenidate on executive functioning in adults with attention-deficit/hyperactivity disorder: normalization of behavior but not related brain activity. Biol Psychiatry 2004;56:597-606.

    Article  PubMed  CAS  Google Scholar 

  135. Vaidya CJ, Austin G, Kirkorian G, et al. Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci U S A 1998;95:14494-14499.

    Article  PubMed  CAS  Google Scholar 

  136. Epstein JN, Casey BJ, Tonev ST, et al. ADHD- and medication-related brain activation effects in concordantly affected parent-child dyads with ADHD. J Child Psychol Psychiatry 2007;48:899-913.

    Article  PubMed  Google Scholar 

  137. Liddle EB, Hollis C, Batty MJ, et al. Task-related default mode network modulation and inhibitory control in ADHD: effects of motivation and methylphenidate. J Child Psychol Psychiatry 2011;52:761-771.

    Article  PubMed  Google Scholar 

  138. Bush G, Spencer TJ, Holmes J, et al. Functional magnetic resonance imaging of methylphenidate and placebo in attention-deficit/hyperactivity disorder during the multi-source interference task. Arch Gen Psychiatry 2008;65:102-114.

    Article  PubMed  CAS  Google Scholar 

  139. Lee YS, Han DH, Lee JH, Choi TY. The effects of methylphenidate on neural substrates associated with interference suppression in children with ADHD: a Preliminary Study Using Event Related fMRI. Psychiatry Investig 2010;7:49-54.

    Article  PubMed  CAS  Google Scholar 

  140. Rubia K, Halari R, Mohammad AM, Taylor E, Brammer M. Methylphenidate normalizes frontocingulate underactivation during error processing in attention-deficit/hyperactivity disorder. Biol Psychiatry 2011;70:255-262.

    Article  PubMed  CAS  Google Scholar 

  141. Rubia K, Halari R, Cubillo A, et al. Methylphenidate normalizes fronto-striatal underactivation during interference inhibition in medication-naive boys with attention-deficit hyperactivity disorder. Neuropsychopharmacology 2011;36:1575-1586.

    Article  PubMed  CAS  Google Scholar 

  142. Konrad K, Neufang S, Fink GR, Herpertz-Dahlmann B. Long-term effects of methylphenidate on neural networks associated with executive attention in children with ADHD: results from a longitudinal functional MRI study. J Am Acad Child Adolesc Psychiatry 2007;46:1633-1641.

    Article  PubMed  Google Scholar 

  143. Rubia K, Halari R, Christakou A, Taylor E. Impulsiveness as a timing disturbance: neurocognitive abnormalities in attention-deficit hyperactivity disorder during temporal processes and normalization with methylphenidate. Philos Trans R Soc Lond B Biol Sci 2009;364:1919-1931.

    Article  PubMed  CAS  Google Scholar 

  144. Posner J, Nagel BJ, Maia TV, et al. Abnormal amygdalar activation and connectivity in adolescents with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2011;50:828-837.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Clinical Scientist Development Award from the Doris Duke Charitable Foundation (to MJM).

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Minzenberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minzenberg, M.J. Pharmacotherapy for Attention-Deficit/Hyperactivity Disorder: From Cells to Circuits. Neurotherapeutics 9, 610–621 (2012). https://doi.org/10.1007/s13311-012-0128-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-012-0128-7

Keywords

Navigation