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Summary: Spinal cord injury (SCI) is a serious neurological
disorder that debilitates mostly young people. Unfortunately,
we still do not have suitable therapeutic agents for treatment of
SCI and prevention of its devastating consequences. However,
we have gained a good understanding of pathological
mechanisms that cause neurodegeneration leading to paralysis
or even death following SCI. Primary injury to the spinal cord
initiates the secondary injury process that includes various
deleterious factors for ultimate activation of different cysteine
proteases for degradation of cellular key cytoskeleton and other
crucial proteins for delayed death of neurons and glial cells at
the site of SCI and its penumbra in different animal models. An
important aspect of SCI is the increase in intracellular free Ca2+

concentration within a short time of primary injury. Various
studies in different laboratories demonstrate that the most

important cysteine protease for neurodegeneration in SCI is
calpain, which absolutely requires intracellular free Ca2+

for its activation. Furthermore, other cysteine proteases,
such as caspases and cathepsin B also make a contribution
to neurodegeneration in SCI. Therefore, inhibition of
cysteine proteases is an important goal in prevention of
neurodegeneration in SCI. Studies showed that individual
inhibitors of cysteine proteases provided significant
neuroprotection in animal models of SCI. Recent studies
suggest that physiological hormones, such as estrogen and
melatonin, can be successfully used for prevention of
neurodegeneration and preservation of motor function in
acute SCI as well as in chronic SCI in rats. Key Words:
Calpain, caspases, estrogen, melatonin, neuroprotection,
spinal cord injury.

INTRODUCTION

The pathophysiology of spinal cord injury (SCI) is
complex [1]. The victims of SCI are mostly young adults
(age range, 16–30 years) who, otherwise would be in a
highly productive and promising phase of life, suffer and
even die from the devastating consequences of SCI [2].
There are more than 250,000 patients with SCI in the United
States. Both basic scientists and physicians are baffled with
the challenges of controlling progressive neurodegeneration
in SCI, which has not been healed with any currently
available treatments, and thus is an insidious injury to the

central nervous system (CNS) right from the beginning. The
only approved therapy for SCI in humans is methylpredni-
solone that neither satisfactorily treats nor completely cures
SCI and often provides conflicting results [3]. Because the
efficacy of methylprednisolone in the treatment of SCI is
highly controversial, new therapeutic agents must be
explored to successfully treat SCI for functional neuro-
protection and preservation of motor function.
Cysteine proteases have profound involvement in apop-

tosis, inflammation, and abnormal immune responses in
human disorders; therefore, development of inhibitors of
specific cysteine proteases may promise to ameliorate the
pathogenesis of different disorders [4]. Degradation of
cytoskeletal and myelin proteins in the SCI lesion suggested
involvement of increased activities of neutral (calpains) and
acidic (cathepsin B and cathepsin D) proteases in the
pathogenesis of SCI [5]. Further studies in animal models
of SCI during the years have confirmed the crucial roles of
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cysteine proteases in cell death in both acute and chronic
SCI; therefore, experimental therapeutic strategies are being
explored for inhibition of cysteine proteases for neuro-
protection in SCI. Both necrotic and apoptotic death can
occur in SCI [6, 7]. Calpains are the Ca2+-dependent cysteine
proteases that play the most prominent roles in causing both
necrotic and apoptotic death in SCI lesion and penumbra [8,
9]. Therapeutic use of cell permeable inhibitors of calpains
provided significant neuroptection with preservation motor
function to some extent, and extended the survival in animal
models of SCI [9, 10]. Caspases are the main cysteine
proteases for execution of apoptosis and these are also
activated for apoptotic death of neurons and glial cells in SCI
[9]. Experimental use of selective and cell permeable
inhibitors of caspases demonstrated neuroptective effects in
SCI [11]. Cathepsins, the lysosomal acidic proteases, also
contribute to the pathogenesis and neurodegeneration in SCI.
There are more than a dozen of cathepsins, which are mostly
cysteine proteases and only a few are aspartyl and serine
proteases. Cathepsin B (a cysteine protease) and cathepsin D
(an aspartyl protease) are known to cause pathogensis in SCI
[5]. Therefore, inhibition of these cathepsins may be a
therapeutic option in SCI.
It is now absolutely clear that production of different

factors during secondary injury process promotes activation
of different cysteine proteases that work in concert for
neurodegeneration and neurodysfunction in SCI [9]. Inhib-
ition of an individual cysteine protease may provide only
partial and temporary neuroprotection. On the other hand,
inhibition of several important cysteine proteases, such as
calpain and caspase-3, may be more effective than inhibition
of either cysteine protease alone. Because SCI triggers
multiple pathogenic pathways for activation of multiple
cysteine proteases, it appears to be prudent to use a
therapeutic agent that can inhibit multiple pathogenic path-
ways and important cysteine proteases for complete and
permanent neuroprotection and recovery of motor function
in both acute and chronic SCI. Fortunately, several recent
studies reported very exciting results, showing that mono-
therapy with estrogen or melatonin inhibited multiple
cysteine proteases, and provided functional neuroprotection
in animal models of SCI [12–14]. The great advantage of
using estrogen ormelatonin as amonotherapy is that both are
physiological hormones and have shown multiple functions
for inhibition of pathogenesis in animal models of SCI [12–
14]. Future studies must explore and establish estrogen or
melatonin as the magic monotherapy with multiple ther-
apeutic effects in the treatment of SCI in humans.

INHIBITION OF CALPAINS IN SCI

Calpains are categorized into a family of Ca2+-
dependent cysteine proteases [15]. Conventional or
ubiquitous calpains exist as pro-enzymes in two

isoforms such as micro-calpain (μ-calapin) and milli-
calpain (m-calpain) that require 2 to 80 μM and 0.2 to
0.8 mM Ca2+ concentrations, respectively, for their
activation and half maximal activity. Precise physiological
functions of calpain still remain to be clarified, but
increased calpain activity has been implicated in the
pathogenesis of various CNS injuries, including SCI [15].
Almost 3 decades ago, we developed the calpain theory of
protein degradation and tissue destruction in experimental
SCI in our laboratory [16, 17]. Later, studies in other
laboratories also provided evidence indicating that
increased intracellular free Ca2+ concentration and calpain
activity could play a prominent role in neurodegeneration
in SCI [18, 19]. Increases in intracellular free Ca2+

concentration and reactive oxygen species following SCI
activate ubiquitous calpains, μ-calpain and m-calpain for
degradation of cytoskeletal and other proteins leading to
neurodegeneration in SCI [20–22].
Calpain is involved in apoptotic death that requires

de novo protein synthesis for neurodegeneration in SCI
[23, 24]. Production of reactive oxygen species, mito-
chondrial dysfunction, and loss of intracellular free Ca2+

homeostasis induced calpain activation, axonal damage,
and cytoskeletal degradation following a severe
contusion (200 kdyn force) SCI in female Sprague-
Dawley rats [25]. Because calpains play a more
important role than any other cysteine proteases in
neurodegeneration in SCI, an enormous research effort
continues for designing and discovering cell permeable
calpain inhibitors for prevention of neurodegeneration in
SCI [9, 26]. Calpastatin (110 kD) is the endogenous
protein inhibitor of calpain but it is too large and thus not
cell permeable [27]. Furthermore, an increase in calpain:
calpastatin ratio triggers degradation of calpastatin as a
suicide substrate in vitro and in vivo [28, 29]. Therefore, the
use of calpastatin as a therapeutic agent for targeting calpain
in SCI is not a viable option. However, significant success
has been reported showing that newly developed calpain
inhibitors are highly effective in the inhibition of
neurodegeneration and amelioration of motor function in
animal models of SCI [10, 30–32].
Calpain is associated with reactive astrogliosis and

inflammation in SCI, and thus inhibition of calpain can
control these detrimental processes in acute SCI in rats
[8, 33]. Calpain has been proposed to work upstream of
caspase-3 for induction of apoptosis in SCI in rats [8].
Calcium green 2-AM staining of the lesion and penum-
bra sections showed an increase in intracellular free Ca2+

levels following acute SCI, compared with corresponding
tissue sections from sham animals [34]. Western blot
analysis showed increases in expression and activity of
calpain in the lesion and penumbra segments following
SCI. Also, a substantial amount of cytochrome c release
from mitochondria to cytoplasm suggested a trigger for
apoptosis through activation of caspase-3. Thus, calpain
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and caspase-3 cooperate in mediation of early
neurodegeneration in acute SCI in rats [34]. Therefore,
a combination of calpain and caspase-3 inhibitors may
show more neuroprotective efficacy than either inhibitor
alone in experimental SCI.

INHIBITION OF CASPASES IN SCI

Caspases, another important class of cysteine proteases
that do not absolutely require intracellular free Ca2+ for
their activation, are the crucial effectors in cell death
signaling pathways [35]. Caspases remain as inactive
pro-enzymes, which are activated following specific
cleavage at aspartate sites in the course of induction of
apoptosis. Active caspases are capable of cleaving
cellular substrates at a concensus sequence in the
course of neuronal apoptosis in CNS injury [36, 37].
Physical or physiological injury can trigger activation of
caspases, which work in extrinsic and intrinsic pathways
for induction of apoptotic death. The receptor-mediated
extrinsic pathway and the mitochondria-mediated
intrinsic pathway reunite at the final phase of apoptosis
for activation of caspase-3 that cleaves the inhibitor of
caspase activated DNase for activation and translocation
of caspase activated DNase (CAD) to the nucleus for
fragmentation genomic DNA [9].
The extrinsic caspase cascade is initiated by ligation of

cytokines, such as tumor necrosis factor-alpha (TNF-α)
and interferon-gamma (IFN-γ), to their respective cell
surface receptors for initiation of the process for
activation of an initiator caspase such as caspase-8 or
caspase-10. Both TNF-α and IFN-γ are known to be
produced and released following induction of SCI [38,
39]. Amplification of the extrinsic caspase cascade can
occur due to caspase-8 mediated cleavage of Bid to
truncated Bid (tBid) that is translocated to mitochondria
for inducing cytochrome c release into the cytosol for
neuronal apoptosis in SCI [9, 40].
The intrinsic caspase cascade is also initiated follow-

ing SCI for mitochondrial release of cytochrome c into
the cytosol and sequential activation of caspase-9 and
caspase-3 for neuronal death [9, 34, 41]. Extensive
studies have already confirmed the activation of caspases
of both the extrinsic and intrinsic pathways for mediation
of apoptosis in neurons and glial cells in acute and
chronic SCI [42–46]. Caspase-3, the final executioner of
apoptosis, has been found to be activated for apoptosis of
neurons and glial cells in animal models of SCI [47, 48].
Obviously, inhibition of caspases is an essential goal for
functional neuroprotection in SCI [49, 50]. Use of cell
permeable inhibitors of different caspases can provide
substantial neuroprotection in animal models of SCI.
Inhibitor of caspase, especially caspase-3, in combination
with the inhibitor of other cysteine protease seems to

provide better neuroprotection in SCI than an inhibitor of
caspase alone.

CONTRIBUTION OF CATHEPSINS
TO NEURODEGENERATION AND INHIBITION

OF CATHEPSINS IN SCI

Cathepsins, a class of lysosomal acidic proteases, can
also play an important role in regulation of apoptosis
[51–53]. However, the contribution of cathepsins to
neurodegeneration in SCI is not highly recognized yet.
Nevertheless, our investigations suggest that cathepsins
also participate in the pathogenesis of SCI and inhibition
of cathepsins can be an important strategy to enhance
neuroprotection in SCI [5, 54]. The cleavage of Bid to
tBid and degradation of anti-apoptotic Bcl-2 proteins by
the lysosomal cathepsins are supposed to be the links to
the release of cytochrome c from mitochondria to cytosol
for eventual activation of caspase-3 [55, 56]. Thus, the
cross talk between the lysosomes and mitochondria is
now known to be a very crucial process during apoptosis
[56].
Current studies suggest that cathepsins and caspases

can be considered as collaborators for mediation of
apoptosis [57]. Increased cathepsin B expression at
mRNA and protein levels, and also its activation,
occurred in the site of injury as well as in the segments
rostral and caudal to the site of injury following
contusion SCI in rats, indicating that cathepsin B could
potentially be involved in the secondary injury cascade
[58]. A recent study suggests that cathepsin B has a
major role in spinal cord motoneuron death following
injury in mice [59]. Immunohistochemical examination
revealed the localization of cathepsin D mostly in CD68-
positive activated macrophages and microglia in the
compression SCI lesions, suggesting that cathepsin D
played an important role in the phagocytosis and
lysosomal activation of macrophages and microglia
during the CNS inflammation caused by the trauma
[60]. Activated microglia may also secrete cathepsin B
for promotion of neuronal apoptosis [61]. Synthetic
inhibitors of cathepsin B are nowadays available for
evaluation of their efficacy as neurotherapeutics [62].
Future studies are needed to explore the efficacy of
inhibitors of cathepsins for prevention of neurodegeneration
in experimental SCI.

EFFICACY OF ESTROGEN IN ACUTE
AND CHRONIC SCI

Estrogen or 17β-estradiol is a steroid hormone that has
enormous physiological function mainly in the female
body and also partly in the male body. Gender differ-
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ences in SCI were noted, and more improvement in the
American Spinal Injury Association (ASIA) motor index
score in women than men suggested the necessity for
a future prospective study of the effects of estrogen
on neurologic and functional outcome measures in
the persons with SCI [63]. A later study in SCI in
mice showed that recovery of motor function after
SCI was significantly influenced by gender, being
remarkably better in female mice, suggesting that the
mechanisms of neuroprotection in female mice might
be associated with the effects of estrogen on
pathophysiological processes [64]. Estrogen is highly
neuroprotective in SCI in rats [14]. The lack of
endogenous estrogen-mediated neuroprotection in SCI
in older female rats can be compensated with
exogenous administration of estrogen [65]. Delayed
post-SCI administration of a clinically relevant dose
of estrogen is protective due to reduction in secondary
damage in male rats, and endogenous androgens do not
alter estrogen-mediated protection in SCI in male rats [66].
Estrogen works via estrogen receptor (ER)-α and ER-β
that bind to DNA for transcriptional activation of the
estrogen responsive genes [67].
Our recent studies demonstrated that estrogen and the

agonists for both ER-α and ER-β provided protection
from TNF-α induced apoptosis in spinal cord motoneur-
ons, strongly suggesting that estrogen and ER agonists
could be used as effective neuroprotective agents to
attenuate motoneuron death in SCI [68]. Moreover, other
studies have conclusively shown that estrogen has
multiple mechanisms of action for neuroprotection in
animal models of acute and chronic SCI [69]. Our studies
in acute SCI in rats demonstrated that a high-dose of
estrogen (4 mg/kg) reduced edema and decreased
inflammation and myelin loss in the SCI lesion and
penumbra segments [70]. Our current goal is the
evaluation of mechanisms of therapeutic efficacy of the
physiologically relevant low-dose of estrogen in exper-
imental SCI in rats.
Estrogen promotes production of various cell

survival factors while it inhibits inflammation and
activation of different cysteine proteases, so as to
maximize the therapeutic effects for neuroprotection
in animal models of SCI [71–74]. Our recent studies
showed that post-injury treatment with a high-dose of
estrogen reduced cyclooxygenase-2 activity, blocked
inflammation, prevented glial reactivity, attenuated
neuron death, inhibited activation and activity of
calpain and caspase-3, decreased axonal damage,
reduced myelin loss in the lesion and penumbra
segments of the spinal cord, and improved locomotor
function in chronic SCI in rats [75]. Our recent
studies also established that physiologically relevant
low-dose of estrogen could be highly neuroprotective
in experimental SCI in rats [76].

MULTIPLE THERAPEUTIC EFFECTS
OF MELATONIN IN SCI

Melatonin is a pineal gland hormone that has an
important role in regulation of circadian rhythms in the
human body. Interestingly, melatonin is an anti-oxidant
as well as an anti-inflammatory agent that has shown
highly promising results in providing neuroprotection in
different CNS injuries, including SCI [13, 77, 78]. A
great advantage of using melatonin as a neurotherapeutic
agent is that it has low toxicity, even at high concen-
trations [79]. Neuroprotective effects of melatonin are
mainly mediated via activation of at least two melatonin
receptors (MT1 and MT2), which are overexpressed in
motoneurons due to treatment with melatonin for
inhibition of apoptosis in the motoneurons exposed to
oxidative stress, glutamate toxicity, or TNF-α [80]. A
comparative study in experimental SCI in rats generated
quantitative evidence that melatonin was much more
effective than methylprednisolone in providing protection
to neurons and subcellular organelles in the spinal cord after
the injury [81]. Treatment with melatonin reduced the
development of inflammation and tissue injury in exper-
imental spinal cord trauma and also significantly amelio-
rated the recovery of limb function [82].
Our recent studies showed that melatonin could be an

effective neuroprotective agent for treatment of moderately
severe injury (40 g.cm force) to the spinal cord as it
attenuated inflammation, axonal damage, expression and
activity of calpain and caspse-3, and neuronal death in SCI
in rats [13]. The family of mitogen-activated protein
kinases (MAPKs) is known to play important roles in cell
signaling and gene expression. The MAPK family includes
3 major members: 1) extracellular signal-regulated kinase,
2) p38, and 3) c-Jun N-terminal kinase that regulates 3
different signaling cascades. A recent study evaluated
whether the neuroprotective effect of melatonin in SCI in
mice was related to the regulation of MAPK signaling
pathways and found that the efficacy of melatonin was
associated with reduction in the activation of MAPKs, p38,
c-Jun N-terminal kinase, and extracellular signal-regulated
kinase-1/2 [83]. An interesting observation documented
that melatonin in combination with exercise reduced the
degree of secondary damage and promoted locomotor
recovery following SCI in rats [84].

CONCLUSIONS

It is now quite clear that abnormal activation of
various cysteine proteases plays a very important role
in the pathogenesis of both acute and chronic SCI.
Increased activities of the proteases, such as calpains,
caspases, and cathepsins degrade cytoskeletal proteins
and other survival factors leading to apoptosis of the
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CNS cells in course of the progression of secondary injury
process following primary injury to the spinal cord.
Inhibition of specific cysteine proteases provided neuro-
protection and substantial recovery of motor function in
different animal models of SCI. Combination of inhib-
itors of the cysteine proteases, which cause the most
neurodegeneration, may be a promising neurotherapeic
strategy for better neuroprotection and preservation of
locomotor function in SCI. Most interestingly, recent
studies from our laboratory and from that of others
have shown that estrogen and melatonin with multiple
neuroprotective mechanisms currently appear to be the
most promising neurotherapeutics for inhibition of
different cysteine proteases for prevention of neuro-
degeneration in SCI in pre-clinical animal models.
Clinical studies are urgently warranted for evaluation
of efficacy of not only inhibitors of specific cysteine
proteases but also estrogen and melatonin for deter-
mining the most effective neurotherapeutics for treat-
ment of SCI in humans in the near future.
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