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Summary: Magnetic resonance imaging (MRI) is a well-
established tool in clinical practice and research on human
neurological disorders. Translational MRI research utilizing
rodent models of central nervous system (CNS) diseases is
becoming popular with the increased availability of dedicated
small animal MRI systems. Projects utilizing this technology
typically fall into one of two categories: 1) true “pre-clinical”
studies involving the use of MRI as a noninvasive disease
monitoring tool which serves as a biomarker for selected aspects
of the disease and 2) studies investigating the pathomechanism of
known human MRI findings in CNS disease models. Most small
animal MRI systems operate at 4.7–11.7 Tesla field strengths.
Although the higher field strength clearly results in a higher signal-
to-noise ratio, which enables higher resolution acquisition, a
variety of artifacts and limitations related to the specific absorption
rate represent significant challenges in these experiments. In

addition to standard T1-, T2-, and T2*-weighted MRI methods,
all of the currently available advanced MRI techniques have been
utilized in experimental animals, including diffusion, perfusion,
and susceptibility weighted imaging, functional magnetic
resonance imaging, chemical shift imaging, heteronuclear
imaging, and 1H or 31P MR spectroscopy. Selected MRI
techniques are also exclusively utilized in experimental research,
including manganese-enhanced MRI, and cell-specific/molecular
imaging techniques utilizing negative contrast materials. In this
review, we describe technical and practical aspects of small animal
MRI and provide examples of differentMRI techniques in anatomical
imaging and tract tracing as well as several models of neurological
disorders, including inflammatory, neurodegenerative, vascular, and
traumatic brain and spinal cord injury models, and neoplastic
diseases. Key Words: Small animal MRI, mouse model, rodent
model, brain disorders, MRI.

INTRODUCTION

Animal models are frequently used in the study of
various central nervous system (CNS) disorders, such as
vascular, inflammatory, neurodegenerative, and neoplas-
tic diseases. These disease models may represent either
selected aspects or, occasionally, the full spectrum of the
corresponding human disease. Mouse colonies are
relatively easy to maintain, and the universal availability
of transgenic animals coupled with the capability of
generating new, genetically modified mice from well-
characterized “standard” strains represents a major
advantage in identifying and exploring pathogenic
mechanisms relevant to CNS diseases.

One of the most common approaches in biomedical
research is to visualize tissue compartments or cellular
interactions in various tissues. In this context, standard
optical microscopy has two major limitations: 1) only
ex vivo tissues can be studied at high resolution and 2)
the degree of specificity varies depending on the staining
method used. Newer intravital microscopy techniques are
also emerging and have become very useful tools for
in vivo monitoring of cellular motion and cell–cell
interactions. The main advantages of intravital microscopy
are high microscopic resolution, multiplex and real-time
imaging with good image quality, and the capability of
tracking of various labeled cell types. However, there are
also limitations, including the required surgical window,
smaller field of view, and limited tissue penetration.
Because most disease processes are dynamic, non-

invasive in vivo imaging modalities are of great advant-
age as they allow for investigations to be performed at
multiple different time points. Small animal magnetic
resonance imaging (MRI) studies are usually preclinical:
they establish or study new aspects of a disease process
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that have not yet been clarified in the human disease. Small
animal MRI also allows for translational projects in which
the pathomechanism of human MRI findings are studied.
The first report of MR imaging of a rat was published over
30 years ago [1]. MRI has the capability of studying live
organisms without exposing them to potentially harmful
ionizing radiation. Besides anatomical imaging,MRI is also
capable of providing physiological information about
several important aspects of biological processes, including
circulation and cerebrospinal fluid flow, cerebral blood flow
and volume, activity mapping with functional MRI (fMRI)
or Mn++-based techniques, metabolite distribution with
chemical shift imaging, diffusion or perfusion properties of
the studied tissue, or in vivo pH measurement via
phosphorus MR spectrometry (MRS) [2, 3].

TECHNICAL ASPECTS OF SMALL ANIMAL MRI

Many universities and research institutions have
acquired small animal MR imaging systems, most
commonly as part of a core facility. Most research
facilities use 4.7– to 11.7–Tesla (T) narrow-bore mag-
nets, of which the 7T magnet is the most commonly
utilized. The two leading manufacturers of these systems
are Bruker Biospin (Ettlingen, Germany) and Varian
Medical Systems (Palo Alto, CA). Both vertical and
horizontal bore systems are available. Vertical bore
neutron magnetic resonance spectrometers equipped with
gradient coils and imaging probes are the most common
systems used in biochemistry-based core facilities,
whereas in radiology research facilities, horizontal bore
magnets are more common. Obviously, the physical
principles remain the same regardless of the orientation
of the bore. However, the horizontal bore system often
allows for easier monitoring of the mice and larger
flexibility in customizing the probes and coils. Most
facilities employ their own engineers and technicians.
Larger facilities often develop not only their own pulse
sequences and post-processing software tools, but also
design hardware, including radio frequency (RF) coils
and rodent head stabilizing probes. Most commonly, only
the field strength is mentioned when the differences
between imaging systems is discussed. However, the
utilized RF and gradient coils are equally important and
can literally determine the success of an experimental
MRI research program. Custom-made coils specific to
the studied research question often have a significantly
better signal-to-noise ratio (SNR) than stock coils.
While MR image acquisition is a very complex

process, image analysis is often far more time consuming
and computation intense. Image processing and visual-
ization tools are included with the software provided by
the scanner manufacturer, but they are generally insuffi-
cient to provide the desired detailed answers. Several

commercially available biomedical image post-process-
ing software packages are available, and many research
institutions develop their own software applications.
Notable examples of image analysis software are
Analyze [4, 5], Statistical Parametric Mapping [6], the
freely downloadable National Institutes of Health image
[7, 8], and Analysis of Functional NeuroImages [9].
Most of these provide basic analysis methods, including
intensity and region of interest-based area or volume
measurements. They also include tools for slice extrac-
tion from 3–dimensional (3D) volumes and for a variety
of 3D visualizations. Several offer segmentation, cor-
egistration, and other tools for complex analyses requir-
ing image algebra methods, including diffusion tensor
imaging (DTI) visualization, perfusion calculations, or
fMRI visualization tools.

SPECIAL REQUIREMENTS FOR SMALL
RODENT MRI

MRI requires the study subjects to be completely
immobilized, and the importance of this cannot be
stressed enough. In order to achieve this goal, general
anesthesia (in most cases, inhalational) must be used in
small animal experiments [10]. Unlike injectable agents,
inhalational anesthesia is administered continuously and
can be calibrated to the specific requirements posed by
the animal and the experiment. The anesthesia may in
some cases alter the studied biological processes and/or
the desired imaging outcome. This is especially true for
cerebral blood flow/blood volume and fMRI studies [11].
Animal monitoring under anesthesia is also an important
requirement and includes monitoring of core temper-
ature, respiratory rate, and electrocardiogram. Oxygen
saturation and CO2 level monitors are also available.
Monitoring is also important from the standpoint of gated
acquisition, which is often needed to eliminate respiration
or cardiac motion-related artifacts during acquisition. The
most commonly used systems are manufactured by SA
Instruments (Stony Brook, NY; http://www.i4sa.com/).
The core temperature inside narrow-bore scanners can

be in the low 50°F range (15–20°C), and various heating
systems are utilized to maintain the normal core temper-
ature of the animals while in the scanner. These are
usually supplied by the imaging systems vendors. Most
utilize either warm airflow or circulating water beds.
In addition to the anesthesia and maintaining a suitable

core temperature, another important factor in successful
small rodent MRI is that the probe should keep the
animal stable during the imaging session [12]. Most
small animal systems are shipped with mouse and rat
probes, but many laboratories develop custom-made
holders for specific applications and/or for added
stability. A good probe should achieve maximal stabili-
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zation without any trauma to the animal. Ideal animal
holders should also allow for easily reproducible stereo-
tactic placement.

DIFFERENCES BETWEEN SMALL ANIMAL
IMAGING AND HUMAN MRI: ADVANTAGES

AND DISADVANTAGES OF THE HIGHER FIELD
STRENGTH

The study of experimental animals with MRI differs in
more ways than just the smaller scale that rodent imaging
requires. However, the smaller scale (of a mouse CNS)

itself is a major problem to overcome (FIG. 1) Most
small animal magnets operate at a high field strength,
namely, in the range of 4.7–11.7T, as opposed to the
standard clinical range of 1.5–3T. The main advantage of
high field scanners is the increased SNR (FIG. 2); at the
same time, increased image artifacts and other limitations
make higher field strength scanning technically more
challenging. In living organisms, which are comprised of
multiple compartments with different physico-chemical
properties, artifacts can be generated due to susceptibility
and different relaxation properties at the higher field
strength [13]. Why certain imaging artifacts are more
prominent at the very high field strengths utilized can be

FIG. 1. Comparison of magnetic resonance imaging (MRI) scans of a human (left) versus mouse (right) brain. Parameters of the clinical
MR image: Field of view (FOV), 22×22 cm2; matrix size, 256×256; slice thickness, 4 mm. The mouse MR image was extracted from a 3–
dimensional dataset with parameters: FOV, 3.2×1.92× 1.92 cm3; matrix size, 256×128×128. The entire mouse brain is about the size of
the human caudate nucleus head. (High resolution version of this image is available in the electronic supplementary material.)

FIG. 2. 7 Teslar (T) (300 MHz) (a, c) versus 16.4T (700 MHz) (b, d) images of the same live mouse. Spin echo [turbo-rapid acquisition
relaxation enhancement (RARE)] images of 1-mm-thick slices were obtained using transmission time (TR)=4 s, echo time (TE)=14.7 ms,
RARE factor=4, number of averages=8, total scanning time=34 min. The in-plane isotropic image resolution is 59 μm/pixel. Note the
much higher signal-to-noise ratio (SNR) in the 16.4T MR images (b, d), as well as stronger susceptibility artifacts in (b). (High resolution
version of this image is available in the electronic supplementary material.)

5MRI IN RODENT MODELS OF BRAIN DISORDERS

Neurotherapeutics, Vol. 8, No. 1, 2011



best understood in the context of the well-known scaling
relationships that describe how SNR, chemical shift,
susceptibility variation, specific absorption rate, and RF
wavelength vary with increased field strength (Table 1).
Each artifact that is seen at 4.7–11.7T can also be seen at
1.5–3T—but not as prominently. Some artifacts are
related to the hardware, including spike-noise artifacts,
RF interference artifacts (crosstalk between the RF
transmit and receive channels, RF penetration due to
magnet room shielding issues, especially for vertical bore
magnets), and central dot artifacts. Artifacts that are
typically more prominent due to increased SNR include
aliasing (wraparound) artifacts (also prominent at lower
field strengths), Gibbs ringing (truncation artifact), fine
line artifact [particularly common in rapid acquisition
relaxation enhancement (RARE) sequences], and half
field-of-view ghosting (especially with parallel acquis-
ition). Chemical shift- and susceptibility-related artifacts
are especially common at high field strengths. Relaxation
time effects also need to be considered: the T1 relaxation
time of many tissues increases by 20–50% between 1.5
and 3T, while the T2 relaxation time is generally
unchanged, although the apparent T2* relaxation time
decreases in most tissues. It is good practice to conduct
relaxometry experiments in the tissue compartments of
interest to sort out these issues in the given system. The
specific absorption rate is a key limiting factor at higher
field strengths for in vivo experiments. Novel pulse
sequences and/or changes in acquisition parameters in an
effort to minimize RF power levels are needed to allow
for image acquisition without potentially dangerous
energy absorption and related heating of the tissue.
Most investigators would like to obtain image sets of

excellent resolution and high SNR within a very short
space of time. Each of the above three components
(SNR, resolution, imaging time) are interdependent. For
example, the price one pays for a good SNR is frequently
a lower resolution and/or longer acquisition time. Or, if
both good SNR and resolution are the goals, then the
imaging time usually is prolonged. Finding an acceptable

balance may be a difficult task. Several parameters of the
studied model should be considered when the goal is to
optimize image acquisition.
Living organisms can be considered inhomogeneous

samples, with compartmentalized organs containing
solid, gaseous, and various consistencies of liquid (from
fluid to gelatinous) substances. These different consis-
tencies have different magnetic susceptibilities, and
whereas this in general does not represent a major
problem at lower field strength, it becomes a very
important problem at the higher field strength. Magnetic
susceptibility is a known source of artifacts. One of the
best examples for susceptibility artifacts is the loss of
brain signal near air-filled sinuses. Gradient echo-based
sequences are especially prone to these artifacts. Several
methods have been proposed to reduce these artifacts,
including the GESEPI sequence [14, 15]. In gradient
echo imaging, slice selection correction methods have
also been tried and successfully used [16, 17]. For
multislice studies, the use of phase–phase encoding is
helpful in reducing susceptibility-related artifacts.
Sequences that use RF refocused echoes (fast spin echo,
or rapid acquisition with refocused echo) [18], which are
variants of spin echo sequences, eliminate most of the
susceptibility-related artifacts. However, in some applica-
tions, susceptibility-related artifacts might be of benefit. The
blood oxygen level-dependent (BOLD) signal (described
later in this review)—the basis of fMRI studies—and iron
oxide-based negative contrast agents [superparamagnetic
iron oxides (SPIOs)] are good examples for this.
Susceptibility-weighted imaging (SWI) is another

novel method that takes advantage of different magnetic
susceptibilities of tissues, and represents a new tool to
enhance tissue contrast [19–21]. This method is based on
relative differences between the magnetic susceptibility
in one tissue and the surrounding tissue or a background.
At long echo times (TE), signals from two tissues that
have different magnetic susceptibilities will be out of
phase and obtaining the phase images is the crucial point
that defines the contrast in these experiments [21]. SWI is
a very convenient tool in assessing the iron content or
any other substance that distorts the local field [22]. SWI
was initially utilized mostly as a method for MR
venography procedures [23–26], but more recently this
method has found its place in studying arterial venous
malformations [27, 28], hemorrhagic lesions [29], brain
tumors [30, 31], and multiple sclerosis (MS) [32].

COMMON MRI METHODS IN STUDIES OF CNS
DISEASE MODELS

Anatomical/structural imaging
Several neurological disease models have been studied

using small animal MRI systems. The greatest advantage

Table 1. The Scaling of Key Physical Parameters with the
Strength of the Main Magnetic Field B0.

Physical parameter Dependence on B0

Signal-to-noise ratio (SNR) Linear: SNR α B0
Frequency offset due to
susceptibility variation (in Hz)

Linear: Δf α B0

Chemical shift (C.S.) (in Hz) Linear: C.S. α B0
Specific absorption rate
(SAR) (in W/kg)

Quadratic: SAR α B0
2

Ratio frequency (RF)
wavelength (in m)

Inverse: la1= B0
ffiffiffiffi

"r
p� �

The relationships for the SNR and SAR hold fairly well in the
range of currently utilized field strengths. The relative permittivity
εr itself can vary with RF, and hence B0.
Modified from S.S. Kannurpatti and B. B. Biswal [11] with permission.

6 DENIC ET AL.

Neurotherapeutics, Vol. 8, No. 1, 2011



of the numerous MRI methods utilized in small animal
research is that they are performed noninvasively and
allow anatomical, pathological, and functional informa-
tion to be obtained repeatedly over time. One of the most
basic applications is to generate 3D anatomical atlases of
rodent brains. This has been accomplished by several
groups [33–36]. Similarly, MRI atlases describing mouse
embryonic development have also been generated and
reported [37]. A web-based application assembled by the
California Institute of Technology allows insight into one
of these databases [38, 39]. An example of high-resolution
ex vivo anatomical imaging is shown in FIG. 3.

MRI-based tractography
In basic neuroscience research, tract tracing via MRI is

an important and still under-utilized application. While
DTI-based techniques allow for fiber visualization based
on physical properties of the studied CNS tissue,
manganese-enhanced MRI (MEMRI) allows for inves-
tigations of actual tracts and their synaptic connections.
This technique utilizes paramagnetic Mn++ ions. In MRI,
Mn++ ions cause a shortening of the water T1 relaxation
time with strong contrast enhancement in T1-weighted
MRI [40]. Having similar chemical properties as Ca++,
Mn++ ions are actively taken up by neurons via voltage-
gated Ca++ channels [41]. Once inside the neurons, they
can pass the Mn++ ions to each other via the synaptic
junctures, thus allowing visualization of neural pathways
by MRI [42–45]. It is thought that Mn++ ions enter the

cells due to the opening of receptor-activated calcium
channels. Once inside the cell, Mn++ ions utilize axonal
microtubule transport mechanisms to reach the axon
terminal. During synaptic transmission, Mn++ is released
from the presynaptic neuron. It is able to enter the
postsynaptic neuron via calcium channels [43]. Thus,
Mn++ ions will accumulate in activated chains of
neurons, leading to increased signal intensity in
activated parts of the CNS. If applied topically to areas
of interest from the standpoint of their connectivity, such
as cortical areas and olfactory neurons, or to the retina,
then Mn++ can be used for tract tracing [45–48]. Bilgen
et al. [46] used MEMRI to visualize injected Mn++ ions
in normal and hemisected spinal cords in rats. They also
suggested MEMRI as a method for indirect assessment
of axonal integrity and connectivity of corticospinal tract
in injured rat spinal cords [47]. An example of MEMRI
is shown in FIG. 4 [49].

Functional MRI studies
Functional MRI studies are also conducted in small

rodents. fMRI studies are based on the BOLD principle.
Blood flow and oxy/deoxyhemoglobin-related changes in
activated areas of the cortex produce mild hypointensity
on T2* images [50–53]. Images obtained in the activated
and nonactivated state are used to generate activity maps,
including sensory or visual cortex mapping in animals
[50, 54]. Mild hypocapnia may be helpful in establishing
BOLD contrast [55]. Some rodent fMRI studies have

FIG. 3. 16.4T (700 MHz) MR microscopy of ex vivo mouse brain (right) compared to histological section stained with hematoxylin/eosin
(left). Note the excellent anatomical resolution of the CA1 cell layer in the hippocampus and dentate gyrus on the right image extracted
from an MRI 3D dataset. The high SNR and high isotropic resolution (55 μm/pixel) are achieved at the expense of long scanning time (5 h
and 27 min). Other parameters: FOV, 14×14× 14 mm3; matrix size, 256×256× 256; TR=400 ms; TE=7 ms. (High resolution version of
this image is available in the electronic supplementary material.)
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also utilized SPIO/ultrasmall (US)PIO contrast materials
to enhance signal loss at the activated areas [51]. These
techniques also allow the measurement of cerebral blood
volume [51, 56, 57]. One recent fMRI study was the first
such study to successfully utilize thermal stimuli to
distinguish the noxious and innocuous pathways in the
rat spinal cord [58]. Another group demonstrated an fMRI
method with simultaneous acquisition of rat brain and
spinal cord images [59]. These researchers proposed that
the simultaneous brain and spinal cord fMRI can be used
not only in animal models, but also in several neurological
disorders in humans, such as MS, movement disorders,
brain trauma, and spinal cord injuries, among others.

Cell-specific and molecular MRI
Cell-specific and molecular MRI is now used in the

study of several disease models [60–62]. These techniques
are important tools for establishing a better correlation
between conventional histology and MRI methods. Many
groups have reported success with immune cell-specific
imaging, utilizing superparamagnetic contrast materials
(SPIOs) that are either internalized by cells after in vitro
incubation or bound to the cells by specific antibodies
(FIG. 5) [60, 62–66]. SPIOs are detectable through their
property of generating strong susceptibility effects (short-
ening of T2* relaxation) as well as shortening of the T1
and T2 relaxation time. Since susceptibility artifacts are

FIG. 4. Typical gray matter lesion in a rat model of hypoxic-ischemic injury (arrows in C and F) was observed in late phase by manga-
nese-enhanced MRI (MEMRI) after Mn++ injection on day 7, which was not visible in the T2WI, T1WI, and ADC map (Reproduced with
permission from J. Yang and E.X. Wu [49]). T2WI = T2-weighted MR image, T2WI =T2-weighted MR image, ADC = apparent diffusion
coefficient. Reproduced with permission from the Institute of Electrical and Electronics Engineers (IEEE). (High resolution version of this
image is available in the electronic supplementary material.)

FIG. 5. CD8+ T-cell labeling with ultrasmall superparamagnetic iron oxide (USPIO)-conjugated antibodies in Theiler’s murine
encephalomyelitis virus infection. Left image: T2*-weighted image shows diffuse hypointensities in several areas of the cerebrum and
cerebellum. Middle image: T1-weighted study shows faint hyperintense areas. Right image: composite image, using a mask generated
by dividing the T1-weighted image matrix with the T2* weighted. Reproduced with permission from I. Pirko et al. [150]. (High resolution
version of this image is available in the electronic supplementary material.)
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stronger at high field strengths, these contrast materials are
especially suitable for small animal imaging. The SPIOs
include standard SPIOs (size, usually 50–150 nm),
USPIOs (size, 30–50 nm) [67] and micron-sized para-
magnetic iron oxide (MPIO) (size, approaching or more
than 1 μm) [68]. The first use of SPIOs as a contrast agent
was in liver and splenic tumor imaging [69, 70]. As a
cellular label, SPIOs are used for MR cell tracking, as in
detecting the specific locations of inflammation [71] or
macrophage infiltration [72] in experimental autoimmune
encephalomyelitis (EAE), the most widely used murine
model of MS. Subsequently, USPIOs with a longer blood
half-life were developed and utilized for the imaging of
macrophage infiltration in the brains of animals with EAE
[73–75]. Several groups have investigated the effects of
particle size and iron concentration on SPIO and USPIO
uptake rates. In comparison with USPIOs, macrophages
and monocytes appear to have much a higher uptake
preference for SPIOs and are more effectively labeled by
the latter [76, 77]. Thorek et al. [78] tested the uptake rate
of different sized SPIOs in non-phagocytic T-cells and
showed that particles <300 nm were most efficient in cell
labeling. Even though USPIOs provide less contrast
enhancement and SPIOs may be more efficient and
suitable for macrophage labeling, USPIOs are overall
preferred due to 1) longer blood half life (>24 h) and 2)
larger number of particles loaded per cell [79]. One
potential application of similar USPIO-based labeling
techniques is to follow the distribution of biologically
active proteins [60]. More recently, McAteer et al. [80]
reported a molecular imaging methodology utilizing
MPIOs. By utilizing antibody conjugated MPIOs, they
showed clear upregulation and activation of Vascular Cell
Adhesion Molecule 1 in a model of acute brain inflam-
mation. In addition to the above labeling methods, “smart”
molecular imaging probes and “sensing” contrast agents
that are activated at specific sites of interest by enzymatic
modification represent an interesting avenue for future
development [81, 82].

MRI STUDIES OF COMMON CNS DISEASE
CATEGORIES

Inflammatory diseases of the CNS
Inflammatory and demyelinating diseases of the CNS

are frequently studied in animal models. The most
common models include EAE, Theiler’s murine ence-
phalitis virus infection TMEV), and toxic demyelination
models. A successful in vivo DTI of the spinal cord in
mice with EAE has been reported [83] and proposed as a
potential surrogate marker of axonal and myelin damage
in this model. The authors demonstrated that relative
anisotropy was a very sensitive biomarker to detect white
matter destruction in EAE-affected mice, whereas the

ADC was not. Similar to human diseases, lesion
formation can be monitored by T2–weighted sequences
(FIG. 6). Moreover, classical high resolution T2–
weighted MRI may be used to investigate volumetric
changes in brains of EAE mice as well as to correlate
with subsequent histopathological analysis [84]. The
presence of deep gray matter T2 hypointensity was
recently demonstrated in the TMEV model with strong
functional correlations [85]. A combination of gadoli-
nium (Gd)-enhanced T1– with T2– and T2*-weighted
imaging was used to characterize a new animal model of
an acute hemorrhagic leuko-encephalomyelitis, a rare
and fatal neurological disorder in humans [86]. Toxin-
induced demyelination is less frequently studied by MRI.
T2W imaging together with diffusion-weighted imaging
(DWI) has been demonstrated to be useful in studying
patterns of corpus callosum demyelination in cuprizone
fed mice, a toxic model of MS [87]. In the same toxic
model, both the magnetization transfer ratio [88] and DTI
[89] were proposed to serve as sensitive and reproducible
surrogate markers in quantifying myelin loss and repair.
Gd enhancement is used to monitor the blood–brain

barrier permeability associated with new lesion formation
[90]. Measurements of brain atrophy are important for
assessing the chronic aspects of many neurological
diseases. Volumetric MRI techniques based on 3D
acquisition sequences [90, 91] are the key components
in the study of brain atrophy. DWI is also important in
these models because this technique may show lesion
formation even earlier than Gd contrast imaging [92].
Through the use of DTI methods, tract integrity is also
studied [93]. Voxel-based MRS or chemical shift imag-
ing studies are also used, mainly to assess axonal
integrity and membrane turnover [91, 94].
Optic neuritis (ON) is an inflammatory demyelinating

syndrome that may be seen as a standalone disease or as
a typical component of MS and neuromyelitis optica.
Due to the uniformity of the optic nerve fibers, ON
models represent an obvious subject for DTI studies
(FIG. 7) [95]. One research group demonstrated that in a
mouse model of EAE-associated ON, autoimmune
axonal injury correlated with a decrease in axial
diffusivity, whereas demyelination correlated with
changes in radial diffusivity, as measured by DWI [96].
This noninvasive method provides a means to test the
efficacy of potential therapeutic agents.

Neurodegenerative disease models
In the study of neurodegenerative disease models,

morphometric studies are used for atrophy measurements.
Both global brain atrophy measurements as well as focal
volume loss of brain structures are assessed using MRI
[97–100]. One example is the recently reported cerebellar
cortical atrophy in an EAE model [85].
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The pathology of Alzheimer’s disease (AD) has been
very difficult to study with MRI. However, through the
use of novel contrast agents, one group has reported
good success in imaging AD plaques ex vivo [101, 102].
More recently, even without contrast agents, plaque
imaging in small rodent models has become possible
both ex vivo [103] and in vivo (FIG. 8) [104–106].
Because amyloid plaque deposits contain iron, it was
considered that T2* (GE) sequences would be best in
visualizing the plaques, which in general are considered
to be more sensitive to iron deposits than to spin echo-
based T2–weighted sequences. However in MS-related
iron deposition of deep gray nuclei, T2–weighted—and
not T2*-weighted sequences—have been successful in
capturing the phenomenon in both the human disease and
one of its animal models [107, 108]. A recent
comprehensive ex vivo study of a transgenic mouse
model of AD provides an excellent comparative review
of several MRI sequences, including T1W, T2W, T2*W,
proton density, and SWI, and establishes the foundation
for future in vivo studies [109].

Animal models for amyotrophic lateral sclerosis (ALS)
are available, and MRI is becoming an attractive tool to
study this disease. The most commonly studied animal
model of ALS is a transgenic mouse that overexpresses a
human G93A-SOD1 mutation [110]. Using this mouse
model, two different groups have successfully used T2–
weighted MRI to visualize the neuronal degeneration of
brain stem motor nuclei as well as to evaluate the disease
progression [111–113]. More recently, DWI, specifically
ADC studies have been suggested as an additional
marker for the time-course evaluation of disease pro-
gression in ALS mice [114]. Another group used a model
in which a cycad toxin introduced via the diet causes a
neurodegeneration which resembles a human ALS–
Parkinsonism dementia complex [115]. This group
demonstrated that volumetric MR microscopy is a
sensitive tool for detecting early neurodegeneration, and
the result correlated well with histopathology findings
and behavioral deficits.
Iron deposition as a component in the pathology of

neurodegenerative diseases is also studied by MRI.

FIG. 6. Demyelinating lesions in interferon-γ receptor knockout mice following TMEV infection. Note the high signal intensity areas (red
arrows) in the brainstem and near the thalamus on these T2-weighted in vivo images. Reproduced with permission from I. Pirko et al. [150].
(High resolution version of this image is available in the electronic supplementary material.)
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Changes suggestive of iron deposition are also seen in
certain MS models, as recently reported by our team of
investigators (FIG. 9) [85]. Since iron is known to
cause susceptibility-related artifacts and high field
strength imaging is more prone to these artifacts (see
above), small animal MRI is very suitable to study this
phenomenon [99].

Stroke models
Experimental stroke models in small rodents are

frequently studied with MRI methods. These generally
require classic MR imaging modalities, including T1, T2,
and proton density imaging. Newer techniques include
diffusion and perfusion imaging and MRS for determin-
ing certain metabolites [116, 117]. Many groups have
used experimental middle cerebral artery ligation com-
bined with hypoxia in rats or mice as models for human
stroke (FIG. 10) [118, 119]. DWI sequences are
especially sensitive to early ischemia, and many studies
have utilized this resource in animal imaging, along with
perfusion-weighted imaging, which is capable of visual-
izing the penumbra—the potentially salvageable area at
risk [117, 120, 121]. Most recently, a novel mouse model
of transient ischemic attack has been developed, as
confirmed by DWI and T2–weighted MRI [122].
When DWI is performed using a fast imaging

sequence like echo-planar imaging, the temporal reso-
lution of scanning can be as low as every 20–30 s/entire
brain scan, allowing close monitoring of stroke develop-
ment. MRS studies have been conducted with the aim of
looking at the lactate peak, which becomes prominent

when anaerobic glycolysis predominates [116, 117, 123].
Another important aspect is the N-acetyl-aspartate peak
that may show a decrease in completed strokes, but may
remain normal if the animals still can recover from the
ischemic event [124]. Magnetic resonance angiography
[125] and perfusion-weighted imaging [57] have been
performed and evaluated in several stroke models. These
studies accurately characterize the cerebral blood flow
and blood volume during ischemia.
Experimental intracerebral hemorrhages in animal

models have been developed and only recently studied
by MRI. In a warfarin-induced intracerebral hemorrhage
model, T2* MRI was shown to almost perfectly correlate
with the hematoma size observed from cryo-sections
[126]. Another group used direct infusion of autologous
blood in a rat striatum as a model and demonstrated that
MRI also correlated with histopathological features
[127]. Taken overall, these results suggest that MRI is
very useful as a tool to evaluate functional outcomes
after treatments as well as to elucidate their mechanism
of action.

Traumatic injury models of the brain and spinal cord
Several models of traumatic brain injury have been

developed in experimental animals. These range from
diffuse injuries to controlled cortical impacts, chemical
insults, and nonimpact models. MRI allows monitoring
of the damaged tissue, also the tissue at risk [12, 128,
129]. For this purpose, DWI/DTI/magnetization transfer
(MT) techniques are often used, similarly to the stroke
studies described above. One group has provided

FIG. 7. Optic nerves (indicated by arrows) from the experimental autoimmune encephalomyelitis (EAE)-affected mouse appear hypoin-
tense (B) in relative anisotropy (RA) maps compared with the control (A). Decreased axial diffusivity (D) and increased radial diffusivity (F)
in optic nerves from EAE-affected mice were observed in the expanded views of axial (C and D) and radial diffusivity (E and F) corres-
ponding to the rectangles in (A) and (B). Reproduced with permission from Xu et al. [95]. (High resolution version of this image is available
in the electronic supplementary material.)
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evidence that DTI signal abnormalities correlate with
electron microscopic and histological features of peri-
contusional injury. Based on these findings, these
researchers propose DTI as an important tool to validate
these injuries and predict approximate time since trauma
[130, 131] (FIG. 11). Another group utilized a rat model
and demonstrated that DWI was useful for the in vivo
examination of brain edema following traumatic brain
injury, with or without secondary hypoxia [132]. MRS
may also be utilized for the study of tissue injury in the
CNS [133, 134].
Spinal cord injury is most commonly studied in rats.

Traditionally, spinal cord integrity and neural circuitry
either under normal conditions or after injury are studied
by using histology and immunohistochemistry [135–
137]. During the last decade several MRI techniques have
been utilized for in vivo research in spinal cord injury
models. Diffusion anisotropy MRI has been suggested as
an approach for quantitative assessment of secondary
degeneration and recovery after spinal cord injury in rats

[138]. Moreover, a good correlation between functional
MRI activation in the rat spinal cord with neuronal activity
determined by immunohistochemistry has been reported
[139]. In addition, MEMRI may be a sensitive in vivo
method for assessing neuronal functionality after spinal
cord injury and eventual treatment outcomes. The main
limitation in using MEMRI in vivo is the dose-dependent
neurotoxicity of manganese [140].

Brain tumor models
Animal models of brain tumors are also frequently

studied by MRI and MRS (FIG. 12) [141–143]. The
basic T1– and T2–weighted techniques may not always
allow an obvious delineation between healthy and tumor
infiltrate. Thus, advanced MRI methods and cell-labeling
techniques are needed for the identification of trans-
planted tumor cells and growth monitoring. A combina-
tion of several MRI methods may enable visualization of
human neural stem cells targeting the brain tumor [144].

FIG. 8. 12–month-old Alzheimer’s disease (AD) mouse. In vivo (a, b) and ex vivo (c, d) T2SE-weighted MR images, thioflavin-S-stained
(e, f) and iron-stained (g, h) histological brain sections have been precisely spatially registered over a circumscribed area of the cortex,
indicated by the box. The boxes in the right column (scale bar, 100 μm) represent 3× magnified portions of the adjacent parent image in
the left column (scale bar, 1.0 mm). The numbered arrows indicate individual plaques visualized in each of the four different image types
that matched with the linked-cursor system. Reproduced with permission from C.R. Jack [106]. (High resolution version of this image is
available in the electronic supplementary material.)
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The use of intravenous contrast materials shows a
blood–brain barrier breakdown in certain tumor models.
MRS studies (proton and phosphorous) are also used to
study biochemical differences between cancerous and
normal tissue in vivo. Diffusion and perfusion studies
together with blood flow and BOLD studies may provide
useful information because tumor cells generally show
increased metabolism [145, 146]. A recent study
described a new radiation necrosis mouse model [147].
This important study provided milestones in the develop-
ment of MRI tools to distinguish radiation changes from
tumor recurrence. Chemical shift imaging is a multi-
voxel MRS method that may be particularly useful in

studying the various brain diseases [90]. In addition, a
novel method of heteronuclear imaging has emerged.
Kato et al. [148, 149] utilized 1H/13C magnetic resonance
spectroscopic imaging to noninvasively analyze the
delivery pattern and intratumoral distribution of the
13C-labeled anti-cancer drug temozolomide, which is
commonly used in treatment of several brain tumors.

CONCLUSIONS

Over the last several years, microscopic resolution
in vivoMRI has become a popular and versatile tool in the

FIG. 10. ADC, T2, and T1 maps show the severity and growth of the lesion in the mouse stroke model induced by a transient middle
cerebral artery occlusion (reproduced with permission from P.A. Barber et al. [119]). Images on the top row were obtained 50–60 min after
reperfusion, and images on the bottom row are of similar slices 24 h later. (High resolution version of this image is available in the
electronic supplementary material.)

FIG. 9. Example of progressive thalamic T2 hypointensity in a virally induced multiple sclerosis (MS) model at 1 (A), 4 (B), 6 (C), and 12 (D)
months postdisease induction. A–D represent coronal slices extracted from the original 3D datasets. Note the hypointensity of the
mediodorsal thalamic nucleus and the increasing hypointensity at the later time points (arrows). (High resolution version of this image is
available in the electronic supplementary material.)
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study of CNS diseases. MR image resolution of tens of
microns in all three dimensions can now be achieved for
in vivo studies, although for most practical applications,
an isometric resolution of approximately 100 μm is
sufficient. Because of the obstacles encountered with
physiological microscopic movements of tissues due to
circulation, breathing, and fluid flow, significantly higher
resolutions are probably unrealistic for in vivo applica-
tions; the numerous inherent artifacts related to high field
strength imaging have also to be kept in mind. New
developments from the fields of neutron magnetic reso-

nance and clinical MRI research will find their way to
small animal experimental MRI research. Since a growing
number of human CNS diseases have MRI-based diag-
nostic criteria, translational MRI research utilizing rodent
models allows insight into important substrates of tissue
dysfunction related to these clinically relevant MRI
findings. The increased versatility that microscopic reso-
lution MRI provides will result in enhanced understanding
of critically important biological processes and in the
development of new diagnostic and treatment approaches
in a variety of human CNS diseases.

FIG. 12. MR imaging in a mouse model of a brain tumor showing a different outcome after two treatments (Reproduced with permission
from L.K. Phuong et al. [143]. Panels (A) and (D) are brain MRI scans before the treatment, whereas (B) and (E) are the MRI scans 18 days
after the different treatments. (B) Note the complete regression of a tumor treated with measles virus genetically engineered to produce
carcinoembryonic antigen (MV-CEA) with a visible needle trace. (C) A stained (hematoxylin/eosin; H&E) brain section from the same
mouse shows no residual tumor cells except for the glial scar and macrophages (arrows) (×200). (E) Mouse treated with UV-inactivated
MV-CEA shows a profound tumor growth. (F) H&E stain from the same mouse’s brain shows a hypercellular U87 tumor with frequent
mitotic figures (arrows) (×200). (High resolution version of this image is available in the electronic supplementary material.)

FIG. 11. Diffusion tensor imaging of normal mouse brain (top row) and mouse brain 24 h following TBI (bottom row) (Reproduced from
C.L. Mac Donald et al. [131]. Relative anisotropy and axial diffusivity show a gradient of signal changes within the red outlined area on
post-TBI as compared to normal brain images. Other images showing radial diffusivity, trace diffusion and T2-weighted images are
similar in the normal and injured brain. CTL = Control, TBI = Traumatic brain injury. (High resolution version of this image is available in the
electronic supplementary material.)
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