Skip to main content

Advertisement

Log in

Antimicrobial peptide m2163 or m2386 identified from Lactobacillus casei ATCC 334 can trigger apoptosis in the human colorectal cancer cell line SW480

  • Research Article
  • Published:
Tumor Biology

Abstract

Ribosomal synthesized antimicrobial peptides (AMPs) are widely distributed in nature and are toxic to certain microorganisms. Some of these AMPs are found to exhibit cytotoxic activity against the growth of cancer cells and thus have obvious anticancer potential. Here, we have studied the antiproliferation on the human colorectal cancer cell line SW480 of two AMPs, namely m2163 and m2386, identified by us from a lactic acid bacterium Lactobacillus casei ATCC 334 previously. A half maximal inhibitory concentration (IC50) of 40 μg/ml is determined first using the MTT (3-(4, 5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay for either peptide m2163 or m2386. The apoptosis in treated SW480 cells by either peptide m2163 or m2386 is analyzed using flow cytometry with annexin V-fluorescein isothiocyanate (FITC) and propidium iodide double staining. These analyses show that a substantial population of treated SW480 cells can undergo apoptosis by either peptide m2163 or m2386. The real-time quantitative polymerase chain reaction (qPCR) and Western blot analyses are subsequently used to study how the apoptosis is induced in the treated SW480 cells by either peptide m2163 or m2386. While m2163 is found to induce the expression of Fas and TRAILR1, the expression of Fas, TNFR1, and TRAILR1 death receptors on the cell surface of treated SW480 cells is found to be induced by m2386. Further, the expression of some mitochondria-related apoptosis proteins such as Smac is found to be also induced, suggesting that either peptide m2163 or m2386 can trigger both the extrinsic and intrinsic apoptosis pathways. The cell membrane permeability is greatly enhanced upon treatment with either peptide m2163 or m2386 as analyzed by the flow cytometry using both FITC-labeled peptides. The flow cytometry is also used to analyze the fluorescence intensity given by FITC-m2163 in either the mitochondria or cytoplasm fraction of the treated and fractionated SW480 cells. It is found that the detected fluorescence intensity of the mitochondria fraction is much weaker than that of the cytoplasm one, suggesting that most of the FITC-m2163 peptides are located in the cytoplasm rather than the mitochondria. This is further confirmed by a confocal microscopy study that either peptide m2163 or m2386 can localize on the cell membrane for a substantial length of time and then penetrate into the cell cytoplasm to induce the apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. NissenMeyer J, Nes IF. Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch Microbiol. 1997;167:67–77.

    Article  CAS  Google Scholar 

  2. Nes IF, Yoon SS, Diep DB. Ribosomally synthesiszed antimicrobial peptides (bacteriocins) in lactic acid bacteria: a review. Food Sci Biotechnol. 2007;16:675–90.

    CAS  Google Scholar 

  3. Chen HM, Wang W, Smith D, Chan SC. Effects of the anti-bacterial peptide cecropin b and its analogs, cecropins b-1 and b-2, on liposomes, bacteria, and cancer cells. Biochim Et Biophys Acta-Gen Subj. 1997;1336:171–9.

    Article  CAS  Google Scholar 

  4. Ye JS, Zheng XJ, Leung KW, Chen HM, Sheu FS. Induction of transient ion channel-like pores in a cancer cell by antibiotic peptide. J Biochem. 2004;136:255–9.

    Article  CAS  PubMed  Google Scholar 

  5. Cruciani RA, Barker JL, Zasloff M, Chen HC, Colamonici O. Antibiotic magainins exert cytolytic activity against transformed-cell lines through channel formation. Proc Natl Acad Sci U S A. 1991;88:3792–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jacob L, Zasloff M. Potential therapeutic applications of magainins and other antimicrobial agents of animal origin. Antimicrob Peptides. 1994;186:197–216.

    CAS  Google Scholar 

  7. Lehrer RI, Lichtenstein AK, Ganz T. Defensins—antimicrobial and cytotoxic peptides of mammalian-cells. Annu Rev Immunol. 1993;11:105–28.

    Article  CAS  PubMed  Google Scholar 

  8. Lichtenstein A. Mechanism of mammalian-cell lysis mediated by peptide defensins—evidence for an initial alteration of the plasma-membrane. J Clin Invest. 1991;88:93–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anderssen EL, Diep DB, Nes IF, Eijsink VGH, Nissen-Meyer J. Antagonistic activity of lactobacillus plantarum c11: two new two-peptide bacteriocins, plantaricins ef and jk, and the induction factor plantaricin a. Appl Environ Microb. 1998;64:2269–72.

    CAS  Google Scholar 

  10. Zhao H, Sood R, Jutila A, Bose S, Fimland G, Nissen-Meyer J, et al. Interaction of the antimicrobial peptide pheromone plantaricin a with model membranes: implications for a novel mechanism of action. Bba-Biomembr. 2006;1758:1461–74.

    Article  CAS  Google Scholar 

  11. Sand SL, Haug TM, Nissen-Meyer J, Sand O. The bacterial peptide pheromone plantaricin a permeabilizes cancerous, but not normal, rat pituitary cells and differentiates between the outer and inner membrane leaflet. J Membr Biol. 2007;216:61–71.

    Article  CAS  PubMed  Google Scholar 

  12. Riley MA, Wertz JE. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol. 2002;56:117–37.

    Article  CAS  PubMed  Google Scholar 

  13. Beaulieu L, Groleau D, Legault J, Subirade M: Lactic acid bacteria-derived bacteriocin and uses thereof for prevention or treatment of cancer, Google Patents, 2006.

  14. Cornut G, Fortin C, Soulieres D. Antineoplastic properties of bacteriocins: revisiting potential active agents. Am J Clin Oncol. 2008;31:399–404.

    Article  CAS  PubMed  Google Scholar 

  15. Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 2008;1778:357–75.

    Article  CAS  PubMed  Google Scholar 

  16. Kanduc D, Mittelman A, Serpico R, Sinigaglia E, Sinha AA, Natale C, et al. Cell death: apoptosis versus necrosis (review). Int J Oncol. 2002;21:165–70.

    CAS  PubMed  Google Scholar 

  17. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770–6.

    Article  CAS  PubMed  Google Scholar 

  18. Putcha GV, Harris CA, Moulder KL, Easton RM, Thompson CB, Johnson EM. Intrinsic and extrinsic pathway signaling during neuronal apoptosis: lessons from the analysis of mutant mice. J Cell Biol. 2002;157:441–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol. 2000;2:156–62.

    Article  CAS  PubMed  Google Scholar 

  20. Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13:1899–911.

    Article  CAS  PubMed  Google Scholar 

  21. MacFarlane M, Williams AC. Apoptosis and disease: a life or death decision. EMBO Rep. 2004;5:674–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenabeele P. Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med. 2008;8:207–20.

    Article  CAS  PubMed  Google Scholar 

  23. Kuo YC, Liu CF, Lin JF, Li AC, Lo TC, Lin TH. Characterization of putative class ii bacteriocins identified from a non-bacteriocin-producing strain lactobacillus casei atcc 334. Appl Microbiol Biotechnol. 2013;97:237–46.

    Article  CAS  PubMed  Google Scholar 

  24. Richard C, Drider D, Elmorjani K, Marion D, Prevost H. Heterologous expression and purification of active divercin V41, a class IIa bacteriocin encoded by a synthetic gene in Escherichia coli. J Bacteriol. 2004;186:4276–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang CC, Lo CP, Chiu CY, Shyur LF. Deoxyelephantopin, a novel multifunctional agent, suppresses mammary tumour growth and lung metastasis and doubles survival time in mice. Brit J Pharmacol. 2010;159:856–71.

    Article  CAS  Google Scholar 

  26. Huang YF, Lin YW, Lin ZH, Chang HT. Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res. 2009;11:775–83.

    Article  CAS  Google Scholar 

  27. Seya K, Ono K, Fujisawa S, Okumura K, Motomura S, Furukawa K. Cytosolic Ca2+-induced apoptosis in rat cardiomyocytes via mitochondrial no-cGMP-protein kinase g pathway. J Pharmacol Exp Ther. 2013;344:77–84.

    Article  CAS  PubMed  Google Scholar 

  28. Lay MM, Karsani SA, Malek SN. 1-(2,6-dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone-induced cell cycle arrest in g1/g0 in ht-29 cells human colon adenocarcinoma cells. Int J Mol Sci. 2013;15:468–83.

    Article  Google Scholar 

  29. Mader JS, Richardson A, Salsman J, Top D, de Antueno R, Duncan R, et al. Bovine lactoferricin causes apoptosis in jurkat t-leukemia cells by sequential permeabilization of the cell membrane and targeting of mitochondria. Exp Cell Res. 2007;313:2634–50.

    Article  CAS  PubMed  Google Scholar 

  30. Leuschner C, Hansel W. Membrane disrupting lytic peptides for cancer treatments. Curr Pharm Des. 2004;10:2299–310.

    Article  CAS  PubMed  Google Scholar 

  31. Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24:1551–7.

    Article  CAS  PubMed  Google Scholar 

  32. Wang QM, Yan B. Molecular assembly and photophysical properties of a novel luminescent terbium hybrid material with modified carboxyl group of p-aminobenzoic acid as a functional bridge. Mater Lett. 2006;60:3420–5.

    Article  CAS  Google Scholar 

  33. Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Bba-Biomembr. 2008;1778:357–75.

    Article  CAS  Google Scholar 

  34. Wang KR, Yan JX, Zhang BZ, Song JJ, Jia PF, Wang R. Novel mode of action of polybia-MPI, a novel antimicrobial peptide, in multi-drug resistant leukemic cells. Cancer Lett. 2009;278:65–72.

    Article  CAS  PubMed  Google Scholar 

  35. Stennicke HR, Jurgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang XH, et al. Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem. 1998;273:27084–90.

    Article  CAS  PubMed  Google Scholar 

  36. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94:491–501.

    Article  CAS  PubMed  Google Scholar 

  37. Nair S, Nair RRK, Srinivas P, Srinivas G, Pillai MR. Radiosensitizing effects of plumbagin in cervical cancer cells is through modulation of apoptotic pathway. Mol Carcinog. 2008;47:22–33.

    Article  CAS  PubMed  Google Scholar 

  38. Ahmad A, Banerjee S, Wang ZW, Kong DJ, Sarkar FH. Plumbagin-induced apoptosis of human breast cancer cells is mediated by inactivation of nf-kappa b and bcl-2. J Cell Biochem. 2008;105:1461–71.

    Article  CAS  PubMed  Google Scholar 

  39. Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000;10:369–77.

    Article  CAS  PubMed  Google Scholar 

  40. Guo F, Nimmanapalli R, Paranawithana S, Wittman S, Griffin D, Bali P, et al. Ectopic overexpression of second mitochondria-derived activator of caspases (smac/diablo) or cotreatment with n-terminus of smac/diablo peptide potentiates epothilone b derivative-(bms 247550) and apo-2l/trail-induced apoptosis. Blood. 2002;99:3419–26.

    Article  CAS  PubMed  Google Scholar 

  41. Han YY, Liu HY, Han DJ, Zong XC, Zhang SQ, Chen YQ. Role of glycosylation in the anticancer activity of antibacterial peptides against breast cancer cells. Biochem Pharmacol. 2013;86:1254–62.

    Article  CAS  PubMed  Google Scholar 

  42. Pan WR, Chen PW, Chen YL, Hsu HC, Lin CC, Chen WJ. Bovine lactoferricin b induces apoptosis of human gastric cancer cell line ags by inhibition of autophagy at a late stage. J Dairy Sci. 2013;96:7511–20.

    Article  CAS  PubMed  Google Scholar 

  43. Liu S, Yang H, Wan L, Cheng JQ, Lu XF. Penetratin-mediated delivery enhances the antitumor activity of the cationic antimicrobial peptide magainin ii. Cancer Biother Radio. 2013;28:289–97.

    CAS  Google Scholar 

  44. Liu S, Yang H, Wan L, Cai HW, Li SF, Li YP, et al. Enhancement of cytotoxicity of antimicrobial peptide magainin ii in tumor cells by bombesin-targeted delivery. Acta Pharmacol Sin. 2011;32:79–88.

    Article  PubMed  Google Scholar 

  45. Tsai WH, Chang CW, Lin YS, Chuang WJ, Wu JJ, Liu CC, et al. Streptococcal pyrogenic exotoxin b-induced apoptosis in a549 cells is mediated through alpha(v)beta(3) integrin and fas. Infect Immun. 2008;76:1349–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported in part by grant NSC102-2313-B007-001-MY3 from the National Science Council, Taiwan ROC.

Conflicts of interest

The authors have declared that no competing interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thy-Hou Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOCX 243 kb)

Figure S2

(DOCX 162 kb)

Figure S3

(DOCX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, TL., Li, AC., Chen, YC. et al. Antimicrobial peptide m2163 or m2386 identified from Lactobacillus casei ATCC 334 can trigger apoptosis in the human colorectal cancer cell line SW480. Tumor Biol. 36, 3775–3789 (2015). https://doi.org/10.1007/s13277-014-3018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-3018-2

Keywords

Navigation