Skip to main content

Advertisement

Log in

Combinatorial immunotherapy of sorafenib and blockade of programmed death-ligand 1 induces effective natural killer cell responses against hepatocellular carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Sorafenib, a multi-tyrosine kinase inhibitor, is a standard treatment for advanced hepatocellular carcinoma (HCC). Herein, we report that the combinatorial therapy of sorafenib and anti-programmed death-ligand 1 (PD-L1) monoclonal antibody (mAb) can be implemented with good results for HCC. Cancer mouse models were used to evaluate therapeutic efficacy and examine the immunologic mechanisms of the sorafenib/anti-PD-L1 mAb therapy. The combined administration of sorafenib and anti-PD-L1 mAb into tumor-bearing mice generated potent immune responses resulting in the complete eradication or remarkable reduction of tumor growth. In some instances, the sorafenib/anti-PD-L1 mAb therapy induced long-lasting protection against tumor rechallenges. The results indicate that NK cells but not CD4T cells or CD8 cells mediated the therapeutic efficacy of this combinatorial therapy. The overall results suggest that immunotherapy consisting of the combination of sorafenib/anti-PD-L1 mAb could be a promising new approach for treating patients with HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tanaka S, Arii S. Molecular targeted therapies in hepatocellular carcinoma. Semin Oncol. 2012;39(4):486–92.

    Article  CAS  PubMed  Google Scholar 

  2. Vinas A et al. Mapping of DNA sex-specific markers and genes related to sex differentiation in turbot (Scophthalmus maximus). Mar Biotechnol (NY). 2012;14(5):655–63.

    Article  CAS  Google Scholar 

  3. Ng CK et al. Deciphering the Sox-Oct partner code by quantitative cooperativity measurements. Nucleic Acids Res. 2012;40(11):4933–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coco C et al. Increased expression of CD133 and reduced dystroglycan expression are strong predictors of poor outcome in colon cancer patients. J Exp Clin Cancer Res. 2012;31:71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang W et al. Epigenetic inactivation of the canonical Wnt antagonist SRY-box containing gene 17 in colorectal cancer. Cancer Res. 2008;68(8):2764–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Scott EL, Brann DW. Estrogen regulation of Dkk1 and Wnt/beta-catenin signaling in neurodegenerative disease. Brain Res. 2013;1514:63–74.

    Article  CAS  PubMed  Google Scholar 

  7. Mok TS et al. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57.

    Article  CAS  PubMed  Google Scholar 

  8. Mitsudomi T et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11(2):121–8.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou C et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced <i>PD-L1</i> mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12(8):735–42.

    Article  CAS  PubMed  Google Scholar 

  10. Failli V, Bachy I, Rétaux S. Expression of the LIM-homeodomain gene <i>Lmx1a</i> (<i>dreher</i>) during development of the mouse nervous system. Mech Dev. 2002;118(1):225–8.

    Article  CAS  PubMed  Google Scholar 

  11. Murray KD, Choudary PV, Jones EG. Nucleus- and cell-specific gene expression in monkey thalamus. Proc Natl Acad Sci. 2007;104(6):1989–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fu W et al. Insights into HER2 signaling from step-by-step optimization of anti-HER2 antibodies. MAbs. 2014;6(4):978–90.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hu S et al. Comparison of the inhibition mechanisms of adalimumab and infliximab in treating tumor necrosis factor α-associated diseases from a molecular view. J Biol Chem. 2013;288(38):27059–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferlay J et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.

    Article  CAS  PubMed  Google Scholar 

  15. Fujimoto-Ouchi K et al. Antitumor activity of trastuzumab in combination with chemotherapy in human gastric cancer xenograft models. Cancer Chemother Pharmacol. 2007;59(6):795–805.

    Article  CAS  PubMed  Google Scholar 

  16. Bang Y-J et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.

    Article  CAS  PubMed  Google Scholar 

  17. Kute T et al. Development of Herceptin resistance in breast cancer cells. Cytometry A. 2004;57(2):86–93.

    Article  PubMed  Google Scholar 

  18. Lu Y et al. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst. 2001;93(24):1852–7.

    Article  CAS  PubMed  Google Scholar 

  19. Nagy P et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a Herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res. 2005;65(2):473–82.

    CAS  PubMed  Google Scholar 

  20. Price‐Schiavi SA et al. Rat Muc4 (sialomucin complex) reduces binding of anti‐ErbB2 antibodies to tumor cell surfaces, a potential mechanism for Herceptin resistance. Int J Cancer. 2002;99(6):783–91.

    Article  PubMed  Google Scholar 

  21. Scaltriti M et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst. 2007;99(8):628–38.

    Article  CAS  PubMed  Google Scholar 

  22. Park J-G et al. Characteristics of cell lines established from human gastric carcinoma. Cancer Res. 1990;50(9):2773–80.

    CAS  PubMed  Google Scholar 

  23. Kim SY et al. Trastuzumab inhibits the growth of human gastric cancer cell lines with HER2 amplification synergistically with cisplatin. Int J Oncol. 2008;32(1):89–95.

    PubMed  Google Scholar 

  24. Cho H-S et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421(6924):756–60.

    Article  CAS  PubMed  Google Scholar 

  25. Knuefermann C et al. HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene. 2003;22(21):3205–12.

    Article  CAS  PubMed  Google Scholar 

  26. Scagliotti GV et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26(21):3543–51.

    Article  CAS  PubMed  Google Scholar 

  27. Li YM et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell. 2004;6(5):459–69.

    Article  CAS  PubMed  Google Scholar 

  28. Geyer CE et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355(26):2733–43.

    Article  CAS  PubMed  Google Scholar 

  29. Konecny GE et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 2006;66(3):1630–9.

    Article  CAS  PubMed  Google Scholar 

  30. Schnitt SJ. Breast cancer in the 21st century: neu opportunities and neu challenges. Mod Pathol. 2001;14(3):213–8.

    Article  CAS  PubMed  Google Scholar 

  31. Bass AJ et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41(11):1238–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hussenet T et al. SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PLoS One. 2010;5(1):e8960.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yuan P et al. Sex determining region Y-Box 2 (SOX2) is a potential cell-lineage gene highly expressed in the pathogenesis of squamous cell carcinomas of the lung. PLoS One. 2010;5(2):e9112.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tompkins DH et al. Sox2 activates cell proliferation and differentiation in the respiratory epithelium. Am J Respir Cell Mol Biol. 2011;45(1):101–10.

    Article  CAS  PubMed  Google Scholar 

  35. Tompkins DH et al. Sox2 is required for maintenance and differentiation of bronchiolar Clara, ciliated, and goblet cells. PLoS One. 2009;4(12):e8248.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Aksoy I et al. Sox transcription factors require selective interactions with Oct4 and specific transactivation functions to mediate reprogramming. Stem Cells. 2013;31(12):2632–46.

    Article  CAS  PubMed  Google Scholar 

  37. Therasse P et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92(3):205–16.

    Article  CAS  Google Scholar 

  38. Franklin MC et al. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004;5(4):317–28.

    Article  CAS  PubMed  Google Scholar 

  39. Agus DB et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell. 2002;2(2):127–37.

    Article  CAS  PubMed  Google Scholar 

  40. Muthuswamy SK, Gilman M, Brugge JS. Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol Cell Biol. 1999;19(10):6845–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflicts of interest

None

Funding

Heilongjiang Province Natural Science Fund Project (D207016) Fund project of Heilongjiang Province Education Office (11501250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingji Ma.

Additional information

Yun Wang, Hongxia Li and Qi Liang are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, H., Liang, Q. et al. Combinatorial immunotherapy of sorafenib and blockade of programmed death-ligand 1 induces effective natural killer cell responses against hepatocellular carcinoma. Tumor Biol. 36, 1561–1566 (2015). https://doi.org/10.1007/s13277-014-2722-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2722-2

Keywords

Navigation