
Vol.:(0123456789)1 3

CEAS Aeronautical Journal (2022) 13:403–418 
https://doi.org/10.1007/s13272-021-00568-w

ORIGINAL PAPER

Automatic cabin virtualization based on preliminary aircraft design 
data

Jan‑Niclas Walther1   · Bahadir Kocacan1 · Christian Hesse1 · Alex Gindorf1 · Björn Nagel1

Received: 26 February 2021 / Revised: 15 December 2021 / Accepted: 16 December 2021 / Published online: 8 January 2022 
© The Author(s) 2022

Abstract
Preliminary aircraft design and cabin design are essential and well-established steps within the product development cycle for 
modern passenger aircraft. In practice, the execution usually takes place sequentially, with the preliminary design defining a 
basic cabin layout and the detail implementation following in a subsequent step. To enable higher fidelity assessment of the 
cabin early in the design process—for example by means of virtual reality applications—this paper proposes an interface, 
which can derive detailed 3D geometry of the fuselage from preliminary design data provided in the Common Parametric 
Aircraft Configuration Schema (CPACS). This is a key step towards integration of cabin analysis and preliminary design in 
automated collaborative aircraft design chains, not only in terms of passenger comfort, but also manufacturability or crash 
safety. Like the TiGL Geometry Library for CPACS, the interface presented acts as a parameter engine, which translates 
data from CPACS into CAD geometry using the Open Cascade Technology library. However, the scope of TiGL is expanded 
significantly, albeit with an explicit focus on the fuselage, by including more details such as extruded frame and stringer 
profiles and floor structures. Furthermore, advanced knowledge management techniques are employed to detect and aug-
ment missing data. For virtual reality applications, triangulated representations of the CAD geometry can be provided in 
established exchange formats, creating an interface to common visualization platforms. Additionally, a new evolution of the 
cabin definition schema in CPACS is presented, to incorporate models of cabin components such as seats or sidewall panels 
enabling immersive virtual mock-ups.

Keywords  CPACS · Cabin · Structures · Virtual reality · Open Cascade Technology

1  Introduction

Cabin design is inherently an essential aspect of the devel-
opment of passenger aircraft. The number of passengers, as 
well as the arrangement of seats and aisles have an imme-
diate effect on fundamental design parameters such as 
length and cross-section of the fuselage. Similarly, a good 
understanding of the mass distribution within the fuselage 
is important for analysis of the flight mechanics. However, 
a full three-dimensional mock-up is rarely available in the 
early stages of the design process.

Due to the increasing tendency towards individualized 
cabin experience between carriers, the timely evaluation of a 

variety of different cabin concepts from a passenger perspec-
tive is becoming an essential capability. Allowing potential 
customers to experience a selection of concepts quickly 
could prove to be a key advantage for original equipment 
manufacturers (OEMs). Virtualization, i.e., the realistic vir-
tual reproduction of the physical product using e.g. virtual 
reality (VR) technology, is a promising and cost-effective 
method to implement such a service. In addition, it can pro-
vide engineers with a tool to gain an intuitive understanding 
of complex product data in an interactive environment. Rep-
resentative applications for human centric design or engi-
neering exploration have been described by De Crescenzio 
et al. [1] and Fuchs et al. [2], respectively.

The applications show, that effective virtualization 
requires a digital mock-up of the cabin geometry to be pro-
vided, which needs to be sufficiently detailed to provide 
test subjects with the sensation of being in a real cabin. 
As a result, the requirements for details are high compared 
to applications from other disciplines such as structural 

 *	 Jan‑Niclas Walther 
	 jan-niclas.walther@dlr.de

1	 Institute of System Architectures in Aeronautics, 
German Aerospace Center (DLR), Hein‑Saß‑Weg 22, 
21129 Hamburg, Germany

http://orcid.org/0000-0001-5738-658X
http://crossmark.crossref.org/dialog/?doi=10.1007/s13272-021-00568-w&domain=pdf


404	 J.-N. Walther et al.

1 3

analysis making cabin virtualization a suitable test case. 
This paper describes an approach linking preliminary air-
craft design, structure and cabin layout generation and 
geometry modeling using the Common Parametric Aircraft 
configuration Schema (CPACS) [3] to provide a mock-up 
of the fuselage and cabin automatically while maintaining 
consistency among different disciplines. It is designed to be 
operated as part of collaborative multi-disciplinary digital 
design processes and as such is designed to run fully auto-
matically. To this end, product information, which is not 
provided in the incoming data set but required for the model 
generation, must be augmented automatically. This is imple-
mented using a knowledge-based engineering approach [4]. 
The possibility to automatically and dynamically add neces-
sary information based on the available data at a given stage 
of an interdisciplinary process is a distinguishing factor to 
similar solutions for cabin design and virtualization found in 
industry and research such as the commercial tool Pacelab 
ACE myCabin [5] or the open source CabLab [6], which are 
monolithic applications operated through a graphical user 
interface. Establishing these digital capabilities is a key con-
tribution towards the vision of the digital thread, advocated 
by the German Federal Government, the Helmholtz Asso-
ciation and the German Aerospace Center (DLR) [7–9], to 
improve digital permeation and interconnection throughout 
the aerospace industry, reducing lead times and entrepre-
neurial risks for new, greener aircraft designs.

The following sections introduce an approach, where pre-
liminary design data are augmented based on a limited set of 
parameters and a virtual mock-up of the fuselage and cabin 
is derived, which suits the requirements for cabin virtual-
ization. At first, the prerequisites for modeling the neces-
sary product information using CPACS are introduced in 
Sect. 2. Then, the knowledge-based methods to generate the 
information required for building the digital mock-up based 
on preliminary design inputs are discussed. This includes 
a discussion of the geometric modeling rules for the trans-
formation of parametric data in CPACS to CAD shapes for 
relevant components of the fuselage structure. Finally, in 
Sect. 4, it is demonstrated how the methods can be applied 
to create a digital mock-up from preliminary design data for 
a mid-range aircraft concept.

2 � Fuselage structure and cabin description 
using CPACS

The cabin design is inevitably linked to a structural lay-
out, the structure being the physical link between the cabin 
components and the outer mold line. Since such a structural 
layout may not be available in the beginning of the process, 
a structural design may need to be created in a preproc-
essing step. Consistency of design data is paramount when 

integrating multiple disciplines in this way. Therefore, it is 
advisable to use a common underlying data model to link the 
design competences. A proven option is CPACS, a schema 
for hierarchically structured XML data sets to describe air-
craft. The activities surrounding CPACS tend to be focused 
on preliminary design, but the format is designed for use 
across multiple disciplines and levels of fidelity. Therefore, 
detailed structure and cabin descriptions are available, mak-
ing CPACS a suitable choice for coupling preliminary and 
cabin design. Furthermore, it is supported by established 
overall aircraft [10] and fuselage structure design tools [11], 
which can provide inputs and form the basis for subsequent 
developments.

2.1 � Fuselage structure definition and initialization

The capabilities for describing primary structures of fuse-
lages in CPACS have been covered in depth by Scherer and 
Kohlgrüber [12]. Aside from stringers, frames and skin 
panels, floor structures consisting of crossbeams, struts 
and longitudinal beams such as seat rails, can be defined. 
Descriptions of other key components, such as bulkheads 
and wing-fuselage connection areas are also provided and 
openings in the structure, e.g. for passenger or cargo doors 
can be specified. Analogously to beams and shells in struc-
ture mechanics, the structural descriptions are divided into 
profile and sheet based components. Profile-based elements 
are defined by a topologically one-dimensional curve, along 
which a two-dimensional cross-sectional profile is extruded. 
The curve is defined either as the intersection of the fuse-
lage outer surface and a definition surface like in the case 
of frames and stringers, or as the segment of an infinite or 
semi-infinite curve that lies within the fuselage as for the 
floor structure. The profile definitions are stored in a separate 
node for structural elements, which can be understood as a 
library of semi-finished structural parts. Sheet-based ele-
ments assign a thickness property to a preexisting surface, 
such as a skin panel, which may be bounded e.g. by frame 
and stringer curves. Both definitions also provide informa-
tion on the material.

Methods for initializing a structural layout for a given 
empty outer fuselage loft, e.g. the output of a preliminary 
design process have been explained at length by Walther and 
Ciampa [11]. It shows, how the fuselage structure, which 
typically consists of a large number of entries in CPACS, can 
be generated automatically based on very few control param-
eters such as bulkhead positions and a nominal frame pitch. 
The capabilities have been extended for the cabin design use 
case by adding automatic distribution of cutouts and provid-
ing more detailed information on the bulkheads.

The cutout nodes are used to describe structural open-
ings such as windows or passenger and cargo doors. The 
definitions are already provided by CPACS. They are given 



405Automatic cabin virtualization based on preliminary aircraft design data﻿	

1 3

in the global aircraft coordinate system, where the x and 
z coordinates correspond to the aircraft’s longitudinal and 
vertical axes, respectively. As illustrated by Fig. 1, the 
cutouts are positioned at a point on the fuselage surface. 
Analogously to e.g. stringer positions, it is defined by a 
point and a reference angle, which can be used to construct 
an intersection vector with the fuselage surface. At the 
intersection point, a rectangle of width deltaX height 
deltaY is extruded along an orientation vector (ori-
entationVector). The dimensions of the rectangle 
are defined in a local coordinate system, determined by an 
alignment vector (alignmentVector). The corners of 
the rectangle can be rounded off using the filletRadius 
parameter. Furthermore, a cutoutType node must be 
specified, the value of which must be one of “window”, 
“door” or “ramp” in correspondence with the three use 
cases for structural cutouts in CPACS.

For the augmentation, the door cutouts must be speci-
fied explicitly by providing the longitudinal position, 
height, width and fillet radius. When setting the reference 
angle to ± 90◦ , the vertical position of the door can be 
computed from a given target sill height. For the position-
ing of the window cutouts, the frame positions are taken 
into account, as well as to the door positions. A cutout pro-
file and the height of the window above the floor must be 
given in advance, similarly to the door cutouts. The longi-
tudinal position, however, is set to be the middle between 
a pair of neighboring frames. Windows are only placed 
between the first and last door. If a frame bay is occupied 
by or within a certain tolerance of a door, no window is 
placed. Given the focus on cabin, cockpit windows are 
omitted entirely at this stage.

To gain a better understanding of the available space 
in the cabin, the provision of information on bulkheads 
is also desirable. The necessary parameters are available 
in CPACS and have also been described by Scherer and 
Kohlgrüber [12]. When initializing the structure for the 

preliminary design data set, geometric details of the bulk-
heads can be specified, along with the desired longitudi-
nal position, a corresponding sheet element type and the 
bulkhead type.

2.2 � Cabin definition

Compared to the structure, cabin design activities using 
CPACS have received little attention in literature [13–16]. 
Nonetheless, a comprehensive node called decks is pro-
vided in its current release 3.2, which largely dates back to 
Fuchte [15]. Based on a simplified description of the cabin 
space boundary using contour lines, which are defined by a 
structured grid of sample points, seats and large cabin floor 
components such as galleys and lavatories can be placed. 
Further information e.g. on door positions and evacuation 
spaces can be provided, as well.

A weakness of the current parameterization is, that it per-
mits inconsistencies, e.g. if changes are made to the outer 
geometry, the cabin boundary contours become invalid. 
Furthermore, it contains redundant information, such as 
door definitions, which overlap with the cutout definitions 
described in the previous section. Finally, definitions for key 
cabin components including sidewall panels and hat racks, 
which are essential when building an immersive virtual 
cabin mock-up, are missing altogether. Therefore, a modi-
fied version of the decks node is proposed at this point and 
applied in the following.

A key modification is the introduction of the deckEl-
ements node. Analogously to the structuralEle-
ments node, which, among other things, contains all the 
structural profile cross-sections, this node provides defini-
tions of standard cabin components, that are used as building 
blocks when assembling a cabin layout for a given configu-
ration. Data on seats, sidewall and ceiling panels or lug-
gage compartments can be stored, but also on larger monu-
ments such as galleys and lavatories. In the simplest case, a 

(a) (b)

Fig. 1   Schematic depiction of the cutout definition



406	 J.-N. Walther et al.

1 3

component is described by its bounding box, i. e. its length, 
width and height. Apart from that, a component mass for a 
subsequent mass estimation can be specified, as well as a 
genericGeometryComponentUID. Unique Identifiers 
(uIDs) can be assigned to most nodes and CPACS, and ena-
ble referencing said node node from any other node within 
CPACS. The genericGeometryComponentUID refers 
to a particular type of node in CPACS, that allows the inte-
gration of geometry from external sources including CAD 
models in STEP or IGES format and triangulated 3D geom-
etry in STL format. In this way, dummy geometry for more 
detailed and immersive visualization can be embedded in 
CPACS very easily. Depending on the component type, addi-
tional metadata can be provided for downstream analysis, 
such as the number of seats in a seat row, or the number of 
trolleys in a galley module.

Outsourcing the component definitions results in a much 
leaner decks node, which serves merely to instantiate a 
cabin assembly in a given fuselage. To this end, four types 
of entries are necessary:

•	 Floor-based component placement (seats, galleys, lava-
tories, class dividers): These components are placed in 
the local cabin coordinate system, which is given by a 
global transformation node for each deck, by providing 
an x and y coordinate using the transformation2D 
type from CPACS. Since the component is to be mounted 
on the floor, the vertical coordinate of the lower end of 
the bounding box defaults to z = 0 . In addition to the 
coordinates, an element uID referencing an entry in the 
deckElements node must be specified. Furthermore, 
local offsets and scaling of the model can be manipulated 
using an optional additional transformation node. UIDs 
of longitudinal floor beams can be specified to provide 
information on structural mount points.

•	 Component placement in 3D space (linings, luggage 
compartments): The above formulation must be gener-
alized for components, which are not mounted on the 
floor. Since the x and y coordinates are insufficient, the 
transformation2D node is replaced by a regular 
transformation node, allowing positioning in all 
dimensions. Consequently, component positions must 
also be computed in z direction for each component 
placed during the layout synthesis in addition to x and y 
positions, e.g. via offsets as described in Sect. 3.3. The 
transformations are given w. r. t. the local aircraft coor-
dinate system. The longitudinal floor beam uIDs are gen-
eralized to parent uIDs, which can refer to an arbitrary 
structural element.

•	 Description of free spaces (aisles, evacuation spaces): 
Knowledge of free spaces in the cabin is essential not 
only for certification, but also boarding and evacuation 
simulation [13, 14, 16]. Even though they can in princi-

ple be deduced from the floor-based components, a sepa-
rate definition is provided to allow for the formulation of 
required or desired spaces. Like floor-based components, 
these are defined in the local xy coordinate system of 
the cabin floor, however, aisles and other generic spaces 
are described in slightly different ways. The basis of 
both definitions is a polyline, which is closed to form a 
polygon and extruded to a 3D body using an additional 
height parameter for generic spaces. In contrast, the key 
parameter for the aisles is the width, which is given at 
each point of the polyline, defining a 2D surface on the 
floor.

•	 Door definitions: As mentioned previously, the current 
release of CPACS (3.2) contains redundant door defini-
tions. In the scope of this publication, the definitions have 
been modified in such a way, that door geometry can 
be specified exclusively using cutouts. The alternative 
description in CPACS using width, height and sill height 
is no longer valid. However, as outlined above, conver-
sion between the two is feasible.

Another important change is the pending elimination of the 
cabin geometry (cabGeometry) node, which was used to 
specify an outer boundary for the cabin as described above. 
Since the points given in this definition can be rendered 
invalid, even by minor changes to the fuselage geometry, 
which can quickly result in inconsistent data sets, a long 
term storage of the geometry points in CPACS is precari-
ous. Instead, an ad hoc generation of the cabin geometry, as 
described in Sect. 3.3, should be preferred.

The modified cabin description presented here is used in 
the following to store the results of the cabin synthesis. At 
the same time, it serves as a guideline for the required range 
of components and the level of detail for the design process.

3 � Implementation of a design and modeling 
environment for fuselages

To build a digital mock-up, the parameters and definitions 
given in CPACS must be translated to CAD geometry using 
a geometric modeling or parameter engine. Due to the multi-
fidelity scope of CPACS, it is possible for some pieces of 
information critical to modeling certain components to be 
missing. In this case, additional design functionality must 
be applied to augment the missing data, before the geometry 
can be generated.

3.1 � Knowledge modeling of CPACS data

As illustrated by the uID references in the cabin definition, 
as described in the previous section, CPACS is a hierarchi-
cal format at first glance only. In truth, the possibility to 



407Automatic cabin virtualization based on preliminary aircraft design data﻿	

1 3

interlink virtually any two nodes results in a far more com-
plex network of relationships and dependencies. Therefore, 
correctly modeling the dependencies between given pieces 
of information in CPACS is essential to ensure a consistent 
design.

To this end, the CPACS interface originally introduced 
by Walther et al. [17] has been restructured using a knowl-
edge-based object oriented approach as proposed e.g. by La 
Rocca [4]. Each CPACS data node is augmented by a unique 
xpath, requires and value attribute.

The xpath attribute contains a generalized notation of 
the address used for accessing nodes in the XML data set. 
It also serves as a unique label for the node in the network 
of CPACS parameters. The generalization is necessary to 
align nodes, which are semantically identical but differently 
named, such as /cpacs/vehicles/aircraft and /
cpacs/vehicles/rotorcraft.

The requires attribute is usually a set and leverages 
the xpath nomenclature to reference other nodes, which are 
required for the interpretation of the present node.

Finally, the value attribute is used to access the actual 
data stored in the node. Despite the name, it does not usually 
contain a singular value but a table of all the entries of the 
same type beneath a collection node, such as the frame 
entries beneath the collection node frames. The informa-
tion is stored as a pandas data frame [18], a popular structure 
for tabular data in Python. It enables efficient processing 
and provides powerful SQL-style merge operations between 
nodes which is useful down the line during modeling. The 
tables are read from CPACS and stored in the value attrib-
ute which is initially empty and remains so if no data are 
found in the data set. The value can only be set through a 
dedicated compute method.

Using the xpath and requires attributes from all 
node objects, a directed acyclic graph (DAG) of the depend-
encies can be constructed. Assuming acyclicity simplifies 
the handling of the data, but is also justified, since cyclic 
uID references are not found in the CPACS schema. The 
NetworkX package [19] for Python not only provides a DAG 
data structure, but also many common graph algorithms. 
The understanding of dependencies provided by the DAG 
yields several interesting opportunities. Most importantly, 
it provides the means, to query the ancestors and descend-
ants to any given node. Any ancestor to a given node rep-
resents another node that imperatively must be known to 
compute the value of the given node. The descendants, on 
the other hand, are nodes that will not be computable unless 
the given node is known. Figure 2 provides an example of 
this for frames. It can be seen, that the value attributes of 
the fuselage and the profileBasedStructuralEl-
ements nodes must be known (i.e. not empty) to correctly 
interpret and model the information contained in the frame 
node. The fuselage node provides the surface loft used to 

compute intersection curves with the frame planes, whereas 
the profileBasedStructuralElements node pro-
vides the cross-section. In turn, information from the frame 
node is required e.g. to interpret the information on the side-
wall panels, which can reference frames via their paren-
tUID, as explained in the previous section.

The information stored in the graph can also be used to 
read nodes just in time as they are required (lazy evalua-
tion), or to schedule parallel execution of independent nodes. 
Another interesting feature is the identification and handling 
of missing or empty nodes, which is a common problem 
given the multi-fidelity nature of CPACS. In the case of the 
aforementioned frame node, if the value parameter remains 
empty after the CPACS readout, it can be deduced, that the 
CPACS data set does not provide any information on the 
frames. This means that design rules in the form of Python 
functions need to be applied to generate the frame informa-
tion based on the available information. In the case of the 
frames, this means that a frame distribution must be gener-
ated from the known mainframe positions as described by 
Walther and Ciampa [11].

To this aim, the system is modified by overloading the 
frame node with a dedicated design node, which provides 
the frames as a function of the main frames. As shown in 
Fig. 3, this extends the system graph with several auxiliary 
nodes, which are not stored in CPACS, but essential to the 
design process nonetheless. An example for such an auxil-
iary node is the mainFrames node. The positions of the 
main frames are deduced e.g. from the bulkhead and door 
positions. The profile cross section definitions are copied 
from a surrogate CPACS file. In this way, the known inputs 
required to compute the value of the frame node can be 
reduced to only the fuselage and the tool-specific fuse-
lageAugmentation node, which contains the structural 
design parameters mentioned in Sect. 2.1. By implementing 
many knowledge rules, a system is built, which can adapt to 
a large variety of input states from CPACS and automatically 
augment missing information accordingly. In the follow-
ing subsection, the rules for translating relevant structural 
CPACS parameters from Sect. 2.1 into CAD geometry are 
described, which in turn provide necessary inputs for the 
cabin layout synthesis rules outlined in Sect. 3.3.

3.2 � Fuselage structure CAD model

As outlined in Sect. 2.2, the CPACS schema provides means 
for detailed fuselage structure descriptions. The most com-
mon use case is to create global finite element models of the 
structure, consisting of shell elements for the skin panels 
and beam elements for the stiffeners. In this context, the 
TiGL Geometry Library [20] can be employed to generate 
the outer aircraft geometry from CPACS, which is sampled 
using intersection vectors to build a discretized geometry 



408	 J.-N. Walther et al.

1 3

model. The cross-section of the profile-based elements is 
primarily used to compute the properties of the beam ele-
ments, although some finite element analysis environments 
like ANSYS also support the visualization of the extruded 
beams, if provided with suitable profile definitions.

Nonetheless, for both the purposes of virtualization, and 
to generate a cabin layout that is consistent with the struc-
ture, it is necessary to provide geometry not just in a dis-
cretized form, but on the basis of smooth, mathematically 
accurate surfaces. The CAD geometry can be discretized 
as required for a given use case and also provides surface 
normal information which is essential for smooth shading 
even of coarse meshes.

Many of the structural features necessary for the cabin 
design are not provided by the TiGL library in this level of 
detail and need to be constructed directly from the CPACS 
data. This can be accomplished using the Open Cascade 
Technology (OCCT) library [21], an open-source CAD ker-
nel, which is also the basis of the TiGL library. In particular, 
detailed information on the geometry of the structural rein-
forcements, such as frames, is necessary for the cabin layout 

generation. Therefore, the profile-based structural elements 
from CPACS must be turned into CAD solid models by 
extruding their profile along their definition curve.

Taking the frames as an example, the definition curve is 
specified by the intersection of the fuselage surface and a 
frame definition plane. The fuselage surface from CPACS can 
be generated using the TiGL library or by interpolating the 
cross-section profile points as shown by Walther et al. [17]. 
The frame definition plane is usually orthogonal to the lon-
gitudinal axis of the fuselage and can thus be derived from 
the longitudinal position given in CPACS. The intersection 
curve—typically a B-spline curve—is computed using OCCT. 
Along this trajectory curve �(v) , the structural profile polygon, 
reformulated as a first degree B-spline curves �(u) , can be 
extruded as a swept surface as described by Piegl and Tiller 
[22] using

where �(v) is a transformation matrix and �(v) is a scaling 
matrix. Since no scaling is performed on the profiles, the 

(1)�(u, v) = �(v) + �(v)�(v)�(u),

Fig. 2   Graphical dependency map for the frame node in CPACS



409Automatic cabin virtualization based on preliminary aircraft design data﻿	

1 3

corresponding matrix turns to �(v) = � . The transformation 
matrix at a given position v can be computed based on the 
tangent vector of the trajectory �̇(v) and the normal vectors 
of the fuselage surface, which span a local coordinate sys-
tem. The tangent of a B-spline curve is simply computed by 
deriving the basis functions. For computing the normals, on 
the other hand, the trajectory curve �(v) must be projected 
onto the fuselage surface, which yields a compatible curve 
�uv(v) in the surface’s parameter space (commonly referred 
to as p-curve). This is illustrated by Fig. 4b for the case of a 
conical segment and a skew plane shown in Fig. 4a.

A canonical solution for constructing a swept surface is 
to apply the skinned surface algorithm on a finite number 
nv of transformed profile sections at the positions � [22]. 
Since the trajectory curve �(v) and its projection �uv(v) 
are compatible, the latter can be evaluated at � to compute 

the surface uv coordinates corresponding to the Cartesian 
points �(�) . At these coordinates, the surface normals 
can then be evaluated. In some cases, such as the frames, 
the normal vectors must be manipulated, e.g. by project-
ing them onto the curve definition plane. Due to the way 
frames are defined in CPACS, this usually causes the x 
component to turn to zero. CPACS imposes a convention 
with respect to the sense (mathematically positive) and 
ordering (front to back) of the fuselage profiles, which 
is enforced during readout and propagated to the lofted 
surfaces. Consequently, it can be asserted that the normals 
will always be facing inward.

Aside from the transformations �(�) , the global transla-
tion prescribed by the trajectory curve point �(�) must be 
applied to the profile. Due to the affine invariance property 
of B-splines, any transformation of the curve corresponds to 

Fig. 3   Expansion of the CPACS 
graph with frame design rules



410	 J.-N. Walther et al.

1 3

a transformation of the control points, which can be imple-
mented very efficiently. The transformed profile sections for 
the example of the conic section are given in Fig. 5a.

For the skinned surface algorithm [22], the transformed 
control point arrays of the sections are collected in a 
nc × nv × ndim array, where nc is the number of profile control 
points and ndim is the dimensionality of the points. In addition, 
the B-spline basis functions of the trajectory curve �T (�) are 
evaluated at the sample positions � , which results in a nv × nt 

matrix, where nt is the number of control points of the trajec-
tory curve. By choosing the number of sample points to be 
nv = nt , �T (�) becomes a square matrix and thus, the series 
of linear systems

can be solved and assembled to yield the control point array 
�S of the extruded B-spline surface �(u, v) . The knot vectors 

(2)�i = �T (�) ⋅ �S,i, {i�ℕ ∶ 1 ≤ i ≤ nc}

Fig. 4   Frame curve determination for a conic fuselage segment and a skew definition plane

Fig. 5   Profile extrusion using the swept surface algorithm



411Automatic cabin virtualization based on preliminary aircraft design data﻿	

1 3

and polynomial degrees can be carried over from the section 
curve �(u) and the trajectory curve �(v). For the example of 
the frame, this results in the surface shown in Fig. 5b.

The swept surface algorithm is also applied for modeling 
the floor beams elements. However, the trajectory curves are 
constructed in a different way, which essentially corresponds 
to the procedure applied during finite element model gen-
eration. Using a point and a vector specifying a direction, 
an infinite or semi-infinite line can be constructed, which is 
then clipped to yield only the segment that lies within the 
fuselage. For longitudinal floor beams, which are defined 
using a multitude of points, a polyline is constructed instead. 
The profile transformation before extrusion is determined by 
the type of component: The profiles of the floor grids and 
the strut profiles are oriented in vertical and longitudinal 
direction, respectively.

To achieve the correct geometry, profiles should initially 
be extruded beyond the bounds of the fuselage, before com-
puting the intersection of the fuselage volume and the result-
ing solid. This operation, however, is very computationally 
expensive, as two complex geometries must be intersected 
for each floor element. Instead, clipping the trajectory curve 
first and performing the extrusion after, as described above, 
reduces the computational cost significantly, while still 
returning acceptable results.

Another important modeling function is the creation of 
door and window cutouts. Based on the cutout-definition, 
solid bodies are extruded, which are then subtracted from 
the fuselage surface and the structural elements in a Boolean 
operation sense. In this context, it is important, to extend the 
extrusion also towards the inside of the fuselage to account 
for the curvature of the fuselage surface.

This concludes the CAD modeling rules for the structural 
components relevant to the cabin layout synthesis. However, 
to integrate the structural model into the virtual mock-up, 
the CAD surfaces can be converted to triangle meshes and 
exported to a suitable format to transfer the geometry to 
other frameworks more specifically dedicated to 3D visuali-
zation. To this end, the OCCT library provides an exporter 
for the Stereolithography (STL) format, which, however, 
does not support e.g. export of surface normals. Therefore, 
the OCCT mesher is used directly to compute a triangulation 
of a given surface instead. It implements Delaunay trian-
gulation and provides a few mesh control parameters, such 
as minimum edge length and angular deflection limits. The 
triangulation not only returns the Cartesian point coordinates 
and triangular cell connectivity, but also the corresponding 
surface uv coordinates. This makes it possible to compute 
the corresponding surface normal vectors in a postprocess-
ing step.

The model components are usually stored in various 
types of boundary representation (BREP) objects, such as 
solid bodies and composed surfaces (shells). The mesher, 

in contrast, works only on the underlying individual faces, 
which means it might be necessary to manually iterate the 
BREP object tree during mesh generation.

For further processing the mesh, including all additional 
point and cell metadata is converted to data types of the 
Visualization Toolkit (VTK) library [23]. If required, the 
hierarchy of the BREP can be retained using multi-block 
data sets. The library not only provides a wide array of fil-
ters, e.g. for mesh decimation, but also interfaces to many 
common 3D mesh formats.

3.3 � Cabin layout synthesis

The now known structural layout and geometry provide 
the basis for the cabin layout synthesis. As a first step, it is 
important to identify the interfaces between structure and 
cabin. Most importantly, the structure provides the bound-
ary to the space available for designing the cabin, which is 
constrained by the skin, frame height, the floor structure, 
the bulkhead positions and the cabin wall position. As men-
tioned in Sect. 2.2, CPACS includes a node, which provides 
a definition for this space. However, no mechanism is in 
place to enforce consistency with the structure. Therefore, 
the cabin space is instead constructed ad hoc from the struc-
tural definitions. To accomplish this, different algorithms 
can be applied, depending on the information available for 
the cabin synthesis.

In case no details on frame geometry are provided, a 
generic frame height can be assumed. Using an OCCT func-
tion, an offset surface can be constructed from the fuselage 
surface based on this information. However, this algorithm 
should only be applied if no further information is available, 
since operations on the resulting offset surfaces tend to be 
computationally expensive.

If the details on the frame geometry are known, the 
cabin space can instead be constructed directly from the 
structural definitions. This is accomplished by once more 
extruding the frames as swept surfaces. Instead of a detailed 
profile, a simple line representing the frame height is used 
as an approximation. The inner curve of the frame can be 
extracted by computing the isoparameter line for the surface 
parameter value in section direction u = 1 for the resulting 
surface. From the sequence of curves, a surface as illustrated 
by Fig. 6a can be constructed, once more using the skinned 
surface algorithm applied in the previous section, albeit 
under slightly different conditions. Unlike the transformed 
profiles, the frame tip curves are not necessarily compat-
ible, i. e. they do not share the same order or knot vector. 
Therefore, they must be made compatible in a preprocessing 
step using degree elevation and knot insertion algorithms 
[22]. As a result of the knot insertion, all curves share the 
same parameter vector, which is the union of all distinct 
parameter values and multiplicities of the curves. Due to 



412	 J.-N. Walther et al.

1 3

numerical inaccuracies, two very close parameter values 
might be considered to be distinct, resulting in large and 
computationally expensive knot vectors. By introducing a 
liberal tolerance of � = 1e − 4 , this issue can be alleviated 
and surfaces of high quality can be generated, which can also 
be handled well numerically. Since no trajectory curve is 
given, the basis functions �T (�) must be computed using an 
interpolation technique [24]. The choice of parameter vector 
has no impact, since a linear interpolation scheme is applied.

Commonly, the outcome of the interpolation algorithm 
is a surface, which is closed and periodic in circumferential 
direction. It can be turned into a BREP solid by closing up 
the profiles at both ends, enabling more reliable Boolean 
operations. Using the known floor height and rear bulkhead 
position, as well as a the cockpit wall position, which coin-
cides with the cabin origin, a box can be constructed, which 
represents further cabin bounds. Intersecting this box and the 
BREP solid from the frames yields the cabin space as shown 
in Fig. 6b with a much higher accuracy than the original 

CPACS definitions. For backward compatibility, the surface 
can be sampled using a regular grid of intersection vectors to 
compute the points needed for the legacy cabGeometry 
definition. For all subsequent steps, the most important fea-
ture of the cabin geometry is its base area, which provides 
the boundary for the placement of seats and floor elements 
such as lavatories or galleys. On the other hand, it is also a 
useful reference for the initial placement of paneling and 
luggage compartments. Aside from the cabin space, infor-
mation on the available cabin elements as provided by the 
respective CPACS node introduced in Sect. 2.2 is required, 
possibly including a reference to an external 3D component 
file, or at least a bounding box.

Seat elements are placed according to different seating 
classes, e.g. first, business or economy. Classes are not 
only distinguished by different numbers of seats abreast 
and seat pitch, but also potentially different seat models. 
By taking into account the number of rows in each class, 
the number of passengers per class and hence the total 

Fig. 6   Ad hoc cabin space 
construction



413Automatic cabin virtualization based on preliminary aircraft design data﻿	

1 3

number of passengers can be computed. Based on the 
latter, the number and type of exits is determined based 
on the regulations found in the certification specification 
CS-25 [25]. The locations of the exits link back to the 
structural cutout definitions on the one hand and to the 
necessary seat spacing on the other.

Furthermore, galleys and lavatories must placed at an 
exit using a 3D notation composed of an exit ID, a Boolean 
indicator of whether the part is placed before or after the 
exit and the placement along the width. Component counts 
are determined based on the required level of comfort.

Combining the information on class seat pitch, seat 
dimension exit width and floor element placement into 
a seat gap Δxi , the seat row positions can be computed 
recursively using

The position in y direction can be deduced using an inside-
out approach based on the aisle and row widths, or an out-
side-in approach using the floor boundary instead of the aisle 
width. Irrespective of the selected approach, a consistency 
check is necessary, to assert that neither the floor width, 
nor the minimum aisle width are violated. Similarly, the x 
positions must be validated against the length of the floor 
boundary.

For the placement of the sidewall panels, luggage com-
partments and ceiling panels, the frame distribution is 
taken into account in addition to the floor boundary. Due 
to the dummy models used, it is assumed, that a sidewall 
panel will span two frame bays. Therefore, longitudinal 
scaling factors can be computed using the known frame 
positions. This is trivial in the cylindrical section of the 
fuselage, but in the non-cylindrical parts, the curvature 
of the floor bound must be taken into account. Here, the 
installation angle of the sidewall panel and luggage com-
partment is computed using

(3)xi+1 = xi + Δxi + li.

where

with

ybound(x, z) is the cabin boundary function. The required part 
length results to

which yields a scaling factor sx,i,part =
lreq,i

lpart
.

The placement of the sidewall panels along the floor 
boundary is also clearly determined in the cylindrical sec-
tions. The position and rotation angle are given by the line 
between the boundary points at the frame positions xf rame,i 
and xf rame,i+2 . For the non-cylindrical sections, however, 
different strategies may be applied, as illustrated in Fig. 7. 
Placing the panels side by side without gaps will result in 
overlapping panels due to the concave outline. This can be 
resolved by moving the panels apart along the boundary line 
at the cost of introducing gaps, which might also be unde-
sirable. A third option is a centered positioning, which is a 
compromise between the two previous extremes.

This approach is also valid for the luggage compartments. 
However, whereas the sidewall panels are placed directly on 
the border of the cabin space, an offset in y and z direction 
is applied to the luggage compartment, based on the side-
wall dimensions and an overlap parameter, which accounts 
for design details of the parts, that are not reflected by the 
bounding box. Determining the correct overlaps currently 

(4)�i = arctan

(
Δy0

bound,i

Δxf rame,i

)

, i ∈ {1, 3, 5, ...},

(5)Δxf rame,i = xf rame,i+2 − xf rame,i

(6)Δy0
bound,i

= y0
bound,i+2

− y0
bound,i

(7)y0
bound,i

∶= ybound(xf rame,i, 0.).

(8)lreq,i =
‖
‖
‖
[
Δxf rame,i Δy

0

bound,i

]⊺‖
‖
‖2
,

Fig. 7   Positioning strategies for non-cylindrical sections



414	 J.-N. Walther et al.

1 3

involves a manual process of comparing and aligning the 
dummy geometry models. Finally, the computed positions 
are also compared to the exit layout to discard panels which 
collide with the exits.

The ceiling panels are not rotated and instead scaled 
assuming lreq,i = Δxf rame,i . In exchange, it might be neces-
sary to also scale the ceiling panels in the width direction. 
This depends on the dimensions and positions of the side-
wall panels and luggage compartments, as well as the width 
of the cabin space boundary and the number of aisles. For 
multiple aisles, additional luggage compartments may also 
be included following the same strategy.

4 � Virtual mock‑up of the fuselage and cabin 
for the AVACON research baseline

Finally, the methods outlined above are demonstrated in an 
application case and different visualizations are derived. 
As an example, the CPACS data set for the AVACON 
Research Baseline (ARB) [26] is used, a concept for a mid-
range aircraft with entry into service in 2028. At a range of 
4600nm and a capacity of approximately 250 passengers, it 
is designed to fill the gap in the civil aviation fleet between 
large short range aircraft like the Airbus A321 and small 
long-range aircraft like the Airbus A330, which is often 
referred to as the middle of the market. The top level aircraft 
requirements are derived from the Boeing 767.

A cabin layout is already included in the data set [16], 
which is used as reference. Following the example of the 
Boeing 767, a twin-aisle two-class layout with four seats 
abreast in business class and seven seats abreast in economy 
class has been selected.

4.1 � Structural design

Since no information on the fuselage structure is given in 
the CPACS file for the ARB, it needs to be generated first. 
Attention must be paid, that the floor height given for the 
structural augmentation matches the position of the cabin, 
which is already given in the data set.

A rendering of the fully modeled fuselage structure is 
given in Fig. 8. The advantages of the CAD-based model 
generation and the provision of surface normals are high-
lighted by the smooth shading e.g. of the spherical rear 
pressure bulkhead. The cutouts are also easily discernible. 
However, it is also clear, that some structural components, 
which are not immediately relevant to the cabin design, such 
as the landing gear bay or the tail plane attachments are 
missing in the model.

4.2 � Cabin design

Based on the structural layout, a cabin layout is synthesized 
following the rules in section 3.3. Figure 9 shows both a 
newly generated single-aisle layout and the twin-aisle refer-
ence layout. Inspired by the Airbus A321 cabin layout, the 

Fig. 8   Rendering of the ARB 
fuselage structure

Fig. 9   ARB cabin layouts



415Automatic cabin virtualization based on preliminary aircraft design data﻿	

1 3

single-aisle configuration consists of two classes with four 
seats abreast in business and six seats abreast in economy 
class and a seat pitch of 30in across all classes. For a ficti-
tious high-speed and high comfort boarding scenario, the 
aisle width has also been increased to 30in. This layout seats 
242 passengers, while the comfort level due to number of 
available lavatories and galleys is kept at a level similar to 
the reference. The exit positions from the structural model 
are respected by matching spaces. While the occupation of 

the available space is far from excellent for this layout, it 
still showcases the capacities of the design tool at this stage.

Figure 10 shows the panel and overhead storage com-
partment distribution for the single aisle configuration. The 
frame distribution is respected, as are the exit positions, 
where conflicting hat rack and sidewall panels are removed. 
This leaves a gap in the panel distribution, as matching side-
wall panels for doors or emergency exits are not yet available 
within the process.

4.3 � Visualization and virtualization

At this point, the information provided on cabin and fuse-
lage can be fused for combined visualization. To this end, 
the structural BREP geometry is triangulated and the cabin 
mock-up assembled to yield two separate, but compatible 
VTK mesh instances, which can be exported. In Fig. 11, a 
visualization of the reference cabin of a native VTK polygo-
nal data export in Paraview is shown inside the structural. 
This fast interface is valuable for quick visualization during 
development.

The Wavefront OBJ format can instead be used to export 
the models to Blender e.g. for higher quality renderings as 
given in Fig. 12. As demonstrated here, the hierarchical 
structure of the meshes enables selective viewing, e.g. hid-
ing the ceiling panels to expose the underlying structure. At 
the same time, Wavefront OBJ files can also be used as an 
interface to the Unity platform [27], bridging the gap from 
visualization to virtualization. With very little additional 
effort, the model can be prepared for interactive exploration 
from a first person perspective, even using VR hardware. 
An impression from a demonstrator scene for the ARB is 
given in Fig. 13.

This example illustrates that the methods proposed above 
can be applied to automatically design and build detailed 
and consistent cabin models, which are ready to be used Fig. 10   Distribution of panels and luggage compartments

Fig. 11   Fuselage cabin and 
structure model (Paraview)



416	 J.-N. Walther et al.

1 3

in VR applications, based on preliminary data provided 
in the CPACS format and a very limited number of addi-
tional inputs. Due to the high degree of automation and the 
application of a common central data model like CPACS, 
this enables the incorporation of detailed cabin design and 
analysis in automated collaborative aircraft design chains. 
Furthermore, feedback loops with preliminary design are 
enabled e.g. to accurately predict the cabin length, which 
has an effect e.g. on the outer fuselage shape.

5 � Conclusion

In the preceding sections, an automated approach for deriv-
ing detailed and consistent cabin designs, and VR-com-
patible 3D models thereof, from preliminary design data 
provided in the CPACS format has been demonstrated. 
Moving along a cohesive digital thread, the CPACS data are 
processed in a knowledge-based design system capable of 

augmenting missing cabin and structural information based 
on a reduced set of control parameters. In addition, a CAD 
model of the fuselage is generated based on the CPACS 
parameters using the OCCT library and converted to a trian-
gulated surface mesh for visualization. The structural model 
is then merged with a cabin assembly, which can process 
detailed component models provided in addition to CPACS.

The methods have then been demonstrated using the 
AVACON Research Baseline as an example. Visualizations 
of the resulting model using various environments including 
an interactive scene built using the Unity VR platform have 
been provided.

However, the example also highlights one of the key 
limitations of the design process at this stage, which is the 
reliance on 3D dummy models for the design. Even though 
an impressive level of detail for the visualization can be 
achieved in this way, such “dead” geometry can only treated 
based on its bounding box during the design. In addition, 
missing component models like the panels for the door areas 

Fig. 12   Reference cabin 
rendering with visible structure 
(Blender)

Fig. 13   ARB demonstrator 
scene (Unity)



417Automatic cabin virtualization based on preliminary aircraft design data﻿	

1 3

can lead to gaps in the model, which is detrimental to the 
immersion. Therefore, a parametric description schema for 
cabin elements, similar to CPACS for the fuselage structure, 
will be essential for future developments. Such a descrip-
tion could not only contain parameters on the geometry of 
the part but also explicit connection points e.g. to structural 
components and thus provide valuable additional informa-
tion for the positioning. This level of detail certainly exceeds 
the scope of a format like CPACS, which remains aimed 
primarily at preliminary design activities. At the same time, 
it presents an opportunity for the development of comple-
mentary formats, where new accomplishments in informa-
tion technology, such as semantic web technologies, can be 
explored and integrated.

Improved interactivity of the VR application is another 
interesting trajectory for future developments. Currently, the 
user can explore the model by walking through it. But given 
the capabilities of engines like Unity, much more advanced 
user interactions, such as querying and visualizing metadata 
or dependencies from within the model or interacting with 
individual components, are possible. In fact, many of these 
features have already been demonstrated by [2].

Finally, given the goal of the DLR to become a virtual 
OEM capable of mirroring entire development cycles digi-
tally, the mock-up introduced in this paper along with its 
parameterization is well suited to take the role of a virtual 
product. The geometry can be made available to other criti-
cal disciplines, e.g. noise analysis or crash and ditching 
simulation. Since a detailed finite element mesh is needed, 
the requirements for which differ substantially from those for 
the triangle meshes for visualization presented here, it will 
be necessary to integrate an external mesher such as Gmsh 
[28] or MeshGems [29]. However, this effort might open 
up promising new research trajectories, as feeding back the 
disciplinary analysis results to the virtual product will enable 
a comprehensive and integrated evaluation and optimization 
of the cabin within the virtual development cycle.

Funding  Open Access funding enabled and organized by Projekt 
DEAL.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 De Crescenzio, F., Bagassi, S., Starita, F.: Preliminary user cen-
tred evaluation of regional aircraft cabin interiors in virtual reality. 
In: Scientific Reports 11.1 (May 2021). https://​doi.​org/​10.​1038/​
s41598-​021-​89098-3

	 2.	 Fuchs, M.K., Beckert, F., Biedermann, J., Nagel, B.: Experience 
of conceptual designs and system interactions for the aircraft 
cabin in virtual reality. In: AIAA AVIATION 2021 FORUM. 
Am. Inst. Aeronaut. Astronaut. (2021) https://​doi.​org/​10.​2514/6.​
2021-​2773

	 3.	 Alder, M., Moerland, E., Jepsen, J., Nagel, B.: Recent advances in 
establishing a common language for aircraft design with CPACS. 
In: Aerospace Europe Conference-AEC2020, Bordeaux, France 
(2020)

	 4.	 La Rocca, G.: Knowledge based engineering techniques to sup-
port aircraft design and optimization. PhD thesis. Delft Univer-
sity of Technology (2011) ISBN: 9789090260693

	 5.	 PACE GmbH. Pacelab ACE myCabin (2021) https://​pace.​txtgr​
oup.​com/​produ​cts/​produ​ctcon​figur​ation/​mycab​in/

	 6.	 Gobbin, A.: Numerische Modellierung des Auslegungsprozesses 
für Passagierkabinen von Verkehrsflugzeugen unter Berücksich-
tigung der wichtigsten Auslegungsforderungen und Implemen-
tierung in MatLab. MA thesis. TU Berlin (2015)

	 7.	 Bundesministerium für Wirtschaft und Energie (BMWi). Die 
Luftfahrtstrategie der Bundesregierung (2014)

	 8.	 Helmholtz-Gemeinschaft. Das Programm Luftfahrt (2020). 
https://​www.​helmh​oltz.​de/​forsc​hung/​luftf​ahrt_​raumf​ahrt_​und_​
verke​hr/​luftf​ahrt/

	 9.	 Deutsches Zentrum für Luft-und Raumfahrt e.V. (DLR). Pro-
gramm und Strategie: Luftfahrtforschung im DLR (2020). 
https://​www.​dlr.​de/​conte​nt/​de/​artik​el/​luftf​ahrt/​luftf​ahrtf​orsch​
ung/​progr​ammund-​strat​egie-​luftf​ahrtf​orsch​ung-​im-​dlr.​html

	10.	 Wöhler, S., Atanasov, G., Silberhorn, D., Fröhler, B., Zill, T.: 
Preliminary aircraft design within a multidisciplinary and mul-
tifidelity design environment. In: Aerospace Europe Conference 
2020 (2020) https://​elib.​dlr.​de/​135245/

	11.	 Walther, J.-N., Ciampa, P.D.: Knowledge-based automatic Air-
frame Design using CPACS. Transp. Res. Proc. 29, 427–439 
(2018). https://​doi.​org/​10.​1016/j.​trpro.​2018.​02.​038

	12.	 Scherer, J., Kohlgrüber, D.: Fuselage structures within the 
CPACS data format. Aircr. Eng. Aerosp. Technol. 88.2, 294–
302 (2016). https://​doi.​org/​10.​1108/​aeat-​02-​2015-​0056

	13.	 Fuchte, J.C., Dzikus, N., Gollnick, V.: Cabin design for mini-
mum boarding time. In: Deutscher Luft- und Raumfahrtkon-
gress 2011 (2011). https://​elib.​dlr.​de/​77237/

	14.	 Fuchte, J. C., Gollnick, V., Nagel, B.: Integrated tool for cabin 
and fuselage modeling in future aircraft research. In: Workshop 
on Aircraft System Technology (AST) (2013). https://​elib.​dlr.​
de/​82767/

	15.	 Fuchte, J.C.: Enhancement of aircraft cabin design guidelines 
with special consideration of aircraft turnaround and short range 
operations. Tech. rep. Technische Universität Hamburg-Harburg 
(2014). https://​elib.​dlr.​de/​89599/

	16.	 Engelmann, M., Hornung, M.: Boarding process assessment 
of the AVACON research baseline aircraft.en. In: Deutsche 
Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V. 
(2019). https://​doi.​org/​10.​25967/​490049.

	17.	 Walther, J.-N., Petsch, M., Kohlgrüber, D.: Modeling of 
CPACS-based fuselage structures using Python. In: Aircraft 
Engineering and Aerospace Technology (2017). https://​doi.​org/​
10.​1108/​AEAT-​01-​2017-​0028

	18.	 McKinney, W.: Data structures for statistical comput-
ing in python. In: Proceedings of the 9th Python in Science 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41598-021-89098-3
https://doi.org/10.1038/s41598-021-89098-3
https://doi.org/10.2514/6.2021-2773
https://doi.org/10.2514/6.2021-2773
https://pace.txtgroup.com/products/productconfiguration/mycabin/
https://pace.txtgroup.com/products/productconfiguration/mycabin/
https://www.helmholtz.de/forschung/luftfahrt_raumfahrt_und_verkehr/luftfahrt/
https://www.helmholtz.de/forschung/luftfahrt_raumfahrt_und_verkehr/luftfahrt/
https://www.dlr.de/content/de/artikel/luftfahrt/luftfahrtforschung/programmund-strategie-luftfahrtforschung-im-dlr.html
https://www.dlr.de/content/de/artikel/luftfahrt/luftfahrtforschung/programmund-strategie-luftfahrtforschung-im-dlr.html
https://elib.dlr.de/135245/
https://doi.org/10.1016/j.trpro.2018.02.038
https://doi.org/10.1108/aeat-02-2015-0056
https://elib.dlr.de/77237/
https://elib.dlr.de/82767/
https://elib.dlr.de/82767/
https://elib.dlr.de/89599/
https://doi.org/10.25967/490049.
https://doi.org/10.1108/AEAT-01-2017-0028
https://doi.org/10.1108/AEAT-01-2017-0028


418	 J.-N. Walther et al.

1 3

Conference. Ed. by Stéfan van der Walt and Jarrod Millman. 
2010, pp. 56–61. https://​doi.​org/​10.​25080/​Majora-​92bf1​
922-​00a

	19.	 Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network 
structure, dynamics, and function using NetworkX. In: Pro-
ceedings of the 7th Python in Science Conference. Ed. by Gaël 
Varoquaux, Travis Vaught, and Jarrod Millman. Pasadena, CA 
USA, pp. 11–15 (2008)

	20.	 Siggel, M., Kleinert, J., Stollenwerk, T., Maierl, R.: TiGL: an 
open source computational geometry library for parametric air-
craft design. Math. Comput. Sci. 13(3), 367–389 (2019). https://​
doi.​org/​10.​1007/​s11786-​019-​00401-y

	21.	 Open Cascade SAS. Open Cascade Website. 2020. www.​openc​
ascade.​com

	22.	 Piegl, L., Tiller, W.: The NURBS Book. Springer-Verlag GmbH 
(1996). ISBN: 3540615458

	23.	 Schroeder, W., Martin, K., Lorensen, B.: The Visualization 
Toolkit: An Object-Oriented Approach to 3D Graphics, 4th edn. 
Kitware, Clifton Park (2006)

	24.	 Park, H.: Choosing nodes and knots in closed B-spline curve inter-
polation to point data. Comput. Aided Design 33, 967–974 (2001)

	25.	 European Aviation Safety Agency (EASA). CS-25: Certification 
Specifications for Large Aeroplanes (2008)

	26.	 Wöhler, S., Hartmann, J., Prenzel, E., Kwik, H.: Preliminary air-
craft design for a midrange reference aircraft taking advanced 
technologies into account as part of the AVACON project for an 
entry into service in 2028. In: Deutscher Luft- und Raumfahrt-
kongress 2018 (2018). https://​elib.​dlr.​de/​126000/

	27.	 Unity Technologies. Unity—Manual: Unity User Manual (2019.4 
LTS) (2021). https://​docs.​unity​3d.​com/​Manual/​index.​html

	28.	 Geuzaine, C., Remacle, J.-F.: Gmsh: a 3-D finite element mesh 
generator with built-in pre- and post-processing facilities. Int. J. 
Numer. Method. Eng. 79, 1309–1331 (2009). https://​doi.​org/​10.​
1002/​nme.​2579

	29.	 Distene SAS. Distene’s MeshGems suite | Meshing Software 
Components for CAD and CAE applications from Distene (2020). 
http://​www.​meshg​ems.​com

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1007/s11786-019-00401-y
https://doi.org/10.1007/s11786-019-00401-y
http://www.opencascade.com
http://www.opencascade.com
https://elib.dlr.de/126000/
https://docs.unity3d.com/Manual/index.html
https://doi.org/10.1002/nme.2579
https://doi.org/10.1002/nme.2579
http://www.meshgems.com

	Automatic cabin virtualization based on preliminary aircraft design data
	Abstract
	1 Introduction
	2 Fuselage structure and cabin description using CPACS
	2.1 Fuselage structure definition and initialization
	2.2 Cabin definition

	3 Implementation of a design and modeling environment for fuselages
	3.1 Knowledge modeling of CPACS data
	3.2 Fuselage structure CAD model
	3.3 Cabin layout synthesis

	4 Virtual mock-up of the fuselage and cabin for the AVACON research baseline
	4.1 Structural design
	4.2 Cabin design
	4.3 Visualization and virtualization

	5 Conclusion
	References




