Skip to main content
Log in

Genome wide QTL mapping to identify candidate genes for carcass traits in Hanwoo (Korean Cattle)

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Meat quality traits are the most economically important traits affecting the beef industry in Korea. We performed a whole genome quantitative trait locus (QTL) mapping study of carcass data in Hanwoo Korean cattle. Two hundred sixty-six Hanwoo steers from 65 sires were genotyped using a 10K Affymetrix SNP chip. The average SNP interval across the bovine genome was 1.5Mb. Associations between each individual SNP and four carcass traits [carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling (MAR)] were assessed using a linear mixed model of each trait. Combined linkage and linkage disequilibrium analysis (LDLA) detected six potential QTL on BTA04, 06, 13, 16, 17, and 23 at the chromosome-wise level (P<0.05). Two MAR QTL were detected at 52.2 cM of BTA06 and 46.04 cM of BTA17. We identified three genes (ARAP2, LOC539460, and LOC511424) in the QTL region of BTA06 and seven genes (RPS14, SCARB1, LOC782103, BRI3BP, AACS, DHX37, and UBC) in the QTL region of BTA17. One significant QTL for CWT was detected at 100 cM on BTA04 and the corresponding QTL region spanned 1.7 cM from 99.7 to 101.4 cM. For EMA QTL, one significant QTL was detected at 3.9 cM of BTA23 and the most likely QTL interval was 1.4 cM, placing 15 candidate genes in the marker bracket. Finally, two QTL for BFT were identified at 68 cM on BTA13 and 24 cM on BTA16. The LPIN3 gene, which is functionally associated with lipodystrophy in humans, is located in the BFT QTL on BTA13. Thus, two potential candidate genes, acetoacetyl-CoA synthetase (AACS) and lipin (LPIN), were detected in QTL regions on BTA17 for MAR and BTA13 for BFT, respectively. In conclusion, LDLA analysis can be used to detect chromosome regions harboring QTL and candidate genes with a low density SNP panel, yielding relatively narrow confidence intervals regarding location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abecasis GR, Cherny SS, Cookson WO and Cardon LR (2002) Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30: 97–101.

    Article  PubMed  CAS  Google Scholar 

  • APGS (1995). Report of business for animal products grading. Animal products grading system, National Livestock Co-operatives Federation, Korea.

    Google Scholar 

  • Aulchenko YS, de Koning DJ and Haley C (2007) Genomewide rapid association using mixed model and regression: A fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 177: 577–585.

    Article  PubMed  CAS  Google Scholar 

  • Barendse W, Reverter A, Bunch RJ, Harrison BE, Barris W and Thomas MB (2007) A Validated Whole-Genome Association Study of Efficient Food Conversion in Cattle. Genetics 176: 1893–1905.

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y and Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal. Stat. Soc. SeriesB (Methodological). 57: 289–300.

    Google Scholar 

  • Cao Z, Umek RM and McKnight SL (1991) Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes. Dev. 5: 1538–1552.

    Article  PubMed  CAS  Google Scholar 

  • Casas E, Shackelford SD, Keele JW, Koohmaraie M, Smith TPL and Stone RT (2003) Detection of quantitative trait loci for growth and carcass composition in cattle. J. Anim. Sci. 81: 2976–2983.

    PubMed  CAS  Google Scholar 

  • Casas E, Shackelford SD, Keele JW, Stone RT, Kappes SM and Koohmaraie M (2000) QTL affecting growth and carcass QTL for growth and carcass traits in cattle composition of cattle segregating alternate forms of myostatin. J. Anim. Sci. 78: 560–569.

    PubMed  CAS  Google Scholar 

  • Crepieux S, Lebreton C, Servin B and Charmet G (2004) Quantitative trait loci detection in multicross inbred designs: Recovering QTL identical-by-descent status information from marker data. Genetics 168: 1737–1749.

    Article  PubMed  CAS  Google Scholar 

  • Daetwyler HD, Schenkel FS, Sargolzaei M and Robinson JAB (2008) A genome scan to detect quantitative trait loci for economically important traits in Holstein cattle using two methods and a dense single nucleotide polymorphism map. J. Dairy. Sci. 91: 3225–3236.

    Article  PubMed  CAS  Google Scholar 

  • Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R et al. (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447: 1087–1093.

    Article  PubMed  CAS  Google Scholar 

  • Farnir F, Coppoeters W, Arranz JJ, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, et al (2000) Extensive genome-wide linkage disequilibrium in cattle. Genom. Res. 10: 220–227.

    Article  CAS  Google Scholar 

  • Fernando RL and Grossman M (1989) Marker assisted selection using best linear unbiased prediction. Gen. sel. Evol. 21: 467–477.

    Article  Google Scholar 

  • George AW, Visscher PM and Haley CS (2000) Mapping quantitative trait loci in complex pedigree: A two-step variance component approach. Genetics 156: 2081–2092.

    PubMed  CAS  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR and Thompson R (2006) ASReml: User manual, NSW Department of Primary Industries

  • Grapes L, Dekkers JC, Rothschild MF and Fernando RL (2004) Comparing linkage disequilibrium-based methods for fine mapping quantitative trait loci. Genetics 166: 1561–1570.

    Article  PubMed  CAS  Google Scholar 

  • Hayes BJ, Chamberlain AC, McPartlan H, McLeod I, Sethuraman L and Goddard ME (2007) Accuracy of marker assisted selection with single markers and marker haplotypes in cattle. Genet. Res. 89: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Hayes BJ, Pryce J, Chamberlain AC, Bowman PJ and Goddard ME (2010) Genetic architecture of complex traits and accuracy of genomic prediction: Coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS. Genet. 6: e1001139.

    Article  PubMed  Google Scholar 

  • Hirano T, Watanabe T, Inoue K and Sugimoto Y (2007) Fine-mapping of a marbling trait to a 2.9-cM region on bovine chromosome 7 in Japanese Black cattle. Anim. Genet. 39: 79–83.

    Article  PubMed  Google Scholar 

  • Hu Z, Fritz ER and Reecy JM (2007) AnimalQTLdb: A Livestock QTL Database Tool Set for Positional QTL Information Mining and Beyond. Nucl. Acids. Res. 35: D604–D609.

    Article  PubMed  CAS  Google Scholar 

  • Hulett DL, Hayes B, Chamberlain AJ, Krishnan L, McPartlan H, Herd RM and Goddard M (2007) Cross validation of QTL from linkage analysis and linkage disequilibrium analysis. Proc.Assoc. Advmt. Animal. Breed. Genet. 17: 384–386.

    Google Scholar 

  • Khatkar MS, Zenger KR, Hobbs M, Hawken RJ, Cavanagh JAL, Barris W, McClintock AE, McClintock S, Thomson PC, Tier B, et al. (2007) A primary assembly of a bovine haplotype block map based on a 15k SNP panel genotyped in Holstein-Friesian cattle. Genetics 176: 763–772.

    Article  PubMed  CAS  Google Scholar 

  • Kim ES, Berger PJ and Kirkpatrick BW (2009) Genome-wide scan for bovine twinning rate QTL using linkage disequilibrium. Anim. Genet. 40 (doi:10.1111/j.1365-2052).

  • Kim KH, Lee JH, Oh YG, Kang SW, Lee SC, Park WY and Ko YD (2005) The Optimal TDN Levels of Concentrates and Slaughter Age in Hanwoo Steers. J. Anim. Sci & Technol (Kor.). 47: 731–744.

    Article  Google Scholar 

  • Kim JJ, Farnir F, Savell J and Taylor JF (2003) Detection of quantitative trait loci for growth and beef carcass fatness traits in a cross between Bos taurus (Angus) and Bos indicus (Brahman) cattle. J. Anim. Sci. 81: 1933–1942.

    PubMed  CAS  Google Scholar 

  • Kolbehdari D, Wang Z, Grant JR, Murdoch B, Prasad A, Xiu Z, Marques E, Stothard P and Moore SS (2008) A whole-genome scan to map quantitative trait loci for conformation and functional traits in Canadian Holstein Bulls. J. Dairy. Sci. 91: 2844–2856.

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Van der Werf JHJ, Hayes B J, Goddard ME and Visscher PM (2008) Predicting Unobserved Phenotypes for Complex Traits from Whole-Genome SNP Data. PLoS Genet. 4: e1000231.

    Article  PubMed  Google Scholar 

  • Lee SH and Van der Werf JHJ (2006) An efficient variance component approach implementing average information REML suitable for combined LD and linkage mapping with a general complex pedigree. Gen. Sel. Evol. 38: 25–43.

    Article  CAS  Google Scholar 

  • MacLeod IM, Hayes BJ and Goddard ME (2006) Efficiency of dense bovine single nucleotide polymorphisms to detect and position quantitative trait loci. 8th World Congress on Genetics Applied to Livestock Production. August 13–18.

  • Meuwissen THE and Goddard ME (2001) Prediction of identity by descent probabilities form marker-haplotypes. Gen. Sel. Evol. 33: 605–634.

    Article  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ and Goddard ME (2001) Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 157: 1819–1829.

    PubMed  CAS  Google Scholar 

  • Meuwissen THE and Goddard M (2000) Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics 155: 421–430.

    PubMed  CAS  Google Scholar 

  • Meuwissen THE, Karlsen A, Lien S, Olsaker I and Godard M (2002) Fine mapping of a quantitative trait locus for twining rate using combined linkage and linkage disequilibrium mapping. Genetics 161: 373–379.

    PubMed  CAS  Google Scholar 

  • Mizoshita K, Watanabe T, Hayashi H, Kubota C, Yamakuchi H, Todoroki J and Sugimoto Y (2004) Quantitative trait loci analysis for growth and carcass traits in a half-sib family of purebred Japanese Black (Wagyu) cattle. J. Anim. Sci. 82: 3415–3420.

    PubMed  CAS  Google Scholar 

  • Muller M and Kersten S (2003) Nutrigenomics: goals and strategies. Nat. Rev. Genet. 4:315–322.

    Article  PubMed  Google Scholar 

  • Park EW, Yoon DH, Lee SH, Cho YM, Lee JH, Jeon JT, Lee JH, Cheong IC and Oh SJ (2006) Identification of single nucleotide polymorphism for the adipocyte fatty acid binding protein (FABP4) and its SNPs is associated with marbling score in Hanwoo steers. Proceeding of the 30th International Conference on Animal Genetics D422

  • Pearson TA and Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299:1335–1344.

    Article  PubMed  CAS  Google Scholar 

  • Phan J, Peterfy M and Reue K. (2004) Lipin expression preceding peroxisome proliferator-activated receptor-gamma is critical for adipogenesis in vivo and in vitro. J. Biol. Chem. 9:29558–29564.

    Article  Google Scholar 

  • Rolf MM, Taylor JF, Schnabel RD, McKay SD, McClure MC, Northcutt SL, Kerley MS and Weaber RL (2010) Impact of reduced marker set estimation of genomic relationship matrices on genomic selection for feed efficiency in Angus cattle. BMC. Genet. 11:24.

    Article  PubMed  Google Scholar 

  • Stone RT, Keele JW, Shackelford SD, Kappes SM and Koohmaraie M (1999) A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits. J. Anim. Sci. 77: 1379–1384.

    PubMed  CAS  Google Scholar 

  • Yoon DH, Park EW, Lee SH, Lee HK, Oh SJ, Cheong IC and Hong KC (2005) Assessment of genetic diversity and relationships between Korean cattle and other cattle breeds by microsatellite loci. J. Anim. Sci. & Technol.. 47(3):341–354. (Korean)

    Article  CAS  Google Scholar 

  • Zhao HH, Fernando RL and Dekkers JCM (2007) Power and precision of alternate methods for linkage disequilibrium mapping of quantitative trait loci. Genetics 175: 1975–1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Hwan Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., van der Werf, J., Lee, S.H. et al. Genome wide QTL mapping to identify candidate genes for carcass traits in Hanwoo (Korean Cattle). Genes Genom 34, 43–49 (2012). https://doi.org/10.1007/s13258-011-0081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-011-0081-6

Keywords

Navigation