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ABSTRACT

Polyoxin is a group of structurally-related peptidyl
nucleoside antibiotics bearing C-5 modifications on the
nucleoside skeleton. Although the structural diversity
and bioactivity preference of polyoxin are, to some
extent, affected by such modifications, the biosynthetic
logic for their occurence remains obscure. Here we
report the identification of PolB in polyoxin pathway as
an unusual UMP C-5 methylase with thymidylate syn-
thase activity which is responsible for the C-5 methyla-
tion of the nucleoside skeleton. To probe its molecular
mechanism, we determined the crystal structures of
PolB alone and in complexes with 5-Br UMP and 5-Br
dUMP at 2.15 Å, 1.76 Å and 2.28 Å resolutions, respec-
tively. Loop 1 (residues 117–131), Loop 2 (residues 192–
201) and the substrate recognition peptide (residues 94–
102) of PolB exhibit considerable conformational flexi-
bility and adopt distinct structures upon binding to dif-
ferent substrate analogs. Consistent with the structural
findings, a PolB homolog that harbors an identical
function from Streptomyces viridochromogenes DSM
40736 was identified. The discovery of UMP C5-methy-
lase opens the way to rational pathway engineering for
polyoxin component optimization, and will also enrich
the toolbox for natural nucleotide chemistry.
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biosynthesis, UMP C5-methylase, thymidylate synthase

INTRODUCTION

Nucleoside natural products are a large family of microbial
secondary metabolites with diverse bioactivities and unusual
structural features (Isono, 1988; Niu and Tan, 2015; Chen
et al., 2016). They have played distinguished roles in the
treatment of the infections for mammalians and plants
(Isono, 1988). Normally, the biosynthesis of nucleoside
antibiotics follows a distinct logic via sequential modifications
of the simple building blocks including nucleoside and
nucleotide from primary metabolisms (Isono, 1988). Poly-
oxin, a group of structurally-related peptidyl nucleoside
antibiotics, is produced by Sreptomyces cacaoi var. asoen-
sis (S. cacaoi hereafter) and Streptomyces aureochromo-
genes (Chen et al., 2009). As the chemical structure of
polyoxin mimics UDP-N-acetyl glucosamine, a building block
for fungal chitin biosynthesis, it functions as a potent chitin
synthetase inhibitor by targeting fungal cell wall biosynthesis
(Endo and Misato, 1969; Endo et al., 1970). Polyoxin has
therefore been widely used as an agricultural fungicide to
control phytopathogenic fungi due to its distinctive action
mode (Chen et al., 2009).

Polyoxin is composed of three moieties involving a
nucleoside skeleton and two non-proteinogenic amino acids,
carbamoylpolyoxamic acid and polyoximic acid (Fig. 1B)
(Chen et al., 2009). The C-5 modifications within the nucle-
oside skeleton confer not only structural diversity but also
possess a bioactivity preference for polyoxin (Isono et al.,
1967; Isono and Suzuki, 1968; Isono et al., 1975; Zhai et al.,
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2012). Previous labeling studies indicated that the C-5 methy-
lation originated from C-3 of serine and is catalyzed by a new
enzyme independent of thymidylate synthase (Isono and
Suhadolnik, 1976; Isono, 1988), however, the molecular
mechanism for such modification remained elusive for decades.

We have previously identified the polyoxin biosynthetic
gene cluster (Fig. 1A) from S. cacaoi, and tentatively pro-
posed a pathway for the C5-methylation on the nucleoside
skeleton (Chen et al., 2009). By analyzing the polyoxin
biosynthetic gene cluster, we found that PolB, a thymidylate
synthase (ThyX) homolog (Myllykallio et al., 2002; Graziani
et al., 2004), is likely to be responsible for catalyzing the C5-
methylation (Fig. 1C) (Chen et al., 2009). To dissect the
function of PolB, we carried out a series of biochemical and
crystallographic analysis which confirm PolB is an unusual

flavin-dependent UMP/dUMP methylase (Fig. 1C and 1D).
We solved the crystal structures of PolB as well as its
complex structures with two substrate analogues 5-Br UMP
or 5-Br dUMP. We found that the structure of PolB shares
high similarity with its homologs ThyX proteins. However, the
sequence identity is only 38%. Two special Loops, Loop 1
(residues 117–131) and Loop 2 (residues 192–201) which
are highly conserved in primary sequence with ThyXs but
not structurally existed in them are identified in PolB struc-
ture. Additional mutagenesis studies further reveal that
residues Tyr124, Tyr126 and Tyr99 on Loop 1, Loop 2 and
substrate recognition peptide (residues 94–102) are crucial
for the catalytic activity and substrate selectivity of PolB.
These results suggest that Loop 1 and Loop 2 cooperatively
play a vital role in catalysis of UMP and dUMP methylation.
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Figure 1. Gene cluster and structure of polyoxin as well as the dual functions of PolB. (A) The genetic organization of the

polyoxin gene cluster. (B) The difference of polyoxin A, F, H and K is the C5 modification in nucleoside skeleton. (C) PolB catalyzes

the UMP methylation in polyoxin biosynthesis. (D) ThyX and PolB could catalyze the dTMP biosynthesis. POL: Polyoxin.
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Moreover, the findings of PolB as the first UMP methylase
will shed light on the occurrence of C-5 modification for
polyoxin biosynthesis and enrich the toolbox for thymidylate
synthases.

RESULTS

polB is responsible for the C5-methylation
in polyoxin biosynthesis

Bioinformatic analysis of polyoxin biosynthetic gene cluster
revealed that polB is a potential candidate involved in per-
forming C5 modification of the nucleoside skeleton (Fig. S1).
To determine its involvement and the corresponding func-
tion, we first performed a gene knockout of polB in S. cacaoi.
This was achieved via conjugation of a polB disruption
vector pJTU2183 (Table S1) and a double-crossover
replacement of the corresponding region in the chromosome
of S. cacaoi. The sample of the resulting mutant CY5 was
found to display higher bioactivity against the indicator strain
Trichosporon cutaneum (Fig. S2A), implicating that the
metabolites might be different. LC-MS analysis showed that
CY5 was unable to produce polyoxin A (5-hydoxymethyl),
polyoxin F (5-carboxyl) and polyoxin H (5-methyl), but
instead accumulated polyoxin K (without C5 modification)
(Figs. 2A and S2B–D). Complementation of the polB mutant
CY5 restored the ability to produce polyoxin A, F and H,
suggesting that polB is the target gene directly responsible
for the C5-methylation of the nucleoside skeleton in polyoxin
biosynthesis (Fig. 2A).

PolB harbors an alternative thymidylate synthase
function

A BLAST search for PolB homologs yielded sequences of
several Streptomyces thymidylate synthases (ThyXs)
(Fig. S1), suggesting that PolB may carry ThyX function. In
bacteria, ThyXs catalyze the biosynthesis of dTMP by C5-
methylation of dUMP, as dTMP is the key building block for
DNA synthesis, deletion of thyX usually causes a lethal
effect on cell growth in minimal medium. To evaluate the
function of polB, we performed targeted gene knockout of
thyX in the chromosome of S. cacaoi. Interestingly, CY3, the
thyX mutant of S. cacaoi, survived and exhibited sporadic
growth phenotype (Fig. S2E), implicating that PolB might
complement the dTMP biosynthesis of ThyX. Indeed, when
thyX and polB of S. cacaoi were both deleted, the resulting
mutant CY6 could not grow at all in minimal medium
(Fig. 2B).

Biochemical characterization of PolB as a FAD-
dependent UMP/dUMP methylase

To elucidate its biochemical role, we expressed S. cacaoi
PolB as a N-terminal His6-tagged protein in E. coli BL21
(DE3)/pLysE (Fig. 3A) and test its activity in vitro. The

purified recombinant protein displayed bright yellow color, a
characteristic of flavoprotein (Fig. S3A and S3B). By incu-
bating PolB with dUMP, NADPH and CH2H4folate in vitro, we
observed the target product of dTMP using LC-MS analysis
(Figs. 3B, 3C and S3C–E). Further investigation revealed
that PolB possessed UMP C5-methylase activity in the
presence of NADPH and CH2H4folate (Figs. 3B, 3D, S3C,
S3F and S3G). In comparison to PolB, recombinant
S. cacaoi ThyX could catalyze the methylation of dUMP but
not UMP when incubating with NADPH and CH2H4folate
(Fig. 3C and 3D). These results demonstrated PolB as an
unusual FAD-dependent UMP C5-methylase with thymidy-
late synthase activity.

Next, we measured the kinetic parameters of PolB to
substrates UMP and dUMP (Fig. S3H). Although dUMP
exhibits higher affinity (Km = 12.96 ± 0.89 μmol/L) than UMP
(Km = 19.48 ± 4.15 μmol/L), the kcat of UMP (kcat =
3.09 ± 0.17 min−1) is 78% higher than that of dUMP
(kcat = 1.74 ± 0.05 min−1).

Structural comparison of PolB and ThyX

To investigate the molecular mechanism of PolB, we crys-
tallized the protein and determined its crystal structure (ab-
breviated as apo-PolB in this work) using molecular
replacement (McCoy et al., 2007) and refined at resolution of
2.15 Å (Table S3). Apo-PolB was crystallized in the P21
space group with two tetramers in an asymmetric unit.
Although there is only 38% sequence identity between PolB
and ThyX from Thermotoga maritima (abbreviated as TMA-
ThyX, PDB code: 1O2A) (Mathews et al., 2003), structure
comparison revealed that the homotetramer of apo-PolB
strongly resembles ThyX with an r.m.s.d less than 0.871 Å
for 969 aligned Cα atoms. Especially, for the cofactor FAD
binding pocket, little conformational change was observed
between the two proteins (Fig. S4A). Nevertheless, a
notable difference was observed in Loop 1 (residues 117–
131) and Loop 2 (residues 192–201), which was not detec-
ted in TMAThyX, but presented high sequence conservation
in other ThyXs (Fig. 4A and 4B). To probe the functional role
of Loop 1 and Loop 2 in catalysis, we first generated PolB
mutants by displacing the residues of these regions with the
counterparts of S. cacaoi ThyX protein. The activity assay
indicated that replacement of Loop 1 did not affect the
enzymatic activity of PolB, while replacement of Loop 2
decreased the UMP methylation activity to 10% and the
dUMP methylation activity to about 30%. When Loop 1 and
Loop 2 were both replaced by the counterparts of S. cacaoi
ThyX protein, the mutant PolB lost the methylation activity for
both UMP and dUMP (Fig. 4C). This suggested that Loop 1
and Loop 2 are involved in regulating the catalytic activity of
this methylase.

Other major differences between PolB and TMAThyX
were in the N-terminus and the C-terminus (Figs. 4A and
S1). In the PolB structure, the N-terminus adopts a flexible
conformation while the C-terminus within the interior
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structure protrudes outside; in the TMAThyX structure
(Mathews et al., 2003), the N-terminus forms a pair of anti-
parallel β-sheets while the C-terminus extends outside.

Comparison of UMP and dUMP binding in the active
site of PolB

To obtain the precise mechanism of PolB in UMP/dUMP
methylation, we solved the structures in complex with sub-
strate analogs 5-Br dUMP and 5-Br UMP at individual res-
olution of 2.28 Å and 1.76 Å (Table S3). Because the C5-
position is substituted by the Br atom, these two structures
should mimic the state of substrate binding. Both structures

can be superimposed with the apo-PolB structure within
rmsd of 1.26 Å over all the Cα atoms (Figs. 5A and S4B). In
the tetrameric structure of PolB/5-Br dUMP, the thymine ring
of the substrate 5-Br dUMP poses strong π-π interaction
with the isoalloxazine moiety of FAD, and its phosphate
group forms hydrogen bonds or salt bridges with the side
chains of Phe79, Arg82, His83 from one monomer and
Ser96’, Ala97’, Arg98’, Arg166’ from another neighboring
monomer. Besides these interactions, the ribose O3’ is
hydrogen bond to Glu94’ and Arg86; the pyrimidine O2
makes hydrogen bond to Arg193; the pyrimidine O4 has
hydrogen bond to Arg98’ and water-mediated hydrogen-
bond to Arg193 and Gln206 (Fig. 5D). The PolB/5-Br UMP
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Figure 2. Genetic characterization of the polB function. (A) HPLC profiles of the metabolites produced by wild-type and mutant

S. cacaoi strains. ST, polyoxin authentic standards; I, metabolites from wild-type S. cacaoi; II, metabolites from CY5; III, metabolites

from CY5 containing pIB139 as negative control; IV, metabolites from CY5 complemented by polB. (B) polB is capable of restoring

growth phenotype for the thyX mutant of S. cacaoi. 1: CY5; 2: CY6, the thyX and polB double mutant of S. cacaoi; 3: CY6/pIB139,

CY6 containing pIB139 as negative control; 4: CY6/polB, CY6 complemented by polB; 5: CY6/thyX, CY6 complemented by thyX. The
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complex structure is nearly identical in substrate binding to
the PolB/5-Br dUMP complex structure except for an addi-
tional water-mediated hydrogen bond between ribose O3’
and Arg82 (Fig. 5E). Interestingly, the characteristic ribose
O2’ in 5-Br UMP does not contact with any residues of PolB
or water molecules. Therefore, little difference was observed
in the active pocket of the structures of the two complexes.

Although the two PolB complex structures displayed
almost identical catalytic mechanism, we perceived that
Loop 1 and Loop 2 exhibit considerable conformational
flexibility and are structurally distinct in two different com-
plexes (Fig. 5A). Loop 1 undergoes dramatic conformational
changes upon binding of either 5-Br UMP or 5-Br dUMP. This
region becomes structurally ordered to form three short
tandem β-sheets when the substrate analog 5-Br UMP binds
to the active sites of PolB. Loop 2 undergoes obvious shift
and adopts a stable conformation when either 5-Br UMP or
5-Br dUMP binds to PolB. We next screened a serial of site-
directed mutants in Loop 1 and Loop 2 and measured their
catalytic activities towards UMP and dUMP (Figs. 6A, 6B

and S5A). We found that the conserved Tyr124 in Loop 1
was essential for catalysis while Tyr126 was necessary for
substrate specificity. Mutation of Tyr124 to Phe did not affect
the activity of PolB for either UMP or dUMP; however,
replacement of this residue by Ala or Ser led to more than
90% activity loss for each substrate, indicating that the aro-
matic ring of Tyr124 is essential for catalysis (Fig. 6C and
6D). Tyr126 is only found in PolB while the corresponding
residue in ThyX proteins of Streptomyces is phenylalanine
(Fig. 4B). The Y126F mutant of PolB retained its full activity
for dUMP methylation but lost over 60% of activity for cat-
alyzing UMP, suggesting that this residue might be important
for UMP methylation.

The third region varied between the structures of apo-
PolB and two complexes was located in residues 94–102,
whose counterpart in ThyX proteins was identified as the
substrate recognition peptide (SRP). In apo-PolB, the elec-
tron densities of SRP were weak or difficult to observe.
However, upon substrate binding, Glu94, Ser96, Ala97 and
Arg98 in SRP are able to form hydrogen bonds to the
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substrate, which renders SRP ordered (Fig. S5B). We also
discerned that the side chain of Arg98 in SRP forms
hydrogen bond to Q206 in Loop 2. Notably, the side chain
of Tyr99 in SRP adopts different rotamer structures in the
two complex structures (Fig. 6C). In the PolB/5-Br dUMP
structure, the hydroxyl group of the side chain points to the
center of the active site and is close to the substrate. In
contrast, for the structure of PolB/5-Br UMP, the hydroxyl
group of the side chain points to the exterior of protein and
is distant from the substrate. This suggested that the

hydroxyl group of Tyr99 might be essential for substrate
specificity. Indeed, the Tyr99F mutant kept 80% activity for
dUMP but only 15% activity for UMP (Fig. 6A). As a control,
the Tyr99A mutant almost abolished its activity for both
UMP and dUMP.

Genome mining of PolB-like UMP methylase

To firmly validate the role of Loop 1 and Loop 2 in dual-
substrate specificities, we used them as probes for the
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mining of PolB-like proteins capable of producing 5-methyl
UMP. BLAST search hits a putative thymidylate synthase (ID:
ZP_07305627, designated as SVIThyX2) in S. viridochro-
mogenes DSM 40736 with 71% identity to PolB (Fig. S1). The
Loop 1 and Loop 2 regions in SVIThyX2 were different from
those of ThyX proteins but highly conserved with the corre-
sponding parts of PolB (Fig. 4B). The purified recombinant

SCIThyX2 was incubated with NADPH, CH2H4folate and
dUMP or UMP in vitro. LC-MS data showed that SVIThyX2
was able to catalyze the methylation for both UMP and dUMP
(Figs. 6A, 6B and S6). These results demonstrated the PolB-
like SVIThyX2 as the UMP methylase with thymidylate syn-
thase activity, and further unambiguously confirmed the
essential roles of Loop 1 and Loop 2 in UMP methylation.
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DISCUSSION

In this study, we demonstrated that PolB, combined with in vivo
and in vitro assays, was able to catalyze the C5-methylation of
both UMP and dUMP while the classic ThyXs only possess the
dUMP methylase activity (Myllykallio et al., 2002). The crystal
structures of PolB alone and in complex with the substrate
analogs 5-Br UMP and 5-Br dUMP showed that the methyla-
tion mechanism of UMP and dUMP might be similar because
they adopt the same binding pattern in the active site of PolB.
The characteristic ribose O2’ in 5-Br UMP does not contact
with any residues of PolB or water molecules. The structures
indicate that Arg82, His83, Arg86, Glu94, Ser96, Arg98,
Arg166, Arg193 and Gln206 play essential roles in PolB
catalysis (Fig. 5D and 5E). Although UMP is the naturally
preferred substrate of PolB, the kinetic studies and competitive
binding experiments showed that dUMP rather than UMP
exhibits higher affinity to PolB (Fig. S7). This is consistent with
Frank Maley’s early reports on chick embryo thymidylate syn-
thase half a century ago (Maley, 1960; Lorenson et al., 1967).

The affinity difference between UMP and dUMP could be
explained by steered molecular dynamics (SMD) simulation
that dUMP rather than UMP need more external energy to
dissociate from the protein (Fig. S8).

Analysis of the crystal structures of PolB indicates that
three regions including Loop 1, Loop 2 and the substrate
recognition peptide are crucial for the methylation of UMP/
dUMP. They exhibit considerable conformational flexibility
and became ordered to form a “closed” conformation by
interacting with the substrate. Mutational studies uncovered
that the phenyl group of Tyr99 in the substrate recognition
peptide and Tyr124 in Loop 1 are essential for catalysis,
consistent with the structural information that the benzene
groups of Tyr124 and Tyr99 likely made π-π stacking inter-
action with the uracil ring of the substrate. Further mutational
studies also demonstrated that the hydroxyl groups of Tyr99
in the substrate recognition peptide and Tyr126 in Loop 1
were important for substrate specificity. This is in full
agreement with the SMD simulation results that showed the
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the basis of 3 repeats, and the error was all under control of ±5%. (C) Conformational change of Try99 in PolB-5-Br dUMP

(salmon) and PolB-5-Br UMP (gray). (D) Conformation change of key residues Tyr124 and Tyr126 in Loop 1 around access while

bound with 5-Br UMP (salmon) or 5-Br dUMP (gray).
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Y126F mutant decreases the success rate of UMP dissoci-
ation trajectories by 50% and increased the success rate of
dUMP dissociation trajectories by 100% (Fig. S8). We pro-
posed that Loop 1, Loop 2 and the substrate recognition
peptide constituted the gate-keeper for substrate entrance
and cooperatively regulated the catalysis of PolB on UMP/
dUMP methylation. Our hypothesis that Loop 1 and Loop 2
regulated the substrate specificity of PolB was further vali-
dated by identification of SVIThyX2 as the second thymidy-
late synthase with UMP methylase activity.

The findings of PolB as a unique UMP methylase eluci-
dated the origin of nucleoside skeleton C5-modification in
polyoxin biosynthesis. Based on this work, we proposed that
four different groups of polyoxins could be synthesized
starting from UMP and its derivatives (5-methyl UMP, 5-hy-
droxymethyl UMP and 5-carboxyl UMP) via a potential
pyrimidine salvage pathway. This hypothesis is supported by
our previous report that when the biosynthetic gene cluster
of polyoxin was heterologously expressed in S. lividians
TK24, only the polyoxin H components were detected (Zhao
et al., 2010). Co-expression of the polyoxin gene cluster of
with sav_4805 (encoding a thymine-7-hydroxylase homolo-
gous protein) from S. avermitilis (Omura et al., 2001) lead to
the production of polyoxin A in S. lividians TK24. This indi-
cated that genes responsible for the reaction from 5-methyl
UMP to 5-hydroxymethyl UMP and 5-carboxyl UMP are not
all adjacent to the polyoxin gene cluster. The S. cacaoi cells
may also evolve or hijack a decarboxylase to convert
5-carboxyl UMP to normal UMP and complete the UMP
salvage pathway. Further investigation of the component
diversity of polyoxins will require all related genes in the
metabolic pathway for 5-methyl UMP to be cloned.

In summary, we have reported the identification and
structural basis of an unprecedented C5 methylase that
employs FAD-dependent reductive mechanism for the
methylation of UMP/dUMP. We also revealed that Loop 1,
Loop 2 and substrate recognition peptide of the protein col-
lectively constitute a gate-keeper for substrate selective-
entrance and preferred-catalysis. The present data will pro-
vide insights for ThyXs evolution and enrich the chemical
diversity of natural nucleotides.

MATERIALS AND METHODS

Materials, methods and procedures

All chemicals were from Sigma-Aldrich (IL, USA) unless otherwise

indicated. 5-Br UMP, 5-Br dUMP and 5-methyl UMP were purchased

from Hongene Biotechnology Ltd. (Shanghai, China). CH2H4folate

was a gift from Merck. Materials and primers were individually listed

in Table S1 and Table S2, and general methods and procedures

were described by Kieser et al. (2000) and Sambrook et al. (1989).

Expression and purification of PolB and SVIThyX2

All constructs and point mutations were generated using a standard

PCR-based cloning strategy and verified through DNA sequencing.

The recombinant PolB from S. cacaoi and SVIThyX2 from S. viri-

dochromogens DSM40736 (Blodgett et al., 2005) were overex-

pressed at 30°C in E. coli BL21(DE3) as N-terminally His6-tagged

proteins. The soluble fraction of the cell lysate was first purified using

nickel affinity column (GE Healthcare) and further purified by gel-

filtration chromatography (Superdex 75, HiLoad 16/60, GE

Healthcare).

Activity assay

All tests were performed in triplicates in 2 mL centrifuge tubes. A

typical methylase activity assay (200 µL) contained 2.0 mmol/L

NADPH, 0.2 mmol/L CH2H4folate, 0.2 mmol/L UMP (or dUMP),

50 mmol/L Tris-HCl (pH 8.0), and 10 μg of protein (PolB, ThyX or

SVIThyX2). The reaction was terminated by adding TCA with final

concentration 10% (v/v) and further analyzed by LC-MS using a

ZORBA SB-C18 Column (5.0 μm, 4.6 × 250 mm, Agilent). The LC

conditions were as follows. The elution buffer for LC was 10%

methanol (v/v) contained 0.1% aqueous trifluoroacetic acid (v/v).

The flow rate was 0.3 mL/min and the eluted fraction was monitored

at 260 nm with a DAD detector. The parameters for MS analysis are

10 l/mL of drying gas flow, 30 psi of nebulizer pressure, and 325°C of

drying gas temperature.

Crystallization and data collection

All crystallization experiments were performed at 20°C using the

sitting-drop vapor-diffusion method. Protein samples (12.5 mg/mL,

1 µL) stored in 25 mmol/L Tris-HCl, pH 8.0, 150 mmol/L NaCl and

5 mmol/L β-mercaptoethanol were mixed with well solution (1 µL)

and equilibrated against the well solution (75 µL) in 96-well plates

(HR3-271, Hampton Research). The crystal of apo-PolB was grown

under the condition of 17% (w/v) PEG4000, 0.2 mol/L Li2SO4 and

0.1 mol/L Tris-HCl, pH 8.5. Crystals of the PolB/5-BrdUMP complex

were obtained by mixing PolB (11.4 mg/mL) with 4 mmol/L of 5-Br

dUMP and growing under the conditions of 1.4 mol/L sodium acetate

and 0.1 mol/L sodium cacodylate, pH 6.5. Crystals of the PolB/5-Br

UMP complex were obtained by mixing PolB (11.4 mg/mL) with

4 mmol/L of 5-Br UMP and growing under the conditions of 10%

(w/v) PEG4000, 5% isopropanol and 0.1 mol/L HEPES, pH 7.5. Prior

to data collection, all crystals were flash-cooled in liquid nitrogen

using Paratone-N (HR2-463, Hampton Research) as cryo-protec-

tants. Diffraction data were collected on a Mar225 detector at 100 K

on the beamline BL17U1 at Shanghai Synchrotron Radiation Facility

(Shanghai, China). The data sets were integrated and scaled with

HKL2000.

Structure determination and refinement

The structure of the PolB/5-Br dUMP complex was solved by

molecular replacement using Phaser and the structure of TMA-

ThyX (PDB code: 1O2A) as the search molecule. The structure of

the PolB/5-Br UMP complex was solved by molecular replacement

using Phaser and the PolB/5-Br dUMP complex as the search

molecule. The structure of the PolB was solved by molecular

replacement using Phaser and the PolB/5-Br UMP complex as the

search molecule. Manual model building was performed with

COOT (Emsley et al., 2010). Multiple rounds of refinement were
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carried out with Refmac5, CNS, and PHENIX. Noncrystallographic

restraints were applied for one round of refinement. The overall

quality of the final models was assessed by MolProbility and

PROCHECK. Data collection and final refinement statistics are

summarized in Table S3. All graphics were generated using

PyMol.

Accession codes

The crystal structures of PolB, the PolB/5-Br dUMP and the PolB/5-

Br UMP have been deposited in the Protein Data Bank under

accession number of 4P5C, 4P5B and 4P5A.
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