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ABSTRACT

Galectin-4, a tandem repeat member of the β-galac-
toside-binding proteins, possesses two carbohydrate-
recognition domains (CRD) in a single peptide chain.
This lectin is mostly expressed in epithelial cells of the
intestinal tract and secreted to the extracellular. The two
domains have 40% similarity in amino acid sequence,
but distinctly binding to various ligands. Just because
the two domains bind to different ligands simultane-
ously, galectin-4 can be a crosslinker and crucial regu-
lator in a large number of biological processes. Recent
evidence shows that galectin-4 plays an important role
in lipid raft stabilization, protein apical trafficking, cell
adhesion, wound healing, intestinal inflammation, tumor
progression, etc. This article reviews the physiological
and pathological features of galectin-4 and its important
role in such processes.
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INTRODUCTION

Galectins, composed of 15 members, have been identified
as galactoside-binding proteins localized both intra- and
extra-cellularly. The galectin family members were widely
found in various bionts including vertebrates, invertebrates
and even protistans (Cooper and Barondes, 1999). Based
on the composition and recognition of the conserved car-
bohydrate-recognition domain (CRD), galectins are grouped
into three subfamilies. The prototype galectins, also called
monomer, contain one CRD and include galectins-1, 2, 5, 7,
10, 11, 13, 14, and 15. The tandem repeat types contain two
distinct but homologous CRDs and include galectins-4, 6, 8,
9, and 12. The only chimera type (galectin-3) is defined by a
C-terminal CRD and an elongated N-terminal region that
induces the formation of multimers. These galectins are

widely present in various types of human cells and partici-
pate in various cellular functions, such as cell proliferation,
apoptosis, adhesion, signal transduction, immune response,
activation of inflammatory response, and regulation of pre-
mRNA splicing (Rabinovich, 1999; Cooper, 2002; Danguy
et al., 2002; Barrow et al., 2013).

Galectin-4 was first isolated as a 17 kDa protein in the
extract of rat small intestine (Leffler et al., 1989). Subse-
quently, it was identified as a proteolytic fragment of a larger
36 kDa protein by gene cloning (Oda et al., 1993), and found
intracellularly, on the cell surface, and in circulation. In vitro,
intracellular galectin-4 regulates cell proliferation, apoptosis
and differentiation, whereas extracellular galectin-4 medi-
ates intercellular adhesion (Huflejt et al., 1997; Huflejt and
Leffler, 2003). Because of no signal sequence for endo-
plasmatic reticulum transport, the presence of galectin-4 on
the cell surface is a consequence of secretion via non-
classical pathway. This protein specifically binds to
β-galactosides through the two structurally conserved CRDs.
As is shown, widely known natural ligands of galectin-4 are
human blood group antigens, glycoproteins, mucin like
membrane MUC1, glycosphingolipids, and sulfated choles-
terol. In addition to β-galactosides, galectin-4 could also bind
to sulfate. The presence of 3′-sulfation in galactose and
lactose was proved to increase the binding affinity to
galectin-4 (Ideo et al., 2002; Vokhmyanina et al., 2012).
Because of the bivalent or multivalent structure and affinity to
above mentioned ligands, galectin-4 plays a crucial role in
biochemical regulation and tumor development and
progression.

Recently, many studies have been performed with the aim
to clarify the interaction between galectin-4 and physiological
regulation, intestinal inflammation and cancer. For example,
galectin-4 was identified as a marker in detergent-resistant
membranes (DRMs) and a crucial component to stabilize
lipid rafts (Delacour et al., 2005). And a contradictory role of
galectin-4 on intestinal inflammation was stated to
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exacerbate (Hokama et al., 2004; Hokama et al., 2008) or
ameliorate inflammation (Paclik et al., 2008a). Further
studies are required to appraise the influence of galectin-4 in
intestinal inflammation. Moreover, galectin-4 has also
showed contradictory roles in cancer which may depend on
the types of cancer (Rechreche et al., 1997; Belo et al.,
2013; Maftouh et al., 2014; Cai et al., 2014; Hayashi et al.,
2013; Hippo et al., 2001). This review summarizes the recent
progress in understanding the relationship between the
structure and the function of galectin-4 in physiological and
pathological processes.

THE MOLECULAR STRUCTURE OF GALECTIN-4
AND BINDING AFFINITY TO LIGANDS

As a tandem-repeat, human galectin-4 contains two distinct
but homologous domains: CRD1 (N-terminal) and CRD2
(C-terminal). These two CRDs have a calculated molecular
weight of 16–17 kDa. Each of the CRDs consists of about
130 residues which share 40% sequence identity, and they
are connected by a linker region (Oda et al., 1993; Jiang
et al., 1999). This linker region, which is composed of about
30 residues, is rich in proline and glycine, and is sensitive to
tissue proteases (Rustiguel et al., 2015). It is believed that
galectin-4 can be a natural crosslinker because of its ability
to crosslink two distinct types of ligands (Brewer, 2002). The
carbohydrate binding specificities of the two CRDs are quite
different and would be expected to show preference for dif-
ferent sets of ligands.

Two CRDs in galectin-4 bind lactose with similar affinity,
but their preferences for other glycosphingolipids, oligosac-
charides, and glycoprotein are distinctly different. For
example, the affinity of CRD2 (KD = 2.0 × 10−6 mol/L) toward
SO3

−→3core 1-O-Bn oligosaccharide was higher than that of
CRD1 (KD =2.3 × 10−5 mol/L), whereas CRD1 (KD = 8.9 ×
10−5 mol/L) showed higher affinity toward Fucα1→2-
Galβ1→3GlcNAcβ1→3Galβ1→4Glc than that of CRD2 (KD =
1.2 × 10−4 mol/L) (Ideo et al., 2005). CRD2 also showed
higher affinity toward 3-O-sulfated glycosphingolipids than
that of CRD1 (Ideo et al., 2005). Human CRD2 showed
higher binding affinity toward saccharides expressed on
ABO(H) blood group antigens than that exhibited by CRD1
(Vokhmyanina et al., 2012). Oligosaccharide binding profiles
showed that the CRD2 in mouse galectin-4 had a high
affinity and specificity for A type-2 α-linked N-acetylgalac-
tosamine (α-GalNAc) structures, while the CRD1 domain
showed a broader affinity compared to CRD2 (Marková
et al., 2006). In addition to saccharides, the drastic difference
is that CRD1 is able to bind to cholesterol-3-sulfate while
CRD2 is incapable (Ideo et al., 2007). An Arg45 in CRD1
was identified as a core for this sulfate recognition, while
none of the amino acids in CRD2 domain was identified to
directly interact with sulfate groups (Ideo et al., 2007; Bum-
Erdene et al. 2015). Moreover, a peptide YVQI in CRD2 was
confirmed to bind to Src kinases, therefore regulating the

phosphorylation and externalization of galectin-4 (Ideo et al.,
2013). However, there is very limited information about the
key binding partners underlying binding specificities and key
differences for the two domains.

THE PHYSIOLOGICAL FUNCTIONS OF GALECTIN-4

Galectin-4 enhances the stabilization of lipid raft

Lipid rafts are characterized as heterogeneous and liquid
ordered microdomains in the brush border membrane of
small intestinal enterocytes (Pike, 2005). Rafts are small
sphingolipids-rich and cholesterol-rich platforms in the outer
exoplasmic leaflet of the lipid bilayer (Simons and Ehehalt,
2002). Lipid rafts are also known as DRMs because of their
common ability to resist solubilization with detergents in
various cell membranes (London and Brown, 2000). As a
divalent galectin, galectin-4 was identified as a major com-
ponent of detergent-insoluble complexes prepared from the
small intestine (Danielsen and van Deurs, 1997). In addition,
galectin-4 shows the ability to act as a cross-linker, thus
indicating that galectin-4 might play a role in lipid rafts
stabilization.

Galectin-4 facilitates stabilization of lipid rafts through
formation of homogenous lattices with some glycoproteins
and glycolipids (Brewer et al., 2002). Galectin-4 could cross-
link a broad range of glycolipids and various brush border
proteins on the surface of enterocytes, and form cluster and
lattices with them. The externalized galectin-4 will stay at the
cell surface and almost specially localized to the brush
border (Danielsen and Hansen, 2008), and target to the
outer exoplasmic leaflet of the brush border where it spe-
cially associates with lipid rafts and other enzymes, mainly
aminopeptidase N and sucrase-isomaltase (Danielsen and
van Deurs, 1997). These enzymes are frequently cleaved
and released into the gut lumen by exposing to pancreatic
proteinases and lipases. Galectin-4 was reported to protect
the brush border enzymes from solubilization by binding
simultaneously to membrane glycolipids and enzymes, thus
eventually protecting cleaved enzymes releasing into the gut
lumen (Danielsen and Hansen, 2008). Generally speaking,
at the presence of galectin-4, the lipid rafts are capable of
clustering, which means that these proteins and glycolipids
are stabilized in stationary microdomains (Fig. 1B). Thus,
galectin-4 can be characterized as an organizer/stabilizer
within microvillar lipid rafts.

Galectin-4 participates in apical trafficking

The surface of enterocyte is divided into basolateral domains
and apical with distinct compositions and functions. The api-
cal surface contains the proteins required for organ-specific
functions while the basolateral surface expresses adhesion
molecules and receptors, which creates an asymmetric
structure. This asymmetric structure implies a polarized
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protein targeting which is determined by apical and basolat-
eral sorting signals (Mostov et al., 2000). The sorting signals
are capable of deciding which vesicle the proteins couldmove
into, then guiding these proteins to the apical or basolateral
membrane. The basolateral targeting signals are regulated by
tyrosine residues existed in the cytoplasmic domain of pro-
teins (Matter and Mellman, 1994). However, signals for apical
trafficking seem more diversified because various signals
have been found in cytoplasmic, transmembrane or extra-
cellular domains (Schuck and Simons 2004).

Surprisingly, in galectin-4-knockdown HT-29 5M12 cells,
the apical proteins, including mucin-1 (MUC1), sialyltrans-
ferase, dipeptidylpeptidase-IV (DPP-IV), nonspecific cross-
reacting antigen (NCA), carcino-embryonic antigen (CEA),
and the glycosyl-phosphatidylinositol (GPI)-anchored com-
plement regulatory protein (CD59), are found depleted in
DRMs (Delacour et al., 2005, Stechly et al., 2009), which
implies that galectin-4 may function as the carrier of glyco-
proteins trafficking. Complex-type N-glycans have been
shown to function as an apical sorting signal and it’s
recognition by galectin-4 has emerged as a novel apical
sorting mechanism (Morelle et al., 2009). Complex-type
N-glycans, which are rich in DRMs, are composed of bran-
ched N-acetyllactosamine (ligand of galectin-4) and hybrid-
type structures. Moreover, it has been proved that complex-
type N-glycans could enhance the binding affinity of galec-
tins to glycoproteins (Hirabayashi et al., 2002). Interestingly,
if N-glycans do not form complex-type, the apical glycopro-
teins would be delivered to the basolateral membrane in HT-
29 5M12 cells (Stechly et al., 2009).

Glycoproteins are sorted in the trans-Golgi network (TGN)
into carriers that take them directly to the apical side in the
presence of galectin-4 (Fig. 1B), while apical proteins
accumulate intracellularly in the absence of galectin-4
(Fig. 1A). The delivery of galectin-4 at a post-Golgi level is
required for the recruitment of glycoproteins within lipid rafts
and their apical trafficking (Stechly et al., 2009). In addition,
galectin-4 was also found in post-Golgi carrier vesicles to
meet the newly synthesized apical glycoproteins (Delacour
et al., 2005). Because of the special affinity to glycoproteins,
galectin-4 may act as a tractor to pull them into the vesicles.
In the process of apical trafficking, an apical endocytic-re-
cycling pathway of galectin-4 is required, that is to say,
galectin-4 endocytosed into cells to transport glycoproteins
back to apical surface (Stechly et al., 2009).

Galectin-4 has bactericidal activity against bacteria
expressing blood group antigens

The bacteria that express blood group antigen may lead to
generating self-specific antibodies to these antigens, which
eventually causes immunological disorder. The carbohy-
drate structures of ABO (H) antigens are composed of dis-
tinct monosaccharides on the terminal structures of glycans
(Yamamoto et al., 1990). This suggests that the immunity
toward pathogens expressing blood group antigens must
has the ability to recognize carbohydrates. Galectins are
multifunctional proteins that act as regulators of various
biological processes via protein-glycan interactions. Notably,
previous study suggests that galectin-4 and galectin-8 could
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Figure 1. Galectin-4 participates in apical proteins trafficking and lipid raft stabilization. (A) In the absence of galectin-4, the

apical proteins are accumulated intracellularly. Lipid rafts are small in the plasma membrane, containing only a subset of

glycoproteins and glycolipids. (B) In the presence of galectin-4, apical proteins are trafficked to the apical plasma membrane. Lipid

rafts are capable of clustering based on galectin-4 crosslinking to glycoproteins and glycolipids in DRMs.
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recognize and bind to blood group antigens, as along with
various other saccharides ligands (Stowell et al., 2010; Liu
and Bevins, 2010).

CRD2 in galectin-4 can tightly bind to blood group B
carbohydrates which are expressed by some bacteria on the
side chains of surface lipopolysaccharides. An antigen on
the surface of Escherichia coli (E. coli) O86 is identical to
human blood group B antigen, thus indicating that galectin-4
could also bind to E. coli O86 (Andersson et al., 1989). Once
binding to bacterial surface carbohydrates, galectin-4 directly
kills E. coli O86 via destroying membrane integrity and
bacterial motility (Stowell et al., 2010). Electron microscopy
data showed that the formation of surface blebs along with
disruption of E. coli membrane, suggesting that galectin-4
might kill the bacteria through increasing the expression of
defensins (Lehrer et al., 1989). Notably, although galectin-4
could recognize human blood erythrocytes, it did not destroy
the membrane integrity of these cells (Stowell et al., 2010).
However, similar to other innate immune effectors, the bac-
tericidal activity of galectin-4 is not highly specific for the
blood group B antigen, but also for α-1, 3-galactose, which is
another surface carbohydrate that expressed by E. coli (Liu
and Bevins, 2010). Taken together, the binding of galectin-4
with the blood group B-related antigen expressed on bac-
teria causes the formation of blebs, thus leading to the death
of E. coli O86. Up to now, the mechanism of the formation of
blebs is not investigated yet.

Galectin-4 promotes intestinal wound healing

The impaired integrity of the mucosal epithelial barrier is
found not only in inflammatory bowel disease (IBD) but also
in other intestinal disorders, such as peptic ulcer, intestinal
infections, bowel perforation, and some other diseases. Ini-
tially, cell migration is required for restitution of the impaired
mucosal epithelial barrier in the intestinal lumen. The pro-
cess that the epithelial cells adjacent to the injured surface
move and cover the impaired area is an important initial step.
Galectin-4 was shown to have the ability to enhance
epithelial cell moving to this area through binding to cad-
herin/catenin complex at the surface of epithelial cells (Paclik
et al., 2008b). However, galectin-4 mediates the intestinal
epithelial migration through an unknown mechanism.
Besides migration, other processes such as the proliferation,
subsequent maturation and differentiation of these cells are
depicted as other important step to replenish the decreased
cell pool (Dignass, 2001; Wilson and Gibson, 1997).
Galectin-4 was shown to enhance the expression of cyclin
B1, which could consequently improve cell cycle progression
(Paclik et al., 2008b). In all, galectin-4 is capable of
enhancing migration and proliferation, which suggest a sig-
nificant role within the intestinal tract and a possible bene-
ficial effect toward impaired epithelial barrier in intestinal.
However, the precise mechanism of galectin-4 on promoting
intestinal wound healing has not been elucidated.

Galectin-4 promotes growth of axon and myelination
in neuron

As an output channel of neuron, axon is essential for nerve
conduction and rapid transmission of nerve impulses.
Galectin-4 in neuron is required for axon growth (Storan
et al., 2004; Velasco et al., 2013). It was proved to promote
the growth of axon through increasing the cluster number
and size presence of neural cell adhesion molecule (NCAM)
L1 in axon membrane (Velasco et al., 2013). NCAM L1, an
axonal glycoprotein expressed by many postmitotic neurons,
regulates neurite outgrowth, nerve conduction and branching
through L1-L1 homophilic interactions (Cheng and Lemmon,
2004; Cheng et al., 2005). Galectin-4 promotes L1 mem-
brane cluster organization through specially binding to
N-acetyllactosamine (LacNAc) at branch ends of L1 N-gly-
cans, which act as the regulator of the process of axonal
transport of synaptic glycoproteins (Velasco et al., 2013).
Therefore, galectin-4 is crucial for proper organization and
function of L1 in central nervous system (CNS).

Moreover, galectin-4 also plays an important role in the
regulation of myelination of axons, and its expression is
downregulated at the onset of myelination (Stancic et al.,
2012). Myelin, synthesized by oligodendrocytes (OLGs), is
the lipid-rich membrane that specially wraps nerve axons,
thereby forming a multilamellar insulating sheath, which
shows plasticity and high cognitive functions in CNS (Nave,
2010). According to the role of galectin-4 in CNS, we sum-
marized the process of myelination into three sections: 1,
galectin-4 could be expressed and released by nonmyeli-
nated neurons, and then bound to cell surface receptors
expressed by premyelinating OLGs (Stancic et al., 2012).
Upon binding to the receptors, galectin-4 could promote
partly the dedifferentiation and proliferation of OLGs (Stancic
et al., 2012). 2, galectin-4 expressed in OLGs promotes
myelin basic protein (MBP) gene expression possibly
through shifting from a cytoplasmic to a nuclear localization
during the maturation of OLGs. MBP, located in the myelin
serosal surface, is the major protein of the myelin sheath and
maintains the stability of the structure and function of CNS
myelin. Galectin-4 was thought to regulate the expression of
MBP through alternate binding to the glycosylated moiety of
transcription factor Sp1 and, then promoting the stability and
possibly nuclear localization of Sp1 (Wei et al., 2007). Sp1
could activate the MBP promoter in nucleus of OLGs (Tre-
tiakova et al., 1999; Wei et al., 2003). 3, the expression of
galectin-4 was downregulated at the onset of myelination,
therefore offering a condition for the differentiation and
maturation of OLGs. The mature OLGs could wrap axons
with their own cell membrane in a spiral shape, eventually
contributing to the formation of myelin sheath. Recently, the
sulfatide, which is a high-affinity ligand for galectin-4, has
been considered as an inhibitor of sulfatide axon outgrowth,
leading to a hypothesis that galectin-4 may regulate myeli-
nation through interaction with sulfatide (Winzeler et al.,
2011). Taken together, galectin-4 in neuron acts as a novel
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negative regulator of OLG differentiation, and from another
point of view, galectin-4 promotes the axonal myelination in
CNS (Fig. 2).

LGALS4 GENE AND REGULATION OF GALECTIN-4
EXPRESSION

Galectin-4 is coded by the single gene LGALS4 that is
numbered consistently with the proteins (Mehrabian et al.,
1993; Barondes et al., 1994). Human LGALS4 region locates
in q13.1-13.3 on chromosome 19, while mouse LGALS4 is
about 3.2 centimorgans proximal to the apoE gene on
chromosome 7 (Gitt et al., 1998). The coding sequence of
galectin-4 is specified by nine exons and the transcript
length is 1 kb. The main transcriptional start site of human
LGALS4 was found at position-55 nt, which is 33 bases
downstream from a near consensus TATA box and its
upstream promoter elements contain HNF-4, MyoD, c-Rel,
HNF-3β, CAATenhancer binding protein (C/EBP), and HFH-
2 (Huflejt and Leffler, 2003).

HFH-2, HNF-4, and HNF-3β are members of the Hepa-
tocyte Nuclear Factor 3 (HNF-3)/fork family of transcription
factors (Ye et al., 1997), which contribute to the neoplastic
transformation-related increases in galectin-4 mRNA
expression in liver (Kondoh et al., 1999). C-Rel, a member of
the NF-κB family, was aberrantly activated or expressed in
human breast cancers, as well as in other solid and
hematopoietic malignancies (Cogswell et al., 2000; Sovak
et al., 1997). It exists either as a heterodimer or a homodimer
with some NF-kB subunits and this dimmers can potently
transactivate NF-kB-dependent promoters. Furthermore,
c-Rel was reported to promote the formation of C/EBP-
complex and then bind to the complex (Agrawal et al., 2003).
Because galectin-4 is abnormally overexpressed in human
breast cancers, as well as in other solid and hematopoietic
malignancies, it may be a downstream product of the NF-κB.
In addition, the twin single nucleotide polymorphisms (SNPs)
could potentially be related to galectin-4 upregulation via
deletion and insertion of new transcription factor binding
sites in colorectal cancer (CRC) (Helwa, 2010).
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Figure 2. Galectin-4 promotes growth of axon and myelination in neuron. (A) Galectin-4 promotes outgrowth of axon through

promoting L1 clustering. (B) Galectin-4 is released by nonmyelinated neurons and binds to the cell surface receptors that expressed

by premyelinating OLGs. (C) Galectin-4 inhibits OLGs maturation and promotes OLGs dedifferentiation along with proliferation.

(D) Immature OLGs start to differentiate. Once galectin-4 binding to the glycosylated Sp1, the stability and possibility nuclear

localization of Sp1 would be increased, then leading to the upregulation of MBP gene expression. (E) Mature OLGs make the

formation of myelin sheath by wrapping axons with their own cell membrane in a spiral shape.
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THE ROLE OF GALECTIN-4 IN INFLAMMATORYAND
CANCER DISEASES

Galectin-4 and intestinal inflammation

IBD is known as a chronic intestinal inflammatory condition
that is characterized by two forms of intestinal inflammation:
Crohn’s disease (CD) and ulcerative colitis (UC) (Podolsky,
1991). Both of the two diseases are correlated to the acti-
vation of inflammatory memory CD4+ T cells in the inflamed
gastrointestinal tract (Xavier and Podolsky, 2007). Currently,
IBD is presumed to be a result of the complex effect of
genetic factors, microbial agents, humoral immunity and
environmental factors. Thus, healing of the intestinal surface
epithelium is regarded as a complex network of various
factors. Galectin-4 is an important factor that is related to the
mucosal immunity.

Galectin-4 was demonstrated to exacerbate intestinal
inflammationbydirectly stimulating theCD4+Tcells to produce
IL-6 on TCRmutational colitis model (Hokama et al., 2004). IL-
6, a well-known inflammatory cytokine, could exacerbate
intestinal inflammation in the presence of impaired mucosal
barrier or injury to the mucosa. In addition, IL-6 was also con-
firmed to increase the expression of B-cell lymphoma-2 (Bcl-2)
andB-cell lymphoma-extra large (Bcl-xl) through activating the
STAT3 signal pathway, thus inhibiting the apoptosis of CD4+ T
cells, and then leading to sustainable development of IBD
(Atreya et al., 2000; Allocca et al., 2013;Waldner andNeurath,
2014). Galectin-4 may directly interact with the CD4+ T cells
through binding to the immunological synapse, which is a
specific activator of the protein kinase C (PKC) θ-associated
signaling cascade in lipid raft (Hokama et al., 2004; Nagahama
et al., 2008). Through activating the PKC-associated pathway,
galectin-4 stimulates the production of IL-6, therefore exacer-
bates intestinal inflammation. However, it is not confirmed
which receptor on intestinal CD4+ Tcells specifically crosslinks
with galectin-4. Lately, an inducible colitis-associated glycome
(CAG), which contains an immature (nonsialylated) core-1
O-glycan expressed byCD4+ Tcells, was identified as a ligand
of galectin-4 under intestinal inflammatory conditions (Nishida
et al., 2012). Thus, galectin-4 may activate the PKCθ by
binding toCAGand, then contributing to exacerbationof colitis.
In consistent with this, galectin-4, which showsa high affinity to
immature O-glycan (Ideo et al., 2002; Blixt et al., 2004), has
been shown to exacerbate an experimental chronic colitis
(Hokama et al., 2004).

However, Paclik D et al. demonstrated that galectin-4 could
induce Tcell apoptosis by binding to the CD3 epitope at Tcells
surface on wild-type colitis model. Once binding to this epi-
tope, galectin-4 promotes apoptosis of T cells in calpain-de-
pendent manner and reduces the secretion of cytokines
including IL-6, IL-8, IL-10, and IL-17, and then ameliorating the
inflammation (Paclik et al., 2008a). Lately, another research
found that the role of galectin-4 varied in different experimental
colitis models (Mathieu et al., 2008). Based on the existing
data, we can conclude that galectin-4 may exacerbate

intestinal inflammation in TCR mutational colitis model, while
ameliorate intestinal inflammation in wild-type colitis model
(Fig. 3). Further studies are required to ascertain the universal
role of galectin-4 in intestinal inflammation.

Galectin-4 and cancer

Galectin-4 which has been detected in many cancers has
association with the development and progression of pan-
creatic carcinoma, hepatocellular carcinoma, colorectal
cancer (CRC), breast carcinoma, gastric cancer, and lung
cancer (Rechreche et al., 1997; Hippo et al., 2001; Hayashi
et al., 2013; Belo et al., 2013; Cai et al., 2014). However, it
plays contradictory roles in different type of cancer cells.
Furthermore, it has been detected in serum of some cancer
patients (Kim et al., 2013; Cai et al., 2014; Barrow et al.,
2011; Barrow et al., 2013). Up to now, although there is a
number of published data regarding galectin-4 expression in
cancer, the available information is remained limited. Among
these cancers, only the role of galectin-4 in CRC develop-
ment has been revealed explicitly.

The role of intracellular galectin-4 in cancer

In CRC, expression of galectin-4 was dramatically decreased
compared to normal colon tissues and this condition promoted
tumour progression and metastasis (Rechreche et al., 1997;
Satelli et al., 2011; Kim et al., 2013). Lower expression of
galectin-4 in CRC cells could induce increased cell prolifera-
tion, migration and motility. Galectin-4 was found to inhibit
tumorigenesis of CRC cells through Wnt/β-catenin signaling
pathway and IL-6/NF-κB/STAT3 signaling pathway (Satelli
et al., 2011; Kim et al., 2013). In CRC cells, galectin-4 could
cross-link Wnt signaling pathway proteins (APC, axin, and β-
catenin), thereby stabilizing the destruction complex, and
promoting degradation of β-catenin in cytoplasm (Satelli et al.,
2011). Therefore, β-catenin could not enter into nucleus to
activate the Wnt target genes, which results in the downregu-
lation of cyclin D1, p21, and p15, and the inhibition of cell
proliferation, migration, and motility. In addition, galectin-4 has
been confirmed to downregulate IL-6, which in turn simulta-
neously inhibits the activation of nuclear factor-kappa B (NF-
κB) and signal transducer and activator of transcription 3
(STAT3) in CRC (Kim et al., 2013; Lang et al., 2007). Upon
suppressing of the IL-6/NF-κB/STAT3 signaling pathway, the
level of vascular endothelial growth factor (VEGF), cyclooxy-
genase-2 (COX-2), and other genes involved in tumorigenesis
would bedownregulated, thereby inhibiting tumor progression.

A similar mechanism in pancreatic cancer was observed
by Maftouh et al., 2014, where decreased levels of β-catenin
were found in pancreatic cancer cells when in the presence of
galectin-4. Their results coupled, therefore, the mechanism to
a decreased Wnt signaling in the presence of galectin-4.
Similarly, in hepatocellular cancer, the low level expression of
galectin-4 contributes to increased metastasis and progres-
sion of the cancer (Cai et al., 2014). In addition, decreased
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expression of galectin-4 was observed in metastatic ileal
carcinoids compared with primary carcinoid tumors in the
ileum, indicating that galectin-4 may act as a tumor suppres-
sor in ileal carcinoids (Rumilla et al., 2006). Conversely, in
lung and gastric cancer, high level expression of galectin-4
was demonstrated to be an independent predictor for
metastasis and correlated with poor clinical outcomes
(Hayashi et al., 2013; Hippo et al., 2001). Taken together,
galectin-4 acts as a tumor suppressor in CRC, pancreatic
cancer, hepatocellular cancer, and ileal carcinoids, whereas
galectin-4 functions as a tumor promoter in lung and gastric
cancer.

The role of galectin-4 in serum of cancer patients in cancer

The free circulating level of galectin-4 in serum was signifi-
cantly higher in patients with colon, hepatocellular, and
breast cancer, in particular, those with metastasis (Barrow
et al., 2011; Barrow et al., 2013; Kim et al., 2013; Cai et al.,
2014). The expression level of galectin-4 was observed to be

significantly increased up to 31-fold in the serum of col-
orectal cancer patients compared with healthy control group.
Galectin-4 promotes cancer cell adhesion to vascular
endothelial cells by interaction with the Thomsen-Frieden-
reich (TF) disaccharide on cancer-associated MUC1 (Barrow
et al., 2011). As previously shown for galectin-3, this inter-
action causes MUC1 cell surface polarization, thus leading
to exposure of underlying adhesion molecules that promote
cancer-endothelium adhesion (Zhao et al., 2009), which
indicates a metastasis-promoting effect. Furthermore, the
interaction of galectin-4 with the vascular endothelium con-
tributes to the increased circulating level of some cytokines
and chemokines, including monocyte chemotatic protein 1
(MCP-1), granulocyte colony-stimulating factor (G-CSF) and
IL-6 (Chen et al., 2014). Therefore, circulating level of
galectin-4 might be a predictor for cancer patients, especially
those with metastasis. However, no significant correlation
between cancer stages and the level of circulating galectin-4
was observed in the serum of breast and colorectal cancer
patients (Barrow et al., 2011).
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Figure 3. The different molecular mechanism of galectin-4 in exacerbating or ameliorating inflammation. (A) (Exacerbating

inflammation): Through binding to the receptor (may be CAG) expressed by CD4+ Tcells, galectin-4 stimulates the production of IL-6

on TCR mutational colitis model. IL-6 could directly exacerbate IBD and inhibiting the apoptosis of CD4+ T cells by activating STAT3

pathway, which eventually leading to sustainable development of IBD. (B) (Ameliorating inflammation): Galectin-4 ameliorates IBD

through inducing apoptosis of T cell and reducing the secretion of inflammatory cytokines (IL-6, IL-8, IL-10, and IL-17) on wild-type

colitis model.
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CONCLUSION REMARKS

Recent investigations of the molecular structure and physi-
ological functions of galectin-4 have significantly increased
our understanding of the potential roles of galectin-4 in some
diseases, such as intestinal inflammation, tumors, etc. With
further investigation of the effects and underlying mecha-
nism, galectin-4 could be presented as a useful therapeutic
target for killing bacteria, wound healing, and inhibiting
tumorigenesis.

Many bacteria in human serum decorate their surfaces
with diverse carbohydrate structures, and parts of these
structures have similarities to human antigens, which leads
to a difficult utilization of drugs to kill them directly. Galectin-4
may act as an innate defense lectin by recognizing the
carbohydrates on the surface of E. coli O86 to kill the bac-
teria directly. In intestinal inflammation, galectin-4 has shown
an inconsistent role in regulation of T cells, so the explicitly
role should be further investigated in the future. Intracellu-
larly, galectin-4 functions as a tumor suppressor, and its
downregulation is an important event in the tumorigenesis of
CRC, pancreatic cancer, and hepatocellular cancer, whereas
it functions conversely in lung cancer and gastric cancer.
Moreover, the expression of galectin-4 might be a biomarker
in serum of colon and breast cancer patients. Although
galectin-4 is not a universal and unambiguous marker in
different types of cancers, it could be a helpful parameter in
diagnosis of these tumors and clinical manifestations.
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