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ABSTRACT

Paclitaxel is a microtubule-targeting agent widely used
for the treatment of many solid tumors. However,
patients show variable sensitivity to this drug, and
effective diagnostic tests predicting drug sensitivity
remain to be investigated. Herein, we show that the
expression of end-binding protein 1 (EB1), a regulator of
microtubule dynamics involved in multiple cellular
activities, in breast tumor tissues correlates with the
pathological response of tumors to paclitaxel-based
chemotherapy. In vitro cell proliferation assays reveal
that EB1 stimulates paclitaxel sensitivity in breast can-
cer cell lines. Our data further demonstrate that EB1
increases the activity of paclitaxel to cause mitotic
arrest and apoptosis in cancer cells. In addition, micro-
tubule binding affinity analysis and polymerization/
depolymerization assays show that EB1 enhances pac-
litaxel binding to microtubules and stimulates the ability
of paclitaxel to promote microtubule assembly and sta-
bilization. These findings thus reveal EB1 as a critical
regulator of paclitaxel sensitivity and have important
implications in breast cancer chemotherapy.
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proliferation, apoptosis, end-binding protein 1,
chemotherapy

INTRODUCTION

Microtubules are a component of the cytoskeleton and play a
crucial role in diverse cellular activities. Microtubules are
highly dynamic, and the dynamic properties are spatiotem-
porally regulated by microtubule-interacting proteins (Amos
and Schlieper, 2005). End-binding protein 1 (EB1) is a key
member of microtubule plus-end tracking proteins and is
regarded as the master regulator at microtubule plus ends.
EB1 tracks the plus ends of growing microtubules and
thereby regulates microtubule dynamic instability (Akhma-
nova and Steinmetz, 2008; Schuyler and Pellman, 2001).
EB1 promotes cell migration by stabilizing microtubules at
the cell cortex and is also involved in mitotic progression
(Asakawa and Toda, 2006; Li et al., 2011; Strickland et al.,
2005; Wen et al., 2004). Recent studies point out that EB1
regulates microtubule dynamics through promoting persis-
tent microtubule growth (Bieling et al., 2007; Li et al., 2011;
Strickland et al., 2005; Wen et al., 2004; Zovko et al., 2008).
EB1 is also a cofactor for many other microtubule-interacting
proteins, which interact with EB1 directly or require EB1 for
their efficient plus-end accumulation (Akhmanova and
Steinmetz, 2008; Bieling et al., 2007; Dragestein et al., 2008;
Galjart, 2010; Honnappa et al., 2009; Jiang and Akhmanova,
2011; Kronja et al., 2009).

Paclitaxel is a microtubule-targeting agent widely utilized
in the clinic for the treatment of patients with breast cancer
and several other solid tumors. Paclitaxel stabilizes micro-
tubules and inhibits them from disassembly. As a result,
chromosomes fail to achieve the metaphase spindle
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configuration, which further interferes with chromosome
separation and leads to apoptosis (Blagosklonny et al.,
2006; Dumontet and Jordan, 2010; Ikui et al., 2005). Pac-
litaxel has offered substantial improvement in patient sur-
vival, but the drug is not effective to all clinical cases. No
useful predictive marker exists because of the limited
understanding of the mechanisms regulating paclitaxel
sensitivity (Dumontet and Jordan, 2010). Recent studies
suggest a function of microtubule-interacting proteins in
modulating cancer cell sensitivity to microtubule-targeting
drugs, although the precise molecular mechanisms remain
elusive (Mohan et al., 2013; Rouzier et al., 2005; Sun et al.,
2012; Veitia et al., 2000; Wagner et al., 2005; Wang et al.,
2009). Our previous study has demonstrated an oncogenic
function of EB1 in breast cancer and show that its expres-
sion varies in different cancer cell lines (Dong et al., 2010;
Sun et al., 2008). These findings prompt us to explore the
potential role of EB1 in regulating paclitaxel sensitivity in
breast cancer and the underlying molecular mechanisms.

RESULTS

EB1 expression in breast tumor tissues correlates with
tumor response to paclitaxel-containing chemotherapy

To study the relationship between EB1 and paclitaxel sen-
sitivity, we acquired tumor tissues from breast cancer
patients who received neoadjuvant chemotherapy and then
underwent surgical resection. Among these patients, 54
cases received paclitaxel-containing chemotherapy, and 45
cases received a control regimen without paclitaxel. We
examined EB1 expression in tumor tissues and tissues
adjacent to tumor by immunohistochemistry. The samples
were classified into four groups according to EB1 expres-
sion, including negative staining (−), low staining (+), med-
ium staining (++), and high staining (+++) (Fig. 1A and 1D).
We found that EB1 expression varied significantly among
patients. Out of the total samples, 18 were EB1-negative
(10 received paclitaxel-containing chemotherapy and 8
received control treatment), 24 had low staining (12
received paclitaxel-containing chemotherapy and 12
received control treatment), 28 had medium staining (16
received paclitaxel-containing chemotherapy and 12
received control treatment), and 29 showed high staining
(16 received paclitaxel-containing chemotherapy and 13
received control treatment).

By analyzing the correlation of EB1 expression with the
pathological response of tumors to paclitaxel-containing
treatment, we found a significant positive correlation
between them (r = 0.427, P = 0.007) (Fig. 1B). In contrast,
there was no obvious correlation between EB1 expression
and tumor response to control treatment (r = 0.091,
P = 0.086) (Fig. 1C). Furthermore, EB1 expression in tis-
sues adjacent to tumor did not correlate with tumor response

to paclitaxel-containing chemotherapy (r = 0.064, P = 0.067)
or to the control regimen (r = 0.033, P = 0.075) (Fig. 1E and
1F). These results suggest that EB1 expression in breast
tumor tissues might predict tumor sensitivity to paclitaxel-
based treatment.

EB1 enhances paclitaxel sensitivity in breast cancer
cells

We then checked whether EB1 expression associates with
paclitaxel sensitivity in breast cancer cell lines. We examined
EB1 expression in T47D, ZR-75-1, SW527, MDA-MB-231,
and MCF7 breast cancer cell lines by immunoblotting and
then analyzed the expression level. Consistent with previous
studies (Dong et al., 2010), EB1 expression levels varied
among different cell lines; ZR-75-1, MDA-MB-231, and
MCF7 cells displayed much higher EB1 levels than T47D
and SW527 cells (Fig. 2A and 2B). Next, we examined the
sensitivity of these cells to different drugs, including the
microtubule-targeting agents paclitaxel and vinblastine, and
a specific inhibitor of the microtubule-dependent mitotic
kinesin Eg5, dimethylenastron (Liu et al., 2008), which was
used as a non-microtubule-drug control. Cells were treated
with the drugs at a series of concentrations and stained with
sulforhodamine B, a dye that binds stoichiometrically to all
cellular protein components, as a measure of cell prolifera-
tion (Vichai and Kirtikara, 2006). The IC50 value of each
drug, which represents the drug concentration needed for
inhibition of cell proliferation by 50%, was then calculated.
T47D and SW527, which had low EB1 expression, showed
relatively high IC50 values of paclitaxel and vinblastine
(Fig. 2C). Intriguingly, MDA-MB-231 cells expressed abun-
dant EB1, yet they were rather resistant to paclitaxel
(Fig. 2AC). Nevertheless, we found a remarkable negative
correlation of EB1 expression with the IC50 values of pac-
litaxel (r = 0.546) and vinblastine (r = 0.512), but not with
dimethylenastron (r = 0.198) (Fig. 2D). These results sug-
gest that EB1 might increase the sensitivity of breast cancer
cell lines to paclitaxel and vinblastine.

To gain more insights into the role of EB1 in regulating
tumor cell sensitivity to microtubule-targeting drugs, we
altered EB1 expression in MCF7 cells and then studied
the change of drug sensitivity. MCF7 cells were chosen
primarily due to their expression of a good amount of EB1
and their frequent use in the study of the mechanisms of
action of microtubule-targeting agents. Cells were trans-
fected with EB1 specific small interfering RNAs (siRNAs),
which could knockdown EB1 expression efficiently
(Fig. 2E), and stained with sulforhodamine B to analyze
the IC50 values. EB1 siRNAs remarkably increased the
IC50 values of paclitaxel, but did not obviously affect the
IC50 values of vinblastine or dimethylenastron (Fig. 2F).
These data indicate a specific effect of EB1 on paclitaxel
sensitivity. We also transfected cells with different doses of
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GFP-EB1 or GFP and then analyzed the effect of EB1
overexpression on paclitaxel sensitivity. Overexpression of
GFP did not affect the IC50 value of paclitaxel (Fig. 2G
and 2H). In contrast, GFP-EB1 rendered cells more sen-
sitive to paclitaxel as shown by decreased IC50 values
(Fig. 2G and 2H).

We next investigated whether EB1 regulates paclitaxel
sensitivity in cell lines that represent different types of breast
cancer, including the estrogen receptor (ER)-positive cell line
MCF7, the human epidermal growth factor receptor 2
(HER2)-positive cell line SKBR3, and the triple-negative cell
line MDA-MB-231 (Neve et al., 2006). By MTT assays, we
found that EB1 siRNAs increased the IC50 values of paclit-
axel in all these cell lines (Fig. 2I). These data further dem-
onstrate that EB1 enhances paclitaxel sensitivity in breast
cancer cells.

EB1 promotes the activity of paclitaxel to induce mitotic
arrest and apoptosis

We then sought to investigate the molecular mechanism of
how EB1 regulates paclitaxel sensitivity. We analyzed mitotic
arrest and apoptosis, two key cellular events following pac-
litaxel treatment (Jordan and Wilson, 2004). MCF7 cells
transfected with control or EB1 siRNAs were treated with
paclitaxel for 24 h, and the morphology of cells was photo-
graphed. The percentage of round cells was dramatically
decreased by EB1 siRNAs as compared with control siRNA,
indicating that EB1 siRNAs compromised the ability of pac-
litaxel to induce mitotic arrest (Fig. 3A and 3B). The
decrease of paclitaxel-induced mitotic arrest by EB1 siRNAs
was confirmed by the reduction of cells with 4N chromo-
somes following transfection of EB1 siRNAs (Fig. 3C).
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Figure 1. EB1 expression in breast tumor tissues correlates with tumor response to paclitaxel. (A) Immunohistochemical

analysis of EB1 expression in breast carcinoma tissues. (B) Correlation analysis of EB1 expression in tumor tissues with tumor

response to paclitaxel-containing chemotherapy. (C) Correlation analysis of EB1 expression in tumor tissues with tumor response to

control chemotherapy. (D) Immunohistochemical analysis of EB1 expression in tissues adjacent to tumor. (E) Correlation analysis of

EB1 expression in adjacent tissues with tumor response to paclitaxel-containing chemotherapy. (F) Correlation analysis of EB1

expression in adjacent tissues with tumor response to control chemotherapy. The percentage of response to the treatment was

quantified as the number of responders divided by the number of total patients. The correlation between EB1 expression and the

pathological response was examined by Wilcoxon rank sum test. r, correlation coefficient; P, statistical significance.
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By staining cells with the DNA dye propidium iodide, we
further found that EB1 siRNAs remarkably inhibited the
activity of paclitaxel to induce apoptosis (Fig. 3D and 3E).
The inhibitory effect of EB1 siRNAs on paclitaxel-induced
apoptosis was confirmed by quantification of the percentage

of annexin V-positive cells (Fig. 3F). To verify the above
effects of EB1, we analyzed the effect of EB1 overexpres-
sion on paclitaxel-induced apoptosis. Cells were transfected
with GFP-EB1 or GFP and then treated with paclitaxel for
48 h. As shown in Fig. 3G and 3H, GFP-EB1 remarkably
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Figure 2. EB1 expression increases paclitaxel sensitivity in breast cancer cell lines. (A) Immunoblot analysis of EB1 and actin

expression in breast cancer cell lines. (B) Experiments were performed as in (A), and relative EB1 expression was shown as the ratio

of EB1 intensity to actin intensity quantified by densitometry. (C) Cancer cells were treated with paclitaxel (PTX), vinblastine (VBL), or

dimethylenastron (DIMEN), and the IC50 values of the drugs were determined by sulforhodamine B staining. (D) Correlation analysis

between EB1 expression in the cancer cell lines and the IC50 values of different drugs, examined by Spearman rank correlation test.

(E) Immunoblot analysis of EB1 and actin expression in MCF7 cells transfected with control or two different EB1 siRNAs. (F) Cells

transfected with different siRNAs were treated with paclitaxel (PTX), vinblastine (VBL), or dimethylenastron (DIMEN), and the IC50

values of the drugs were determined. (G) Immunoblot analysis of GFP, GFP-EB1, and actin expression in MCF7 cells transfected with

different doses of GFP or GFP-EB1. (H) Cells transfected with different doses of GFP or GFP-EB1 plasmids were treated with

paclitaxel, and the IC50 values of paclitaxel were then determined. (I) Cells transfected with control or EB1 siRNAs were treated with

paclitaxel, and the IC50 values were determined by the MTT assay. Data shown in the graphs are means from three independent

experiments.
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increased the ability of paclitaxel to induce the formation of
aberrant nuclei, which is a characteristic of apoptosis. The
enhancing effect of GFP-EB1 on paclitaxel-induced apop-
tosis was further confirmed by annexin V staining assay
(Fig. 3I). Altogether, these results reveal that EB1 promotes
the activity of paclitaxel to induce mitotic arrest and
apoptosis.

EB1 enhances the activity of paclitaxel to stimulate
microtubule assembly and stabilization

The activity of paclitaxel to trigger mitotic arrest and apop-
tosis results primarily from its effect on microtubule assembly

and stabilization (Jordan and Wilson, 2004). To gain more
mechanistic insight into the action of EB1 in modulating
paclitaxel sensitivity, we transfected MCF7 cells with GFP or
GFP-EB1 and then treated cells with paclitaxel (2 nmol/L).
The percentage of cells with microtubule bundles was ana-
lyzed by immunofluorescence. As shown in Fig. 4A and 4B,
GFP-EB1 significantly increased the ability of paclitaxel to
induce microtubule bundles, as compared with GFP or the
mock control.

To investigate the effect of EB1 on paclitaxel-mediated
microtubule assembly in vitro, we purified GST and GST-
EB1 from E. coli (Fig. 4C), and then analyzed their effects
on microtubule assembly in the purified systems. A mixture
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and the DNA dye DAPI. (B) Experiments were performed as in (A), and the percentage of cells with microtubule bundles was

quantified by counting 300 cells from 20 fields. (C) Coomassie blue staining of GST and GST-EB1 proteins purified from E. coli. (D)
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absence or presence of paclitaxel. The morphology of polymerized microtubules was then analyzed under the fluorescence

microscope. (E) Experiments were performed as (D), and the intensity of microtubules was measured and normalized to the control
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of tubulin and rhodamine-labeled tubulin was incubated
with purified GST or GST-EB1 in the presence or absence
of paclitaxel at 37°C and the polymerized microtubules
were analyzed under the fluorescence microscope. Con-
sistent with previous studies (Bu and Su, 2001; Vitre et al.,
2008), EB1 alone could modestly promote microtubule
polymerization/bundling in vitro. Importantly, EB1 greatly
enhanced the ability of paclitaxel to stimulate microtubule
assembly/bundling (Fig. 4D and 4E). We also examined
microtubule assembly in vitro over time by measuring the
changes in optical absorbance at 350-nm wavelength. In
agreement with the above findings, EB1 increased the
ability of paclitaxel to induce microtubule assembly over
time (Fig. 4F).

Next, we sought to investigate the effect of EB1 on pac-
litaxel induced microtubule stabilization. MCF7 cells were
transfected with GFP-EB1 or GFP followed by treatment with
paclitaxel (2 nmol/L). Microtubules were then placed on ice
for 30 min to depolymerize microtubules, and the percentage
of cells containing microtubules was quantified to evaluate
microtubule stability. We found that GFP-EB1, but not GFP,
could greatly enhance the ability of paclitaxel to stabilize
microtubules (Fig. 5A and 5B).

EB1 promotes paclitaxel binding to microtubules

To understand the underlying mechanism of how EB1
increases paclitaxel-mediated microtubule assembly and
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stabilization, we investigated the influence of EB1 on the
paclitaxel-microtubule interaction. We found that GST-EB1
could enhance paclitaxel binding to microtubules in a dose-
dependent manner (Fig. 5C). To confirm the increase of the
paclitaxel-microtubule association by EB1, we analyzed the
association constant (Ka) between paclitaxel and microtu-
bules, as a measure of their binding affinity. As shown in
Fig. 5D, GST-EB1 could increase the paclitaxel-microtubule
association constant in a dose-dependent manner. These
data thus reveal that EB1 promotes paclitaxel binding to
microtubules.

DISCUSSION

Microtubule dynamics are critical for many cellular activities,
such as cell division, cell migration, and cell polarization. EB1
acts as a key microtubule plus-end tracking protein and regu-
lator of microtubule dynamics (Akhmanova and Steinmetz,
2008). Manymicrotubule-interacting proteins, such as proteins
with CAP-Gly domains or SxIP motifs, rely on EB1 directly or
indirectly for their efficient localizationatmicrotubulesplusends
(Bieling et al., 2007; Dragestein et al., 2008; Honnappa et al.,
2009; Kronja et al., 2009). Our previous studies have shown
that EB1 plays an oncogenic role in the development of breast
cancer (Dong et al., 2010). In the present study, we provide
several lines of evidencedemonstrating a novel functionofEB1
in regulating cancer cell sensitivity to the microtubule-targeting
agent paclitaxel: a) EB1 expression in breast tumor tissues
correlateswith thepathological responseof tumors topaclitaxel
treatment; b) EB1 expression correlates with paclitaxel sensi-
tivity in breast cancer cell lines; and c) knockdown of EB1
expression decreases paclitaxel sensitivity in breast cancer
cells and overexpression of EB1 has the opposite effect. Our
findings suggest that the expression of EB1might be used as a
marker for the prediction of the pathological response to pac-
litaxel-based chemotherapy. In addition, our results suggest a
possibility of improving the pathological response to paclitaxel
through modulating EB1 expression.

We have also explored the potential mechanism of how
EB1 regulates paclitaxel sensitivity in breast cancer cells. By
alteration of EB1 expression, we find that EB1 could increase
the activity of paclitaxel to induce mitotic arrest and apopto-
sis, two hallmark events in paclitaxel-treated cells. Although
the casual relationship between paclitaxel-induced mitotic
arrest and apoptosis remains controversial (Jordan and Wil-
son, 2004), our data suggest that EB1 increases the ability of
paclitaxel to arrest cells at mitosis, resulting in increased
formation of multinucleated cells and ultimately leading to
enhanced apoptosis. By measuring the paclitaxel-microtu-
bule association constant and performing microtubule-asso-
ciated experiments in cells and in vitro, we find that EB1
increases the binding affinity between paclitaxel and micro-
tubules and promotes paclitaxel-mediated tubulin polymeri-
zation and stabilization. Together, these findings indicate that
EB1 promotes paclitaxel sensitivity in breast cancer cells by

enhancing the ability of paclitaxel to stimulate microtubule
assembly and stabilization and then cause mitotic arrest and
apoptosis.

It is worthy of note that, besides EB1 expression, other
factors such as tubulin subtypes and BCRA1 expression
have also been implicated in paclitaxel sensitivity, with
mechanisms involving paclitaxel-induced microtubule sta-
bilization (Quinn et al., 2007; Tommasi et al., 2007). It is
unclear currently whether EB1 exerts its effect independently
or acts in concert with other factors in regulating paclitaxel
sensitivity. In addition to the widely accepted notion that
paclitaxel exerts its anti-tumor effect through promoting
mitotic arrest in cancer cells and therefore cell death, there is
also compelling evidence suggesting that another key
mechanism of action of paclitaxel is promoting the activation
of caspase signaling pathways, in which caspase 8 has been
implicated (Komlodi-Pasztor et al., 2011). Thus, it would not
be surprising if more mechanisms were discovered in the
future as to how EB1 exerts its effect on paclitaxel sensitivity.

At present, it remains elusive how EB1 promotes paclit-
axel binding to microtubules. It is possible that EB1 enhances
the paclitaxel-microtubule interaction through structural or
allosteric effects in a pattern similar to several other micro-
tubule-binding proteins, such as Tau and CLIP-170 (Rouzier
et al., 2005; Sun et al., 2012). In addition, the interaction
between EB1 and paclitaxel in microtubule assembly may
ensure microtubules in a proper structure, so more paclitaxel
can bind to microtubules. Although our data show that EB1
promotes paclitaxel binding to microtubules in vitro, it is also
possible that EB1 may increase the ability of paclitaxel to
stimulate microtubule assembly via other mechanisms. For
example, the stabilization of microtubule plus ends by EB1
may promote the action of paclitaxel toward tubulin poly-
merization into microtubules. Alternatively, given that EB1
acts as a loading factor for many other microtubule-interact-
ing proteins in addition to its role as a regulator of microtubule
dynamics (Akhmanova and Steinmetz, 2008; Honnappa
et al., 2009), it is possible that EB1 may promote paclitaxel
sensitivity in breast cancer cells through interaction with
CLIP-170 or other microtubule plus end-tracking proteins.
Considering the potential of EB1 as a marker to predict
paclitaxel sensitivity or as a target to increase paclitaxel
sensitivity, the molecular mechanism of how EB1 regulates
paclitaxel sensitivity merits further investigation.

MATERIALS AND METHODS

Chemicals and antibodies

Paclitaxel, vinblastine, 4,6-diamidino-2-phenylindole (DAPI), and

sulforhodamineBwere purchased fromSigma-Aldrich (St. Louis,MO,

USA), phycoerythrin (PE)-conjugated annexin V was from Abcam

(Cambridge, MA, USA), dimethylenastron was fromCalbiochem (San

Diego, CA, USA), and 3H-paclitaxel was from Moravek Biochemicals

(Brea, CA, USA). Propidium iodide was purchased from Invitrogen
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(Carlsbad, CA, USA). Antibodies against EB1 (BD Biosciences, San

Jose, CA, USA), β-actin and α-tubulin (Sigma-Aldrich), and GFP

(Roche, Indianapolis, IN, USA), and horseradish peroxidase-conju-

gated secondary antibodies (Amersham Biosciences, Chandler, AZ,

USA) were obtained from the indicated sources. Microtubule-associ-

ated protein (MAP)-free tubulin and rhodamine-labelled tubulin were

from Cytoskeleton (Denver, CO, USA).

Plasmids, proteins, and siRNAs

The mammalian expression plasmid for GFP-EB1 and the bacterial

expression plasmid for GST-EB1 were constructed by cloning EB1

cDNA into the pEGFPN1 and pGEX6P3 vectors, respectively. The

BL21 (DE3) strain of E. coli was used to express the proteins, and

protein purification was carried out by using glutathione Sepharose

4B beads according to the manufacturers instructions (Promega,

Fitchburg, WI, USA). EB1 and control luciferase siRNAs were syn-

thesized by Ribobio (Guangzhou, China).

Cell culture and transfection

T47D, ZR-75-1, SW527, MDA-MB-231, MCF7, and SKBR3 human

breast cancer cell lines were cultured in RPMI 1640 medium sup-

plemented with 10% fetal bovine serum at 37°C in a humidified

atmosphere with 5% CO2. Plasmids were transfected into cells with

the E-trans D reagent (Engreen, Beijing, China), and siRNAs were

transfected with the Lipofectamine 2000 reagent (Invitrogen, Carls-

bad, CA, USA).

Tumor samples and pathological analysis

Breast carcinoma specimens were obtained from breast cancer

patients who received neoadjuvant chemotherapy and then under-

went surgical resection at Shanxian Dongda Hospital, Shandong,

China. Of these patients, 54 were treated with a paclitaxel-contain-

ing regimen, and 45 were treated with a regimen without paclitaxel.

Tumor tissues were obtained by surgical resection. To measure the

pathological response of tumors, tumor specimens were cut into

small pieces, fixed in formaldehyde, and embedded in paraffin.

Sections were stained with haematoxylin and eosin and micro-

scopically analyzed by an experienced pathologist for signs of tumor

regression, mainly characterized by tumor necrosis, decreased

tumor architectural detail, and replacement of tumor by fibrosis. The

pathological response was defined by the proportion of histological

changes in surgical specimens; responders showed histological

changes in two-thirds or more of tumor tissues.

Immunohistochemistry

For immunohistochemical analysis of EB1 expression, tissue sec-

tions were incubated with EB1 antibody and then with biotinylated

secondary antibody and streptavidin-biotin-peroxidase. Diam-

inobenzidine was used as a chromogen substrate, and haematoxylin

was used for counterstaining as described previously (Sun et al.,

2013). EB1 expression level was graded based on the intensity of

staining (0 = negative; 1 = low; 2 = medium; 3 = high) and the

percentage of stained cells (0 = 0% stained; 1 = 1%–25% stained;

2 = 26%–50% stained; 3 = 51%–100% stained). A multiplied score

(intensity score × percentage score) <2 was considered as negative

staining (−), 2–3 as low staining (+), 4–6 as medium staining (++)

and >6 as high staining (+++).

Immunoblot analysis

Protein samples were separated by SDS-PAGE and transferred onto

polyvinylidene difluoride membranes (Millipore, New Bedford, MA,

USA). Then the membranes were blocked in 5% fat-free milk, and

incubated sequentially with primary antibodies and horseradish

peroxidase-conjugated secondary antibodies. Target proteins were

visualized with enhanced chemiluminescence detection reagent

according to the manufacturers instructions (Pierce Biotechnology,

Rock-ford, IL, USA).

In vitro cell proliferation assays

Cells were cultured in 96-well plates and treated for 48 h with dif-

ferent drugs with gradient concentrations. For the sulforhodamine B

staining assay, cells were then fixed with 50% trichloroacetic acid,

stained with 0.4% sulforhodamine B and washed with 1% acetic

acid. The protein-bound dye was extracted with 10 mmol/L Tris base

and the optical density at 490-nm wavelength was determined. MTT

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays

were performed by using the Vybrant MTT Cell Proliferation Assay

Kit (Thermo Fisher Scientific, Norcross, GA, USA) following the

manufacturers instructions. The percentage of cell survival as a

function of drug concentration was plotted to determine the drug

concentration needed to prevent cell proliferation by 50% (IC50).

Immunofluorescence microscopy

Cells grown on coverslips were fixed with 4% paraformaldehyde at

room temperature or with methanol at 20C, and washed with

phosphate-buffered saline (PBS). The samples were blocked by

incubation with 2% bovine serum albumin in phosphate-buffered

saline. Cells were then stained with the DNA dye DAPI or propidium

iodide or PE-conjugated annexin V. The coverslips were finally

mounted with 90% glycerol in phosphate-buffered saline and

examined with an Axio Observer A1 microscope.

Flow cyometry analysis

Cells (2 × 106) were centrifuged, washed twice with ice-cold PBS, and

fixed in 70% ethanol. Cells were centrifuged at 1000 ×g for 10 min,

and the supernatant was discarded. The pellets were resuspended in

the phosphate/citrate buffer (0.2 mol/L Na2HPO4/0.1 mol/L citric acid,

pH 7.5) at room temperature for 30 min. Cells were then washed with

5 mL of PBS and incubated with propidium iodide (20 μg/mL)/RNase

A (20 μg/mL) in PBS for 30 min. Samples were analyzed on a Coulter

Elite flow cytometer (Beckman Coulter, Inc., Fullerton, CA).

In vitro tubulin polymerization assay

Spectrophotometer cuvettes held a mixture solution consisting of

purified GST or GST-EB1 in the buffer containing 100 mmol/L

PIPES, 1 mmol/L EGTA, 1 mmol/L MgSO4, and 1 mmol/L GTP. After

the addition of MAP-free tubulin, the cuvettes were transferred to a

temperature-controlled spectrophotometer and kept at 37°C. Tubulin
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polymerization was monitored by measuring the changes in absor-

bance at 350-nm wavelength as described previously (Huo et al.,

2011; Sun et al., 2011). In another group of experiments, 10% rho-

damine-labelled tubulin was added, and the polymerized microtu-

bules were fixed, mounted onto slides, and examined with the

fluorescence microscope.

Microtubule sedimentation

Different doses of purifiedGSTorGST-EB1was incubatedwith 10mol/

L MAP-free tubulin for 30 min at 37°C to induce microtubule assembly.
3H-paclitaxelwas thenaddedand themixturewas incubated foranother

30 min. Microtubules were pelleted through a sucrose layer by centri-

fugation, and the radioactivity in the pellet wasmeasured to analyze the

interaction between paclitaxel and microtubules. To measure the

association constant (Ka) between paclitaxel and microtubules, the

above experiments were performedwith gradient concentrations of 3H-

paclitaxel. The Ka was then calculated by the following equation:

Ka = radioactivity in the microtubule pellet/(concentration of total

tubulin used radioactivity of total paclitaxel used).

ACKNOWLEDGEMENTS

This work was supported by grants from the National Natural Science

Foundation of China (Grant Nos. 31130015, 31271437, and 31371382),

the Tianjin Natural Science Foundation (13JCZDJC30300), and the

111 project of the Ministry of Education of China (B08011).

ABBREVIATIONS

DAPI, 4,6-diamidino-2-phenylindole; EB1, end-binding protein 1;

MAP, microtubule-associated protein; MTT, 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide; PBS, phosphate-buffered

saline; PE, phycoerythrin; siRNA, small interfering RNA.

COMPLIANCE WITH ETHICS GUIDELINES

Youguang Luo, Dengwen Li, Jie Ran, Bing Yan, Jie Chen, Xin Dong,

Zhu Liu, Ruming Liu, Jun Zhou, and Min Liu declare that they have

no conflict of interest.

All procedures followed were in accordance with the ethical

standards of the responsible committee on human experimentation

(institutional and national) and with the Helsinki Declaration of 1975,

as revised in 2000 (5). Informed consent was obtained from all

patients for being included in the study.

OPEN ACCESS

This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution, and

reproduction in any medium, provided the original author(s) and

the source are credited.

REFERENCES

Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic

protein network controls the fate of microtubule tips. Nat Rev Mol

Cell Biol 9:309322

Amos LA, Schlieper D (2005) Microtubules and maps. Adv Protein

Chem 71:257298

Asakawa K, Toda T (2006) Cooperation of EB1-Mal3 and the Bub1

spindle checkpoint. Cell Cycle 5:2730

Bieling P, Laan L, Schek H, Munteanu EL, Sandblad L, Dogterom M,

Brunner D, Surrey T (2007) Reconstitution of a microtubule plus-

end tracking system in vitro. Nature 450:11001105

Blagosklonny MV, Demidenko ZN, Giovino M, Szynal C, Donskoy E,

Herrmann RA, Barry JJ, Whalen AM (2006) Cytostatic activity of

paclitaxel in coronary artery smooth muscle cells is mediated

through transient mitotic arrest followed by permanent post-

mitotic arrest: comparison with cancer cells. Cell Cycle 5:

15741579

Bu W, Su LK (2001) Regulation of microtubule assembly by human

EB1 family proteins. Oncogene 20:31853192

Dong X, Liu F, Sun L, Liu M, Li D, Su D, Zhu Z, Dong JT, Fu L, Zhou

J (2010) Oncogenic function of microtubule end-binding protein 1

in breast cancer. J Pathol 220:361369

Dragestein KA, van Cappellen WA, van Haren J, Tsibidis GD,

Akhmanova A, Knoch TA, Grosveld F, Galjart N (2008) Dynamic

behavior of GFP-CLIP-170 reveals fast protein turnover on

microtubule plus ends. J Cell Biol 180:729737

Dumontet C, Jordan MA (2010) Microtubule-binding agents: a

dynamic field of cancer therapeutics. Nat Rev Drug Discov

9:790803

Galjart N (2010) Plus-end-tracking proteins and their interactions at

microtubule ends. Curr Biol 20:R528R537

Honnappa S, Gouveia SM, Weisbrich A, Damberger FF, Bhavesh

NS, Jawhari H, Grigoriev I, van Rijssel FJ, Buey RM, Lawera A

et al (2009) An EB1-binding motif acts as a microtubule tip

localization signal. Cell 138:366376

Huo L, Li D, Sun L, Liu M, Shi X, Sun X, Li J, Dong B, Dong X, Zhou

J (2011) Tat acetylation regulates its actions on microtubule

dynamics and apoptosis in T lymphocytes. J Pathol 223:2836

Ikui AE, Yang CP, Matsumoto T, Horwitz SB (2005) Low concentra-

tions of taxol cause mitotic delay followed by premature disso-

ciation of p55CDC from Mad2 and BubR1 and abrogation of the

spindle checkpoint, leading to aneuploidy. Cell Cycle 4:13851388

Jiang K, Akhmanova A (2011) Microtubule tip-interacting proteins: a

view from both ends. Curr Opin Cell Biol 23:94101

Jordan MA, Wilson L (2004) Microtubules as a target for anticancer

drugs. Nat Rev Cancer 4:253265

Komlodi-Pasztor E, Sackett D, Wilkerson J, Fojo T (2011) Mitosis is

not a key target of microtubule agents in patient tumors. Nat Rev

Clin Oncol 8:244250

Kronja I, Kruljac-Letunic A, Caudron-Herger M, Bieling P, Karsenti E

(2009) XMAP215-EB1 interaction is required for proper spindle

assembly and chromosome segregation in Xenopus egg extract.

Mol Biol Cell 20:26842696

Li D, Xie S, Ren Y, Huo L, Gao J, Cui D, Liu M, Zhou J (2011)

Microtubule-associated deacetylase HDAC6 promotes angiogen-

esis by regulating cell migration in an EB1-dependent manner.

Protein Cell 2:150160

Liu M, Yu H, Huo L, Liu J, Li M, Zhou J (2008) Validating the mitotic

kinesin Eg5 as a therapeutic target in pancreatic cancer cells and

tumor xenografts using a specific inhibitor. Biochem Pharmacol

76:169178

RESEARCH ARTICLE Youguang Luo et al.

478 © The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll



Mohan R, Katrukha EA, Doodhi H, Smal I, Meijering E, Kapitein LC,

Steinmetz MO, Akhmanova A (2013) End-binding proteins

sensitize microtubules to the action of microtubule-targeting

agents. Proc Natl Acad Sci USA 110:89008905

Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L,

Bayani N, Coppe JP, Tong F et al (2006) A collection of breast

cancer cell lines for the study of functionally distinct cancer

subtypes. Cancer Cell 10:515527

Quinn JE, James CR, Stewart GE, Mulligan JM, White P, Chang GK,

Mullan PB, Johnston PG, Wilson RH, Harkin DP (2007) BRCA1

mRNA expression levels predict for overall survival in ovarian

cancer after chemotherapy. Clin Cancer Res 13:74137420

Rouzier R, Rajan R, Wagner P, Hess KR, Gold DL, Stec J, Ayers M,

Ross JS, Zhang P, Buchholz TA et al (2005) Microtubule-

associated protein tau: a marker of paclitaxel sensitivity in breast

cancer. Proc Natl Acad Sci USA 102:83158320

Schuyler SC, Pellman D (2001) Microtubule plus-end-tracking

proteins: The end is just the beginning. Cell 105:421424

Strickland LI, Wen Y, Gundersen GG, Burgess DR (2005) Interaction

between EB1 and p150glued is required for anaphase astral

microtubule elongation and stimulation of cytokinesis. Curr Biol

15:22492255

Sun L, Gao J, Dong X, Liu M, Li D, Shi X, Dong JT, Lu X, Liu C, Zhou

J (2008) EB1 promotes Aurora-B kinase activity through blocking

its inactivation by protein phosphatase 2A. Proc Natl Acad Sci

USA 105:71537158

Sun X, Shi X, Liu M, Li D, Zhang L, Liu X, Zhou J (2011) Mdp3 is a

novel microtubule-binding protein that regulates microtubule

assembly and stability. Cell Cycle 10:39293937

Sun X, Li D, Yang Y, Ren Y, Li J, Wang Z, Dong B, Liu M, Zhou J

(2012) Microtubule-binding protein CLIP-170 is a mediator of

paclitaxel sensitivity. J Pathol 226:666673

Sun X, Li F, Dong B, Suo S, Liu M, Li D, Zhou J (2013) Regulation of

tumor angiogenesis by the microtubule-binding protein CLIP-170.

Protein Cell 4:266276

Tommasi S, Mangia A, Lacalamita R, Bellizzi A, Fedele V, Chiriatti A,

Thomssen C, Kendzierski N, Latorre A, Lorusso V et al (2007)

Cytoskeleton and paclitaxel sensitivity in breast cancer: the role

of beta-tubulins. Int J Cancer 120:20782085

Veitia R, David S, Barbier P, Vantard M, Gounon P, Bissery MC,

Fellous A (2000) Proteolysis of microtubule associated protein 2

and sensitivity of pancreatic tumours to docetaxel. Brit J Cancer

83:544549

Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for

cytotoxicity screening. Nat Protoc 1:11121116

Vitre B, Coquelle FM, Heichette C, Garnier C, Chretien D, Arnal I

(2008) EB1 regulates microtubule dynamics and tubulin sheet

closure in vitro. Nat Cell Biol 10:415421

Wagner P, Wang B, Clark E, Lee H, Rouzier R, Pusztai L (2005)

Microtubule associated protein (MAP)-tau: a novel mediator of

paclitaxel sensitivity in vitro and in vivo. Cell Cycle 4:11491152

Wang H, Liu B, Zhang C, Peng G, Liu M, Li D, Gu F, Chen Q, Dong

JT, Fu L et al (2009) Parkin regulates paclitaxel sensitivity in

breast cancer via a microtubule-dependent mechanism. J Pathol

218:7685

Wen Y, Eng CH, Schmoranzer J, Cabrera-Poch N, Morris EJS, Chen

M, Wallar BJ, Alberts AS, Gundersen GG (2004) EB1 and APC

bind to mDia to stabilize microtubules downstream of Rho and

promote cell migration. Nat Cell Biol 6:820830

Zovko S, Abrahams JP, Koster AJ, Galjart N, Mommaas AM (2008)

Microtubule plus-end conformations and dynamics in the periph-

ery of interphase mouse fibroblasts. Mol Biol Cell 19:31383146

EB1 stimulates paclitaxel sensitivity RESEARCH ARTICLE

© The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn 479

P
ro
te
in

&
C
e
ll


	End-binding protein 1 stimulates paclitaxel sensitivity in breast cancer by promoting its actions toward microtubule assembly and stability
	Abstract
	INTRODUCTION
	RESULTS
	EB1 expression in breast tumor tissues correlates with tumor response to paclitaxel-containing chemotherapy
	EB1 enhances paclitaxel sensitivity in breast cancer cells
	EB1 promotes the activity of paclitaxel to induce mitotic arrest and apoptosis
	EB1 enhances the activity of paclitaxel to stimulate microtubule assembly and stabilization
	EB1 promotes paclitaxel binding to microtubules

	DISCUSSION
	MATERIALS AND METHODS
	Chemicals and antibodies
	Plasmids, proteins, and siRNAs
	Cell culture and transfection
	Tumor samples and pathological analysis
	Immunohistochemistry
	Immunoblot analysis
	In vitro cell proliferation assays
	Immunofluorescence microscopy
	Flow cyometry analysis
	In vitro tubulin polymerization assay
	Microtubule sedimentation

	ACKNOWLEDGEMENTS
	ABBREVIATIONS
	COMPLIANCE WITH ETHICS GUIDELINES
	OPEN ACCESS
	References


