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ABSTRACT

  Development of controllable hypermutable cells can 
greatly benefit understanding and harnessing microbial 
evolution. However, there have not been any similar sys-
tems developed for Clostridium, an important bacterial 
genus. Here we report a novel two-step strategy for de-
veloping controllable hypermutable cells of Clostridium 
acetobutylicum, an important and representative indus-
trial strain. Firstly, the mutS/L operon essential for methyl-
directed mismatch repair (MMR) activity was inactivated 
from the genome of C. acetobutylicum to generate hy-
permutable cells with over 250-fold increased mutation 
rates. Secondly, a proofreading control system carrying 
an inducibly expressed mutS/L operon was constructed. 
The hypermutable cells and the proofreading control 
system were integrated to form a controllable hypermut-
able system SMBMutC, of which the mutation rates can 
be regulated by the concentration of anhydrotetracycline 
(aTc)  . Duplication of the miniPthl-tetR module of the proof-
reading control system further signifi cantly expanded the 
regulatory space of the   mutation rates, demonstrating 
hypermutable Clostridium cells with controllable mutation 
rates are generated. The developed C. acetobutylicum 
strain SMBMutC2 showed higher survival capacities than 
the control strain facing butanol-stress, indicating greatly 
increased evolvability and adaptability of the controllable 
hypermutable cells under environmental challenges.

KEYWORDS    Clostridium acetobutylicum, mutation rates, 
hypermutable cells, artifi cial control

INTRODUCTION
Microbial evolution is promoted by genetic modifications on 
genomic architectures and compositions (Hastings et al., 2000; 
Matic et al., 2004; Conrad et al., 2009). Spontaneous muta-
tions during DNA replication provide an important evolutionary 
force for microbes encountering environmental fluctuations, 
and accelerated accumulation of adaptive mutations can be 
expected to confer survival and growth advantages on indi-
vidual cell level as well as on population level (Taddei et al., 
1997; Tenaillon et al., 1999). Thus, hypermutable cells with 
elevated mutation rates play an important role for microbial ad-
aptation and evolution under environmental stresses, e.g. rapid 
emergence of bacterial resistance to   multi   antibiotics (Tanabe 
et al., 1999; Perron et al., 2010). Recently hypermutable cells 
have also shown great potential in biotechnological applica-
tions, based on the ability of increasing the genetic variability 
at the genome level (Greener et al., 1997; Selifonova et al., 
2001). However, the percentage of the hypermutable cells in 
microbial populations is generally low, and microbial cells tend 
to keep the mutation rates of genome replication at a relatively 
low level to avoid accumulation of deleterious spontaneous 
mutations (Kimura, 1967; Ishii et al., 1989; Kondrashov, 1995). 
Usually, the accuracy of genome replication is guaranteed 
by multiple and hierarchal mechanisms. This mainly includes 
base selection, 3'->5' exonuclease, and MMR (Methyl-directed 
Mismatch Repair) (Echols and Goodman, 1991; Kunkel and 
Bebenek, 2000). For better understanding and harnessing 
microbial evolution and genome plasticity, the natural quality 
control system of genome replication should be disturbed and 
replaced with artifi cial control mechanism, by which mutation 
rates of genome replication can be controlled and regulated as 
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requirement.
Clostridium is the second largest bacteria genera in size, 

and classified as Gram-positive endospore-forming obligate 
anaerobes (Andreesen, 1989; Rehner and Samuels, 1994). 
A large portion of Clostridium species, e.g. C. botulinum, 
C. tetani, C. septicum, and C. diffi cile pose serious threats to 
human health (Sakaguchi, 1982; Kennedy et al., 2005; Bartlett, 
2006). On the other hand, many other Clostridium species, 
e.g. C. acetobutylicum, C. thermocellum, and C. bifermen-
tans, show great signifi cance on biotechnological application 
for solvents production and pollutant biodegradation (Jones 
and Woods, 1986; Lewis et al., 1996). Understanding and 
manipulating physiological and behavioral mechanisms of 
such Clostridium species requires better controllability of the 
microbial evolution, which can be achieved by construction of 
a controllable hypermutable system in Clostridium.

Previously, artifi cial regulation of cellular mutation rates was 
achieved by introducing proofreading-defi cient DNA polymer-
ase mutants (Selifonova et al., 2001; Shimoda et al., 2006; 
Abe et al., 2009) or inactivation of the nonessential proofread-
ing mechanism (Sasaki et al., 2000; Emlyn-Jones et al., 2003), 
through which the natural quality-control mechanism for DNA 
replication can be disturbed. To date, this strategy has been 
applied in several model microbes, including Escherichia coli, 
Bacillus subtilis, and Saccharomyces cerevisiae (Selifonova 
et al., 2001; Emlyn-Jones et al., 2003; Endo et al., 2006; 
Shimoda et al., 2006), and the alteration of mutation rates is 
usually determined by a specifi c mutator gene, resulting in a 
single-switch control pattern. We aimed to design a novel and 
universal method through which microbial mutation rates can 
be rapidly regulated to diverse levels. To this end, we proposed 
a two-step strategy for construction of an artificial control of 
microbial mutation rates. The fi rst step is to disrupt the natural 
cellular mechanisms for controlling the mutation rates by inac-
tivating the relevant genes, generating cells with signifi cantly 
increased mutation rates (hypermutable cells). The second step 
is to construct a proofreading control system carrying the genes 
that have been inactivated in the hypermutable cells, under the 
control of an inducible promoter. Combination of the hypermut-
able cells with the controlled expression of relevant genes is 
expected to generate an artifi cial control of mutation rates.

Using this concept, we constructed a controllable hyper-
mutable system in Clostridium acetobutylicum, which is a 
representative species of the genus Clostridium with industrial 
relevance. By identification and deactivation of the chromo-
somally encoded mutS/L operon, we obtained a hypermutable 
cell SMBMut5, with over 250-fold increased mutation rates 
achieved. Subsequently, a proofreading control system bear-
ing an anhydrotetracycline (aTc)-inducible mutS/L expression 
system was then constructed and introduced into SMBMut5, 
generating controllable hypermutable systems SMBMutC and 
SMBMutC2, in which the mutation rates of genome replication 
can be well controlled and regulated by the concentrations 
of exogenous aTc molecules. Facing butanol-stress, cells of 
SMBMutC2 under the evolving state showed much higher sur-

vival rate than the wildtype control, indicating that evolvability 
and adaptability of the controllable hypermutable Clostridium 
cells developed in this work were greatly increased. The newly 
developed controllable hypermutable system enables better 
harnessing of genome replication mutation rates of C. aceto-
butylicum, and will encourage the development of similar sys-
tems in other Clostridium species.

RESULTS
  Design of the controllable hypermutable system in 
C. acetobutylicum

To achieve artificial control of genome replication mutation 
rates in C. acetobutylicum, we designed a controllable hyper-
mutable system consisted of a hypermutable cell and a proof-
reading control system, as shown in Fig. 1A. For construction 
of the hypermutable cell, the chromosomally located mutS 
and mutL on genome of C. acetobutylicum were knocked out. 
Since mutS and mutL are coding for activities of MMR, an im-
portant proofreading mechanism for DNA replication (Echols 
and Goodman, 1991; Kunkel and Bebenek, 2000; Kunkel, 
2004), the resulted mutants are expected to exhibit signifi cantly 
increased mutation rates due to decreased fi delity of genome 
replication. With regards to introduction of a proofreading con-
trol system, the mutS/L operon was placed under the control 
of an aTc inducible promoter that we developed previously for 
Clostridium (Dong et al., 2012). The hypermutable cell contain-
ing the proofreading control system thus forms a system that 
is capable of artifi cially controlling the mutation rate of genome 
replication. In the absence of aTc, the promoter is bound by 
TetR to block the expression of mutS and mutL, meaning the 
MMR function is defi cient so as the mutation rate is elevated 
to a maximal level of the hypermutable state. In the presence 
of aTc, the TetR repressor is bound by aTc, thus the promoter 
will be induced to initiate the expression of mutS and mutL, en-
suring a high fi delity of genome replication. As the expression 
strength is dependent on aTc concentration, the mutation rate 
can be gradually recovered to a regular level as aTc concen-
tration increases (Fig. 1B). When aTc concentration achieved 
an optimal value for mutS/L expression, mutation rates will be 
regulated to the minimal level of the system. In summary, the 
switch ON/OFF and fi ne-tuning of the hypermutable state can 
be achieved in the absence or presence of an appropriate con-
centration of aTc.

Generation of hypermutable cells of C. acetobutylicum by 
inactivation of mutS/L operon

To create hypermutable cells of C. acetobutylicum, we aimed 
to inactivate the MMR-system-encoding genes. C. acetobutyli-
cum SMB009 is a derivative of C. acetobutylicum DSM1731, 
of which the complete genome has been sequenced (Bao et 
al., 2011). Chromosomally located SMB_G1862 and SMB_
G1861 genes were annotated as mutS and mutL, respectively. 
ClosTron method was then applied to inactivate these two 
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genes (Fig. 2A), generating mutS/mutL single mutant or mutS-
mutL double mutant (Table 1). Insertions of the ClosTron into 
the target gene sites were verifi ed via PCR amplifi cations (Fig. 2B) 
and subsequent sequencing of PCR products.

To confi rm whether the inactivation of mutS/L operon led to 

increase of mutation rates in C. acetobutylicum, we determined 
the frequencies of generating rifamycin-resistant (Rif25R) 
colonies, which were commonly used to refl ect microbial muta-
tion rates (Sasaki et al., 2000; Selifonova et al., 2001; Emlyn-
Jones et al., 2003). As expected, inactivation of mutS/L operon 

Figure 1. Design of the controllable hypermutable system in C. acetobutylicum. (A) Chromosome located mutS and mutL of 
C. acetobutylicum were disrupted by intron. An exogenous vector carrying mutS/L operon under control of an aTc inducible promoter 
Pcm-2tetO1 was introduced into the cell as a proofreading-control system. In the absence of aTc, the TetR molecules bound to the Pcm-
2tetO1 promoter and inhibited expression of mutS/L, leading to an elevation of mutation rates. In the presence of aTc, the TetR molecules 
were bound by aTc, and the expression of mutS/L was activated, leading to an increased fi delity of an increased fi delity of genome rep-
lication. (B) Mutation rates of the controllable hypermutable system in C. acetobutylicum can be well controlled in a regulatory space by 
regulation of aTc concentrations. When aTc was completely absent, mutation rates achieved a maximal level due to the top level of TetR 
inhibition. When aTc concentration achieved an optimal value for mutS/L expression, mutation rates were regulated to the minimal level 
for the system.
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inactivation of mutS/L operon. (B) Identifi cation of the SMBMut5 and SMB009 strains by primers mutS-disruption-check-F/R (the right two 
lanes) and mutL-disruption-check-F/R (the left two lanes). (C)   Growth assay of SMBMut5 and SMB009 strain. OD600 value (points and 
lines) and CFU counts (bars) were measured during the growth of SMBMut5 (fi led triangles and white bars) and SMB009 strains (fi led 
squares and black bars) in 24 h.
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to the increased concentrations of aTc. In the absence of aTc, 
strain SMBMutC showed an elevated mutation rates (0.35 × 
10-6), 95-fold and 62-fold higher than that of strain SMB9M 
(0.0037 × 10-6) and SMB009 (0.0056 × 10-6), respectively. 
When an increased concentration aTc was added to the medi-
um, the mutation rates of strain SMBMutC were gradually de-
creased. When the aTc concentrations reached 50 μg/mL, the 
mutation rates of SMBMutC reverted to a regular level (0.0063 
× 10-6) comparable to that of the controls.

 Duplication of the tetR module optimized the 
controllability of the controllable hypermutable system

As shown in Table 1 and Fig. 3B, introduction of pMutS/L-2tetO1 
into strain SMBMut5 led to a 4-fold decrease of background 
mutation rates in the absence of aTc (from 1.44 × 10-6 to 0.35 
× 10-6), indicating leaky expression of mutS/L occurs. To in-
crease the capability of the controllable hypermutable system 
for regulating the mutation rate, we aimed to increase the strin-
gency of the inducible mutS/L expression system. Since the 
tetR gene in pMutS/L-2tetO1 encodes a tetR protein, which 
recognizes and combines with the 2tetO1 region in the pro-
moter, we hypothesized that increasing the gene dose of tetR 
might reduce leaky expression, thus improving the stringency 
of the system. We therefore duplicated the miniPthl-tetR mod-
ule on pMutS/L-2tetO1 and obtained the new plasmid, which is 
designed as pMutS/L-2tetO1-2tetR.

We introduced the newly constructed pMutS/L-2tetO1-
2tetR into strain SMBMut5 and obtained strain SMBMutc2 
(Fig. 4A). Mutation rates determination (Fig. 4B) revealed that 
strain SMBMutC2 showed a better controllability than that of 
SMBMutC. In the absence of aTc, background mutation rates 
of SMBMutC2 (0.71 × 10-6) is 2-fold higher than that of SMB-
MutC (0.35 × 10-6), suggesting the leaky expression of mutS/L was 
reduced in the new system. Further analysis revealed that the 
mutation rate of strain SMBMutC2 could also be well regulated 
by aTc concentrations. In the aTc concentration of 0, 50, 100, 
and 200 μg/mL, mutation rates of strain SMBMutC2 can be 
increased by 120-fold, 40-fold, 10-fold, and 3-fold respectively, 
comparing with that of the wildtype control SMB009, ranging 
over 3 orders of magnitudes.

signifi cantly increased the mutation rates (Table 1). The mutS-
mutL disrupted strain SMBMut5 showed an over 250-fold in-
creased frequency for generating Rif25R colonies. In addition, 
the mutL-disrupted strain SMBMut2 and mutS-disrupted strain 
SMBMut3 also showed an approximately 150-fold increased 
mutation rate, respectively, comparing to that of the wildtype 
control C. acetobutylicum SMB009 (Table 1). Determination of 
the mutation rates indicated that inactivation of the mutS/L op-
eron disturbed the quality control system for ensuring the high fi -
delity of genome replication in C. acetobutylicum, thus leading to 
accumulation of signifi cantly increased spontaneous mutations.

Further analysis revealed that inactivation of the mutS/L op-
eron did not inhibit the growth of C. acetobutylicum. The SMB-
Mut5 strain showed a similar but prolonged growth curve with 
the control (Fig. 2C). Both the optical density and the live cells 
of strain SMBMut5 in culture broth kept increasing for a longer 
process than that of SMB009, possibly due to the enhanced 
adaptability caused by high mutation rates under complex and 
tough conditions when the culture entered stationary phase. 
Thus C. acetobutylicum SMBMut5 was selected as the hyper-
mutable cell for further investigation.

Assembling and evaluation of the controllable 
hypermutable system in C. acetobutylicum

To artificially control the mutation rate of the hypermutable 
cells of C. acetobutylicum, we cloned the mutS/L operon from 
C. acetobutylicum DSM1731 and inserted it into a previously 
developed inducible-gene-expression system in C. acetobu-
tylicum, pGusA2-2tetO1 (Dong et al., 2012). The new plasmid 
was termed as pMutS/L-2tetO1, in which the expression of 
mutS/L was controlled by an aTc inducible promoter. Plasmid 
pMutS/L-2tetO1 was transformed into strain SMBMut5, gener-
ating a new strain designed as SMBMutC (Fig. 3A). For evalu-
ation and analysis, strain SMB009 carrying pMutS/L-2tetO1, 
designed as SMB9M, was used as a control.

The hypothesis is that strain SMBMutC generated by com-
bination of the hypermutable cell with the proofreading control 
system should work as a controllable hypermutable system. 
To verify this, we determined the mutation rates of strains 
SMBMutC and SMB9M under serial concentrations of aTc. As 
shown in Fig. 3B, the mutation rate of SMBMutC is responsive 

Table 1. Genotypes and mutation rates evaluation of the series of mutS/L inactivated strains

Strain Relative genotypesa Mutation ratesb Relative mutation ratesc

SMB009 (0.0056 ± 0.0003) × 10-6 1

SMBMut2 mutL::intron (0.83 ± 0.02) × 10-6 148.8

SMBMut3 mutS::intron (0.87 ± 0.17) × 10-6 155.4

SMBMut5 mutS::intron, mutL::intron (1.44 ± 0.16) × 10-6  257.9
a All of the SMBMut2, SMBMut3, and SMBMut5 strains were obtained from SMB009 by genetic  modifi ca-
  tion with ClosTron gene inactivation approach. 
b Mutation rates data were calculated from both the total numbers of live cells and Rif25 resistant cells. To
  calculate the standard deviation, every experiment was repeated at least 3 times.
c Relative mutation rates were obtained by comparison with that of the SMB009 as 1.
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with elevated mutation rates were expected to show enhanced 
survival and tolerance capacities facing butanol-stress.

After overnight cultivation under normal no-stress condi-
tions, about 106 Clostridium cells were spread on RCM agar-
plates containing   series of concentrations of n-butanol and 
cultivated for 3 days before photographed. As shown in Fig. 5, 
on non-toxic n-butanol concentration of 10 g/L, growths of 
SMBMutC2 and SMB9M showed no difference, and both of 
them can generate high density lawn on the agar-plates, which 
were comparable with the growth on normal RCM plates. 
While on n-butanol concentrations of 12 g/L, which is toxic for 

SMBMutC2 with elevated mutation rates showed 
increased survival and tolerance capacities than SMB9M 
facing butanol-stress

For further evaluating the evolvability and adaptability of the 
developed controllable hypermutable Clostridium cells, we 
analyzed and compared the survival and tolerance capacities 
of the SMBMutC2 and SMB9M under n-butanol challenging 
conditions. As the main fermentation products of C. acetobu-
tylicum, high concentrations of n-butanol are greatly toxic and 
inhibitory for microbial growths. As designed, SMBMutC2 cells 
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3 independent determination experiments. The dotted line represented for the mutation rates of SMBMutC with no aTc addition.
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evolution, an artifi cially controllable hypermutable system with 
fi ne-tuning capacity might be a better choice (Tenaillon et al., 
1999; Loh et al., 2010; Gentile et al., 2011). In this work, we 
proposed a novel and universal strategy to replace natural 
cellular controlled expression of MMR system by artificially 
controlled expression, thus leading to well-controlled mutation 
rates of microbial genome replication. In C. acetobutylicum, 
an important and representative Clostridium species, we per-
formed this strategy and constructed an artifi cially controllable 
hypermutable system, in which mutation rates of the cells can 
be well controlled by regulation of aTc concentrations. 

Genome sequencing (Bao et al., 2011) and development 
of efficient genetic manipulation tools (Shao et al., 2007; 
Dong et al., 2010, 2012) in C. acetobutylicum enabled suc-
cessful construction of the controllable hypermutable system. 
mutS and mutL involved in MMR system play an important 
role for quality control of DNA replication in microbes by rec-
ognizing and removing mismatches generated during DNA 
replication (Modrich and Lahue, 1996; Horst et al., 1999), and 
their defects have been proved responsible for generation of 
hypermutable cells in many microbes (LeClerc et al., 1996; 
Sniegowski et al., 1997; Shaver and Sniegowski, 2003). In this 
work, inactivation of the chromosome located mutS/L operon 
and introduction of an aTc-inducible mutS/L expression system 
successfully constructed an aTc-dose-responsive regulation on 
the mutation rates of C. acetobutylicum. In summary, with the 
controllable hypermutable strains SMBMutC and SMBMutC2, 
mutation rates of C. acetobutylicum cells can be regulated 
ranging over 3 orders of magnitudes, from normal level of the 
wildtype control to 120-fold increased level. Convenient switch 
between normal cells to hypermutable cells and fi ne-tuning of 
the strength of mutation rates indicated this system could act 
as a powerful tool for harnessing evolution of C. acetobutylicum 
(Hermann et al., 1985; Stephanopoulos, 2002; Liu et al., 2013).

Accuracy of genetic information transfer is guaranteed by 
multiple and hierarchical mechanisms in microbial cells (Kunkel, 
2004), meaning many targets can be manipulated to trigger 
increased mutation rate for genome replication. Disturbing of 
different proofreading-related genes would bring infl uence of 
varying degrees to fi delity of DNA replication (Morrison et al., 
1993; Sasaki et al., 2000). Knockout of the mutS/L operon led 
to a 250-fold increased mutation rate in C. acetobutylicum, and 
that is also the theoretically maximal mutagenesis strength 
that can be achieved in our system. For further expanding the 
regulatory space to generate higher mutagenesis strengths if 
needed, systematic modifying and engineering of other proof-
reading-related genes might be necessary.

The controllable hypermutable system of C. acetobutylicum 
showed improved controllability of genome replication muta-
tion rates, and that confi rmed the feasibility and effectiveness 
of our two-step strategy to replace natural cellular control of 
the replication-proofreading-mechanism by artifi cial control. In 
comparison with the previously developed hypermutable sys-
tem in other microbes (Selifonova et al., 2001; Shimoda et al., 
2006; Abe et al., 2009), the hypermutable cells developed with 

cell growths, SMBMutC2 showed greatly increased survival 
rates than SMB9M (Fig. 5A). Similar phenomena were also 
observed on other butanol concentrations from 11 g/L to 14 g/L 
(Fig. 5B), meaning that the hypermutable Clostridium cells we 
developed showed increased evolvability and adaptability fac-
ing environmental challenges.

DISCUSSION
Artifi cial construction of hypermutable cells in which mutation 
rates were altered via genetic manipulation has been achieved 
in several microbes. Multiple mutator or anti-mutator genes 
related with fi delity of DNA replication have been identifi ed in 
microbes (Horst et al., 1999; Sasaki et al., 2000; Yang et al., 
2004), thus providing many targets for genetic manipulation. 
However,  most existing systems for regulating mutation rates 
were developed by inactivation, over-expression, or modifi-
cation of a specific mutator or anti-mutator gene, leading to 
a single-switch control pattern and a constant mutagenesis 
strength. For better understanding and harnessing microbial 
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Figure 5. n-Butanol challenge of the SMBMutC2 and SMB9M 
strains. About 106 Clostridium cells of SMBMutC2 and SMB9M 
were spread on RCM agar-plates containing n-butanol concen-
trations from 10 g/L to 14 g/L, and cultivated for 3 days before 
photographed and counted. (A) Colonies of SMBMutC2 (left) and 
SMB9M (right) generated on RCM agar-plates containing 12 g/L 
n-butanol. (B) CFU counts of SMBMutC2 and SMB9M on serial 
concentrations of n-butanol from 10 g/L to 14 g/L. High density 
lawn means that the colonies densities were similar with that on 
n-butanol conditions.



Guodong Luan et al. RESEARCH ARTICLE

860 | November 2013 | Volume 4 | Issue 11    © Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Pr
ot

ei
n 

   
 C

el
l

&

Table 2. E. coli DH5α cells (TAKARA) were used for plasmid construc-
tion. All primers were synthesized by Invitrogen (Beijing, China) fol-
lowed by polyacrylamide gel electrophoresis purifi cation.

Cultivation and maintenance conditions

E. coli cells were aerobically cultivated in Luria-Bertani medium at 
37°C with 200 rpm orbital shaking. All C. acetobutylicum strains were 
cultivated anaerobically at 37  °C in RCM medium (Hirsch and Grinsted, 
1954). Antibiotics were supplemented when necessary (ampicillin, 
100   μg/mL, Amp100; chloramphenicol, 30   μg/mL, Cm30; erythromycin, 
50 μg/mL, Em50). All E. coli and C. acetobutylicum strains were main-
tained in 15% glycerol at -80°C.

DNA isolation and manipulation

Total genomic DNA of C. acetobutylicum was extracted with TIANamp 
Bacterial DNA Kit (TIANGEN Biotech, Beijing, China). Plasmid extrac-
tion from E. coli, PCR products purifi cation, and gel extraction were 

our method enabled more convenient and regulatable control 
of cellular mutation rates. Fine-tuning of the mutation rates to 
diverse levels in our system can be achieved by addition or re-
moval of exogenous signal aTc molecules, rather than complex 
genetic manipulations. In addition, when desired traits were 
obtained for the hypermutable cells, the convenient switch 
from mutational state to normal state will guarantee maintain-
ing of the obtained phenotypes and genotypes by preventing 
possible back mutations or negative mutations. Based on 
development of effi cient genetic manipulation approaches and 
genome sequencing technologies, our strategy will encourage 
and promote development of similar systems in other microbes.

MATERIALS AND METHODS

Bacterial strains, plasmids, and primers

Bacterial strains, plasmids, and primers used in this work are listed in 

Table 2. Bacterial strains, plasmids and primers

Strains, plasmids, or primers Relevant Characteristics Sources

Strains

C. acetobutylicum SMB009 CAC 1502::intron Dong et al., 2010

C. acetobutylicum SMB Mut2 mutS::intron, derived from SMB009 This work

C. acetobutylicum SMB Mut3   mutL::intron, derived from SMB009 This work

C. acetobutylicum SMB Mut5 mutS::intron, mutL::intron, derived from SMB009 This work

E. coli JM109 recA1 mcrB+ hsdR17 Lab storage

Plasmids

pIMP1 MLSR AmpR shuttle vector of E. coli-C. acetobutylicum Mermelstein et 
al., 1992

pMTL009-mutS For mutS gene disruption by group II intron method This work

pMTL009-mutL For mutL gene disruption by group II intron method This work

pGusA2-2tetO1 aTc inducible Pcm-2tetO1-GusA2 expression system Dong et al., 2012

pMutS/L-2tetO1 Derived from pGusA2-2tetO1, This work

pMutS/L-2tetO1-2tetR Derived from pMutS/L-2tetO1, duplicated miniPthl-tetR module This work

Primers

mutS-570/571S-IBS AAAAAAGCTTATAATTATCCTTAAGAGAAAGATTTGTGCGCCCAGATAGGGTG This work

mutS-570/571S-EBS1d CAGATTGTACAAATGTGGTGATAACAGATAAGTCAGATTTGATAACTTACCTTTCTTTG This work

mutS-570/571S-EBS2 TGAACGCAAGTTTCTAATTTCGGTTTCTCTTCGATAGAGGAAAGTGTCT This work

mutS-disruption-check-F TCGCATCTAGAGAACTGGAATTAGT This work

mutS-disruption-check-R AGCACAACTTTTTAATCCTTCTGTCATA This work

mutL-210/211S-IBS AAAAAAGCTTATAATTATCCTTAGATATAGAAAAAGTGCGCCCAGATAGGGTG This work

mutL-210/211S-EBS1d CAGATTGTACAAATGTGGTGATAACAGATAAGTCGAAAAAGCTAACTTACCTTTCTTTGT This work

mutL-210/211S-EBS2 TGAACGCAAGTTTCTAATTTCGGTTATATCTCGATAGAGGAAAGTGTCT This work

mutL-disruption-check-F ATTGCCGCAGGAGAAGTGGTA This work

mutL-disruption-check-R AAATCTTCAGGGAGTAATTCCACTA This work

mutS/L-operon-F ATCGCCATGGTTAGGAGGTTAGTTAGAATGAGCATATCTCCTATGAT This work

mutS/L-operon-R AAGTTCTCGAGCCCCACAGCTGTAGGTCCTG This work

mini-thl-tetR-F ATCGCTCGAGTATATTGATAAAAATAATAATAGTGGGTATAATTAAGTTGTTAGGAGG This work

mini-thl-tetR-R ATCGGGATCCAACTCGACATCTTGGTTACCGTG This work

Abbreviations: AmpR, ampicillin resistance; CmR, chloramphenicol resistance; MLSR, macrolide, lincosamide, and streptogramin B resistance.
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lated into fresh RCM culture medium and cultivated overnight. Broths 
containing about 106 cells were spread on RCM agar-plates containing 
serial concentrations of n-butanol, from 10 g/L to 14 g/L. The plates 
were then cultivated anaerobically at 37°C for 3 days before photo-
graphed. Em50 was also added to the liquid medium and agar-plates.
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