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ABSTRACT

The dynamic polar polymers actin fi laments and microtu-
bules are usually employed to provide the structural ba-
sis for establishing cell polarity in most eukaryotic cells. 
Radially round and immotile spermatids from nematodes 
contain almost no actin or tubulin, but still have the abil-
ity to break symmetry to extend a pseudopod and initiate 
the acquisition of motility powered by the dynamics of 
cytoskeleton composed of major sperm protein (MSP) 
during spermiogenesis (sperm activation). However, 
the signal transduction mechanism of nematode sperm 
activation and motility acquisition remains poorly under-
stood. Here we show that Ca2+ oscillations induced by the 
Ca2+ release from intracellular Ca2+ store through inositol 
(1,4,5)-trisphosphate receptor are required for Ascaris 
suum sperm activation. The chelation of cytosolic Ca2+ 
suppresses the generation of a functional pseudopod, 
and this suppression can be relieved by introducing ex-
ogenous Ca2+ into sperm cells. Ca2+ promotes MSP-based 
sperm motility by increasing mitochondrial membrane 
potential and thus the energy supply required for MSP 
cytoskeleton assembly. On the other hand, Ca2+ promotes 
MSP disassembly by activating Ca2+/calmodulin-depend-
ent serine/threonine protein phosphatase calcineurin. In 
addition, Ca2+/camodulin activity is required for the fusion 
of sperm-specifi c membranous organelle with the plasma 
membrane, a regulated exocytosis required for sperm mo-
tility. Thus, Ca2+ plays multifunctional roles during sperm 
activation in Ascaris suum.

KEYWORDS     spermiogenesis, Ca2+, major sperm protein, 
Ascaris suum

INTRODUCTION
The establishment and maintenance of cell polarity is essen-

tial for many biological processes such as embryogenesis, 
immune surveillance and wound healing. Typically, actin and 
microtubule cytoskeletons are employed to establish and 
maintain cell polarity (Li and Gundersen, 2008). Spermiogen-
esis (sperm activation), in which round sessile spermatids dif-
ferentiate into asymmetric motile spermatozoa, is a symmetry-
breaking process. Dynamic and pronounced morphological 
changes occur in the radially symmetrical spermatids during 
the process of mammalian sperm activation, including the 
formation of an elongated nucleus with condensed chromatin 
covered by a well-shaped acrosome in the head and a long 
fl agellum. Cytoskeletal networks composed of actin fi laments, 
intermediate fi laments and microtubules are required for this 
morphological transformation during spermiogenesis (Sperry, 
2012). Remarkably, this acquisition of function occurs while 
these cells are transcriptionally and translationally silent and is 
therefore highly dependent on posttranslational modifi cations 
to their existing protein components. In addition, intracellular 
Ca2+ and Ca2+-dependent proteolysis have also been implicat-
ed in mammalian spermiogenesis (Berrios et al., 1998; Ben-
Aharon et al., 2005).

Nematode sperm also require a functional maturation 
process, in which round immotile spermatids transform into 
asymmetrical crawling spermatozoa, to achieve fertilizing 
competence in the female reproductive tract (Ma et al., 2012). 
Upon activation, sperm extend a single pseudopod for migra-
tion, instead of the beating flagellum found in mammalian 
spermatozoa. In nematode Ascaris suum (Ascaris hereafter), 
vas deferens extract (VDE) has the capacity to trigger sperm 
activation (Abbas and Foor, 1978). Our previous studies dem-
onstrate that a trypsin-like serine protease As_TRY-5 purifi ed 
from VDE was identifi ed as the sperm activator (Zhao et al., 
2012). Its homolog in C. elegans was identifi ed as the male 
sperm activator by genetic approaches (Smith and Stanfi eld, 
2011). 

Nematode sperm possess neither actin nor tubulin; instead, 
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upon activation are required for sperm motility and male fertility 
(L’Hernault, 2009). C. elegans spermatids from the MO fusion-
defective mutant fer-1 extend pseudopods in response to the 
artificial activator (Washington and Ward, 2006), indicating 
that MO fusion and pseudopod extension are two separate 
events during sperm activation. Pseudopod extension can be 
visualized under light microscopy and the fused MOs can be 
detected as fl uorescent puncta of FM1–43 formed at the rear 
edge of the cell body (Washington and Ward, 2006; Zhao et 
al., 2012). Our ex vivo time-lapse imaging showed that pseu-
dopod protrusion precedes MO fusion (Fig. 1E and Movie S1). 
The following analyses dissect the roles of Ca2+ in pseudopod 
extension and MO fusion.

Ca2+ oscillations are required for sperm activation and are 
regulated by IP3R and PLC

The rise of cytoplasmic Ca2+ levels during sperm activation 
might be caused by the infl ux of extracellular Ca2+ or the re-
lease of Ca2+ from intracellular store. Nematode spermatids 
can be activated in Ca2+-free medium (Movie S2) (Ward et 
al., 1983; Washington and Ward, 2006), indicating that the 
[Ca2+]i increase might be caused by Ca2+ release from intra-
cellular store. Ca2+ oscillations are primarily regulated by IP3R 
(Berridge, 2007), which can be activated by inositol (1,4,5)-tri-
sphosphate (IP3) generated through cleavage of phosphati-
dylinositol 4,5-bisphosphate (PIP2) by PLC in a variety of cell 
types (Berridge, 2007). To investigate whether the IP3/Ca2+ 
signaling cascade is required for sperm pseudopod exten-
sion and MO fusion, we treated spermatids with U73122, a 
specifi c PLC inhibitor (Gulbransen et al., 2012) or with 2-APB, 
a cell-permeable IP3R inhibitor (Estrada et al., 2001), and 
found that both U73122 (100 μmol/L) and 2-APB (200 μmol/L) 
blocked VDE-induced sperm activation. These drugs inhibited 
both pseudopod formation and MO fusion, whereas the inac-
tive analog of U73122, U73343, had no inhibitory effect on 
MO fusion and much less infl uence on pseudopod formation 
(Fig. 2A). Pseudopod extension was inhibited for ~85% and 
~80% of the sperm treated with U73122 and 2-APB, respec-
tively (Fig. 2B). Consistent with the FM1-43 staining assay 
(Fig. 2A, bottom  panels), immunoblot results also showed that 
U73122 and 2-APB inhibited VDE-triggered secretion of As_
SRP-1 (Fig. 2C and 2D), which was previously identifi ed as an 
MO component (Zhao et al., 2012).

To validate the inhibitory effect of 2-APB on IP3R, the 
[Ca2+]i dynamics of 2-APB-treated cells were examined. Time-
lapse imaging of Ca2+ oscillations revealed that VDE could 
not induce [Ca2+]i oscillations in 2-APB-pretreated sperm 
(Fig. 2E and 2F). These data suggest that the Ca2+ oscillations 
regulated by IP3R and PLC are necessary for both pseudopod 
extension and MO fusion during sperm activation.

Chelation of cytosolic Ca2+ blocks pseudopod extension 
but not MO fusion

To further investigate the role of Ca2+ in sperm activation, we 
depleted the cytosolic Ca2+ with the cell-permeable Ca2+ chela-

their activation and amoeboid migration depend on controlled 
assembly/disassembly of the major sperm protein (MSP) cy-
toskeleton (Roberts and Stewart, 2000). During sperm activa-
tion, the sperm specifi c membranous organelle (MO) derived 
from e  ndoplasmic reticulum/Golgi apparatus fuses with the 
plasma membrane (PM), leaving a permanent invagination on 
the cell surface and resulting in the exocytosis and transloca-
tion of MOs components (Washington and Ward, 2006; Zhao 
et al., 2012). In fl agellated sperm, Ca2+ modulates nearly every 
step of sperm maturation and fertilization including sperm 
capacitation, hyperactivation, chemotaxis, acrosome reaction 
and sperm-egg recognition (Breitbart, 2002; Kirichok et al., 
2006; Kaupp et al., 2008; Teves et al., 2009). However, the role 
of Ca2+ in nematode sperm activation was seldom reported. 
Previously, Ca2+ was implicated in the regulation of C. elegans 
sperm activation (Shakes and Ward, 1989; Washington and 
Ward, 2006). However, the underlying mechanisms remain to 
be elucidated. Here we show that cytosolic Ca2+ oscillations 
regulated by phospholipase C (PLC) and i  nositol (1,4,5)-tris-
phosphate receptor (IP3R) synchronize with sperm activation in 
Ascaris. Ca2+ promotes MSP-based sperm motility by increas-
ing mitochondrial membrane potential and thus the energy 
production required for MSP cytoskeleton assembly, and by 
modulating the activity of Ca2+/calmodulin-dependent serine/
threonine protein phosphatase calcineurin (CaN) for inhibiting 
MSP assembly and promoting MSP disassembly. In addition, 
we show that Ca2+/calmodulin activity is required for the sperm 
exocytosis, which is necessary for functional spermatozoa mi-
gration. Thus, Ca2+ plays multifunctional roles in Ascaris sperm 
activation.

RESULTS
Cytosolic Ca2+ oscillations synchronize with pseudopod 
extension during sperm activation 

To elucidate the molecular mechanism underlying Ca2+ modu-
lation of the MSP-based cytoskeletal dynamics during nema-
tode sperm activation, Ascaris sperm were employed as they 
have the following advantages: (i) Ascaris spermatids and their 
endogenous activator VDE (Zhao et al., 2012) can be obtained 
in large quantities; (ii) sperm activation can be studied ex vivo; 
(iii) the motile apparatus of Ascaris sperm can be reconstituted 
in vitro (Italiano et al., 1996; Miao et al., 2003). To investigate 
the roles of Ca2+ in sperm activation, we labeled cytosolic Ca2+ 
with Fluo 4-AM, a cell-permeable indicator, and monitored in-
tensity dynamics of Fluo 4 fl uorescence during Ascaris sperm 
activation. We detected Ca2+ oscillations (amplitude: ΔF/F0 
= 0.18 ± 0.01) during VDE-induced sperm activation (Fig. 1A 
and 1B) compared with the mock control: sperm treated with 
heat-inactivated VDE (H-VDE) (Fig. 1C and 1D). The concert 
between cytosolic Ca2+ concentration (or [    Ca2+]i hereafter) 
oscillations and sperm morphological changes from round im-
mobile spermatids to crawling amoeboid spermatozoa implies 
that cytosolic Ca2+ oscillations might be involved in regulating 
sperm activation.

Both pseudopod extension and MO fusion with the PM 
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tor BAPTA-AM (50 μmol/L). The BAPTA-AM-pretreated sper-
matids were stimulated with VDE and   were subjected to time-
lapse imaging under confocal microscope. Surprisingly, after 
stimulation of VDE, a small pseudopod protruded out briefl y 
and then retracted back to the cell body (Fig. 3A and Movie 
S3). In contrast, in control assay the sperm pseudopod formed 
normally and maintained its dynamics for a much longer time 
(Movie S2). Consistent with the pseudopod dynamic changes, 
only one cytosolic Ca2+ transient occurred after the stimulation 
of VDE in BAPTA-AM-pretreated sperm (Fig. 3B). This indicat-
ed that, upon Ca2+ release, BAPTA-AM was unable to chelate 
all the released Ca2+, and trace Ca2+ temporarily escaped from 
chelation. Our data further showed that BAPTA-AM blocked 
VDE-induced pseudopod formation signifi cantly, in that fewer 
than 24% of the BAPTA-AM-treated sperm extruded a pseudo-
pod; in contrast, 84% of the control cells showed this behavior 
(P < 0.001) (Fig. 3C and 3D). Similarly, pretreatment with an-
other cell-permeable Ca2+ chelator, EGTA-AM (600 μmol/L) also 
prevented VDE from inducing pseudopod formation (Fig. S1).

We also examined the effect o  f intracellular Ca2+ chelation 
on MO fusion. The FM1-43 staining assay showed that MO 
fusion occurred in BAPTA-AM-treated sperm (Fig. 3C). As_
SRP-1 from the cells treated with and without BAPTA-AM was 
secreted at similar levels (Fig. 3E), consistent with the FM1-
43 staining assay.   Likewise, MO fusion also occurred in EGTA-
AM-treated sperm (Fig. S1). Hence, cytosolic Ca2+ depletion 
does not inhibit VDE-triggered MO fusion. The symmetrical 
distribution of fused MOs beneath the plasma membrane of 
BAPTA-AM-treated sperm (Fig. 3C, right bottom panel) indi-
cates that sperm cell polarity is dependent on pseudopod ex-
tension but not on MO fusion.

To confirm the cytosolic Ca2+ depletion assay, we intro-
duced Ca2+ back into the BAPTA-AM-treated sperm using the 

Ca2+ ionophore A23187 (2.5 μmol/L) and examined whether 
the exogenous addition of Ca2+ could rescue pseudopod for-
mation. Our result revealed that Ca2+ ionophore combined with 
100 μmol/L Ca2+ recovered pseudopod extension for a few 
minutes (Fig. 3F and Movie S4). In contrast, the cells did not 
respond to Ca2+ ionophore alone in a Ca2+-free buffer (Fig. S2).

To determine whether Ca2+ is sufficient to induce sperm 
activation, we introduced different concentrations of Ca2+ into 
spermatids via Ca2+ ionophore A23187 treatment in the ab-
sence of VDE. This introduced Ca2+ failed to trigger sperm ac-
tivation (Fig. S3). Collectively, these analyses demonstrate that 
Ca2+ is necessary but not suffi cient to trigger sperm activation.

Ca2+ regulates pseudopod extension by modulating 
mitochondrial membrane potential

Because Ca2+ is an important regulator of ATP production in 
mitochondria (Griffi ths and Rutter, 2009), and ATP is neces-
sary for MSP assembly in vitro (Italiano et al., 1996), we hy-
pothesized that Ca2+ regulated sperm activation by means of 
modulating ATP production. To test this hypothesis, we fi rstly 
examined the status of sperm activation when ATP production 
is defective. Our result showed that once the mitochondrial 
membrane potential was impaired by CCCP, which is a proton 
ionophore, both MO fusion and pseudopod extension were 
totally blocked (Fig. 4A). This fact suggests that ATP is neces-
sary for sperm activation. Next, we investigated whether chela-
tion of intracellular Ca2+ would change intracellular ATP con-
centration. We examined the ATP concentration in sperm with 
or without BAPTA-AM treatment over the course of VDE stimu-
lation. Our result showed that in normally activated sperm, 
the ATP level increases dramatically after a short time of VDE 
stimulation, and subsequently falls down to a low level. In 
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Figure 1. Sperm cytosolic Ca2+ oscillations 
were detected during Ascaris sperm acti-
vation. Spermatids were stimulated with vas 
deferens extract (VDE) (A) or heat-inactivated 
VDE (H-VDE) (C). The time-lapse images of 
sperm morphological changes were captured 
using a CCD camera. Scale bars, 10 μm. Traces 
in (B) and (D) show [Ca2+]i dynamics of cells in 
(A) and (C), respectively, with the abscissa axis 
as time (min), the vertical axis as ∆F/F0. ΔF/F0 
represents the relative change of fluorescence 
intensity against the mean baseline fl uorescence 
intensity. The arrows indicate the time of VDE 
or H-VDE application. (E) Spermatids were pre-
stained with FM1–43 and stimulated with VDE. 
Representative fl uorescence and phase-contrast 
microscopy frames from time-lapse videos (Mov-
ie S1) show that pseudopod protrusion precedes 
MO fusion. Arrows mark the bright fluorescent 
puncta where MOs have fused with the PM.
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contrast, in BAPTA-AM treated sperm, the ATP level increases 
weakly after VDE stimulation and then remains at a low level 
(Fig. 4B). This result suggests that enhanced production of 
ATP is required for pseudopod extension. Further, we deter-
mined the effect of BAPTA-AM on mitochondrial membrane 

potential which is a marker for mitochondrial activity using the 
fl uorescent dye JC-1. The JC-1 staining assay showed that the 
mitochondrial membrane potential in BAPTA-AM-treated cells 
was signifi cantly lower than that in controls (Fig. 4C). This fact 
suggests that BAPTA-AM prevents pseudopod extension by 
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Figure 2. Ca2+ oscillations regulated by PLC and IP3R are required for Ascaris sperm activation. (A) Both U73122 (100 μmol/L) 
and 2-APB (200 μmol/L) inhibits the pseudopod extension and MO fusion induced by VDE, whereas U73343 (100 μmol/L), the inactive 
analog of U73122, has no obvious infl uence on sperm activation. Spermatids were pretreated with U73122, U73343 (control for U73122) 
or 2-APB and then stimulated with VDE. In control, spermatids were pretreated with DMSO and then activated with VDE or H-VDE. 
All cells were stained with FM1–43 after the treatments. Scale bar, 10 μm. (B) Analysis of the inhibitory effects of 2-APB or U73122 on 
pseudopo d extension. Values are the mean ± standard error of the mean (SEM) (n = 8). ** P < 0.001. (C and D) The effects of inhibitors 
on VDE-induced As_SRP-1 secretion. MSP was used as a loading control. (E and F) 2-APB inhibits the formation of VDE-triggered Ca2+ 
oscillations. The dynamics of sperm morphological changes (E) and Fluo-4 fl uorescence (F) in sperm treated with 200 μmol/L 2-APB 
followed by VDE. The abscissa axis: time (min); the vertical axis, ΔF/F0. The time for VDE application is marked as “00:00”. All the time 
stamps shown in (E) are coded in the format of min:sec. Scale bar, 10 μm.
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Pseudopod extension but not MO fusion was inhibited by BAPTA-AM. Sperm were treated with 50 μmol/L BAPTA-AM for 15 min and then 
stimulated with VDE for 10 min; sperm without treatment of BAPTA-AM served as controls. Scale bar, 10 μm. (D) Analysis of the inhibition 
of BAPTA-AM on pseudopod formation. Values are the m  ean ± SEM (n = 8). **P < 0.001. (E) BAPTA-AM does not inhibit the secretion of 
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the inhibitory effect of BAPTA-AM on pseudopod extension. Spermatids pretreated with BAPTA-AM were stimulated with VDE for 10 min, 
followed by being perfused with solutions containing BAPTA-AM, VDE, 2.5 μmol/L A23187 (Ca2+ ionophore) and 100 μmol/L Ca2+. Timing 
was started as the perfusion was initiated. Scale bar, 5 μm. 
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Calcineurin inhibits assembly and promotes disassembly 
of MSP cytoskeleton

CaN, a Ca2+/CaM-dependent serine/threonine phosphatase, 
has been identifi ed in C. elegans sperm (Bandyopadhyay et 
al., 2002). Considering that protein phosphorylation/dephos-
phorylation regulates MSP dynamics (Italiano et al., 1996; 
Miao et al., 2003), we hypothesized that CaM inhibitor might 
induce pseudopod extension via decreasing the phosphatase 
activity of CaN. To test this hypothesis, we examined the effect 
of CaN on MSP assembly and disassembly. The assembly/
disassembly status of MSP fi ber can be indicated by increase/
decrease of MSP fi ber optical density (Roberts et al., 1998). 
We found that recombinant human CaN (25.6 nmol/L) not only 
signifi cantly inhibited MSP assembly (Fig. 6A and 6B), but also 
promoted MSP fi lament disassembly in vitro (Fig. 6A and 6C). 
Consistently, increasing the CaN activity by introducing Ca2+ 
into the reconstitution system signifi cantly inhibited the assem-
bly and enhanced the disassembly of MSP fi ber, simultane-
ously (Fig. 6D–F). Taken together, these results support the 
idea that Ca2+ plays dual roles in modulating MSP assembly. 
On the one hand, acting in a dominant pathway, Ca2+ pro-
motes ATP production in the mitochondria, thereby enhancing 
MSP assembly. On the other hand, Ca2+ binds to CaM that 
then activates CaN, a phosphatase that inhibits assembly and 
promotes disassembly of MSP fi lament (Fig. 7).

DISCUSSION 
Cell polarity is essential for the proper function of most differen-

blocking the Ca2+-induced ATP production in mitochondria.

Calmodulin is involved in the regulation of pseudopod 
extension and MO fusion

As a Ca2+-binding protein, calmodulin (CaM) mediates the 
interaction between Ca2+ and most of its targets (Krebs and 
Heizmann, 2007). Furthermore, CaM is involved in mam-
malian sperm capacitation and acrosome reaction (Si and 
Olds-Clarke, 2000; Bendahmane et al., 2001). Therefore, we 
explored whether Ca2+ regulates nematode sperm activation 
via CaM. Our FM1–43 staining assay revealed that the CaM 
inhibitors CPZ and TFP inhibited VDE-induced MO fusio  n 
(Fig. 5A). The As_SRP-1 secretion assay (Fig. 5C) and trans-
mission electron microscopy (TEM) analysis of sperm struc-
tures (Fig. 5J and 5K; control cells are illustrated in Fig. 5D, 
5E, 5G and 5H) also showed that CPZ or TFP inhibited VDE-
triggered MO fusion. These facts suggest that CaM activity is 
required for MO fusion during sperm activation.

Interestingly, we found that pseudopod extension occurred 
in 48% and 46% of the TFP (150 μmol/L)- and CPZ (150 μmol/
L)-treated spermatids, respectively. In contrast, only 5% of the 
H-VDE-treated control spermatids showed pseudopod protru-
sion (Fig. 5B). TEM analysis showed that MSP assembling 
was indeed initiated in the TFP-treated cells (Fig. 5I and 5L; 
controls are illustrated in Fig. 5F). This observation is in line 
with a previous study showing that the CaM inhibitor TFP, CPZ 
or W7 induced C. elegans sperm activation in vitro (Shakes 
and Ward, 1989).
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Figure 4. Ca2+ regulates sperm activation through 
mitochondria. (A) CCCP inhibits MO fusion and 
pseudopod extension. Upper panel shows Phase 
images of sperm treated with or without 10 μmol/
L CCCP followed by VDE or H-VDE. Lower panel 
shows sperm stained with FM1–43 after the treat-
ments. Scale bar, 10 μm. (B) Representative graph 
of intracellular ATP measurement after VDE stimula-
tion in control and BAPTA-AM pretreated sperm. (C) 
Cytosolic Ca2+ depletion by BAPTA-AM decreases 
the mitochondrial potential. Spermatids treated with 
DMSO followed by VDE served as control for those 
treated with BAPTA-AM and VDE. The percentage 
of cells with a high level of mitochondrial membrane 
potential was normalized on the basis of controls. 
Values are the mean ± SEM (n = 12). **P < 0.001.
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Figure 5. CaM inhibitors induce pseudopod 
extension and inhibit VDE-induced MO fusion. 
(A) Spermatids were pretreated with 150 μmol/L CPZ 
or TFP (CaM inhibitors) for 10 min and then stimu-
lated with VDE or H-VDE. Sperm treated with VDE 
and H-VDE alone served as positive and negative 
controls, respectively. Scale bar, 10 μm. (B and C) 
The effects of CaM inhibitors on sperm pseudopod 
extension with statistics (B) and MO fusion using the 
As_SRP-1 secretion assay (C). Sperm were treated 
as in (A) but without FM1–43 staining. Values in (B) 
are the mean ± SEM (n = 23). **P < 0.001. The MSP 
in (C) was used as a loading control. (D–L) TEM im-
ages show the effects of TFP on sperm pseudopod 
extension and MO-PM fusion. (D) Spermatids were 
activated with VDE. (E and F) High magnifi cation im-
ages of sperm in (D). (G) Spermatids were treated 
with 150 μmol/L TFP. (H and I) High magnification 
images of sperm in (G). (J) Spermatids were treated 
with 150 μmol/L TFP, then with VDE. (K and L) High 
magnifi cation images of cells in (J). MSP fi laments 
(MFs), mitochondria (MC) and refringent bodies (RBs) 
are also shown in (D–L). Scale bars, 2 μm in D, G 
and J; 1 μm in H, I; 0.5 μm in E, F, K and L. 

tiated cell types. Its establishment in response to extracellular 
stimuli is regulated spatially and temporally by complex regu-
latory pathways in migrating cells and is dependent on actin 
polymerization for pseudopodial extension. Sperm of nema-
todes lack the conventional actin machinery typically associ-
ated with amoeboid cell motility; instead, their activation and 

migration are dependent on the dynamics of the MSP-based 
cytoskeleton. Our study has shown that cytosolic Ca2+, as a 
multifunctional modulator, is required for sperm activation in 
Ascaris. Thus, Ca2+ released from intracellular stores is re-
quired for increasing mitochondrial activity to provide suffi cient 
energy required for sperm activation and migration. Because 
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reassembled to generate a protrusive force (Roberts, 2005; 
Miao et al., 2008). Ca2+ oscillations might provide a mecha-
nism for local instead of global regulation of disassembling the 
MSP cytoskeleton.

Nematode spermatozoa are crawling cells, morphologically 
different from flagellated sperm. Exocytosis takes places at 
several sites over the cell body during nematode sperm activa-
tion, unlike the acrosome reaction that is a single vesicle fusion 
event in fl agellated sperm. However, both types of sperm might 
share evolutionarily conserved components for vesicle fusion. 
In a variety of secretory cells, vesicle fusion is stimulated   by 
an increase in [Ca2+]i, and this is detected by synaptotagmin, 
a C2 domain-containing protein located on the vesicle surface. 
We have shown here that both Ca2+ release from the intracel-
lular store and the activity of CaM are required for fusion of the 
MO with the PM during sperm activation. Interestingly, CaM 
antagonists also block agonist-induced acrosome reaction in 
mouse sperm (Zeng and Tulsiani, 2003). Furthermore, the 
Ca2+/CaM-dependent synaptotagmin VI is required for human 
sperm acrosomal exocytosis (Castillo Bennett et al., 2010). 

sperm are terminally differentiated cells and are quiescent 
transcriptionally and translationally, their maturation is highly 
dependent on post-translational modifi cations to the existing 
protein components. Protein phosphorylation and dephospho-
rylation of MSP cytoskeletal accessory proteins are necessary 
for modulating the assembly and disassembly of the MSP 
cytoskeleton at the leading and rear edges of the pseudopod, 
respectively (LeClaire et al., 2003; Miao et al., 2003; Yi et al., 
2007; Yi et al., 2009). Phosphorylation sites in the MSP have 
also been identifi ed in C. elegans (Fraire-Zamora et al., 2011). 
Thus, ATP appears to be used indirectly for pseudopod exten-
sion and Ca2+ plays a pivotal role in regulating sperm mito-
chondrial activity. On the other hand, Ca2+ negatively regulates 
the assembly and promotes the disassembly of MSP fi laments 
by enhancing the activity of the CaN. The spatial and tempo-
ral regulation of cytoskeleton disassembly at the base of the 
pseudopod where it joins the cell body is necessary to gener-
ate the retraction force needed to pull the cell body forward 
(Shimabukuro et al., 2011). In addition, free disassembled 
MSP dimers are recycled to the leading edge, where they are 

Figure 6. CaN inhibits MSP assembly and promotes MSP disassembly. (A) Normal MSP fi ber was assembled in the in vitro recon-
stitution system containing 20% sperm extract and 200 μmol/L ATP and was perfused with new solution (containing 20% sperm extract, 
200 μmol/L ATP and 25.6 nmol/L CaN). Time-lapse phase-contrast images of MSP fi bers were captured with CCD camera. The dotted 
line indicates the site where optical density was measured. (B) The relative growth rate of MSP fi bers in (A) before and after perfusion 
with CaN solution. Values are the mean ± SEM (n = 5). **P < 0.001. (C) The relative loss of the optical density of MSP fi bers at the dot-
ted line during 2 min before and after starting perfusion. Values are the mean ± SEM (n = 5). **P < 0.05. (D) The perfusion of additional 
0.5 mmol/L Ca2+ signifi cantly inhibits MSP fi ber elongation and promotes MSP fi ber disassembly. (E) The relative growth rate of MSP fi b-
ers in (D) before and after perfusion. Values are the mean ± SEM (n = 11). **P < 0.001. (F) The relative loss of the optical density of MSP 
fi bers at the dotted line during 2 min before and after starting perfusion with Ca2+ solution. Values are the mean ± SEM (n = 11). **P < 0.05. 
All the time stamps are coded in format of min:sec. Scale bars, 5 μm in (A) and (D).
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Live cells were pipetted into chambers formed by mounting a glass 
coverslip onto a glass slide with two parallel strips of double-sided tape 
and examined using a confocal microscope system (Olympus FV500 
with a 60 × /1.4 NA oil immersion objective, Japan). For rescuing sperm 
from the inhibitory effects of a Ca2+ chelator, cells treated with BAPTA-
AM (50 μmol/L) and VDE were perfused with a control solution (HKB 
containing 50 μmol/L BAPTA-AM, VDE and 2.5 μmol/L A23187) or a 
rescue solution (the control solution plus additional Ca2+). Images were 
captured with a charge-coupled device (CCD; Andor Technology PLC, 
UK) coupled with an Axio Imager M2 microscope (Carl Zeiss, Germany) 
and processed with MetaMorph software (Universal Imaging, USA).

Examination of cytosolic Ca2+ dynamics

Spermatids were stained with 5 μmol/L Fluo 4-AM at 38°C for 15 min 
and then washed twice with HKB. The stained cells were then pipetted 
into a chamber fi xed on the microscope stage and imaged at intervals 
of 4 s using the CCD camera coupled to Leica SP5 confocal micros-
copy system (Leica, Germany) at room temperature (λex 488 nm and 
λem 505 nm). During image collection, VDE or other reagents were ap-
plied gently into the chamber. The dynamics of fl uorescence intensity 
which indicates the changes of [Ca2+]i  were analyzed using LAS AF 
software with the formula: ΔF/F0 = (F–F0)/F0 (ΔF/F0 represents the 
relative change of fl uorescence intensity against the mean baseline 
fl uorescence intensity F 0).

FM1–43 staining and confocal microscopy

Spermatids were incubated in HKB buffer with or without VDE or other 
reagents and the treated cells were stained with FM1–43 (Molecular 
Probes, USA) at 5 μg/mL for 2 min to visualize fusion of the PM and 
MO upon activation (Washington and Ward, 2006). Images were cap-
tured using a confocal laser scanning microscope (Leica SP5 with a 
40 × /1.25 NA oil-immersion objective, Germany).

As_SRP-1 secretion assay

This assay was performed as described in (Zhao et al., 2012). The 
amounts of As_SRP-1 secreted into the medium were shown by west-
ern blotting using an anti-As_SRP-1 antibody, while the loading control 
was indicated by the Coomassie Brilliant Blue staining of SDS-PAGE 
with cell samples.

Measurement of intracellular ATP concentration

The spermatids were treated with 50 μmol/L BAPTA-AM or BAPTA 
(control) for 15 min and then stimulated with VDE. The sperm at differ-
ent time after VDE treatments were collected, lysed and centrifuged 
(12,000 r/min, 5 min, 4°C). The supernatant was subjected to ATP 
measurement using ATP Assay Kit (Beyotime, China).

Measurement of mitochondrial membrane potential

The spermatids were treated with 50 μmol/L BAPTA-AM or BAPTA 
(control) for 15 min and then stimulated with VDE. The sperm were 
stained for 20 min with JC-1 (5 μg/mL) (Beyotime, China) at 38°C and 
then rinsed twice with staining buffer. Finally, cells were analyzed using 
a fl ow cytometer (BD Biosciences, USA) with settings of λex 488 nm 
and λem 530 nm for monomers and λex 525 nm and λem 590 nm for 

The existence and necessity of C2 domain-containing protein 
FER-1 for MO fusion in C. elegans indicates that nematode 
sperm, like human sperm (Blas et al., 2005), might utilize 
SNARE complex-mediated signaling cascades for the regula-
tion of exocytosis.

MATERIALS AND METHODS

Sperm preparation and treatment 

Ascaris suum male worms were collected from slaughterhouse and 
recovered in worm buffer (PBS buffer containing 10 mmol/L NaHCO3, 
pH 7.0) at 38°C overnight. Spermatids were obtained by dissecting 
males, removing the seminal vesicle and extruding the seminal fl uid 
into HKB buffer (50 mmol/L HEPES, 70 mmol/L KCl, 10 mmol/L NaH-
CO3, pH 7.1). The isolated spermatids were stimulated to extend the 
pseudopods and mature into spermatozoa with the addition of VDE. To 
test the infl uences of various reagents on sperm activation, the sper-
matids were pretreated with reagents and activated by adding VDE. 

Mitochondria

ATP

MSP assembly

CaM

CaN

PLC

MO fusion

IP3

IP3R

Ca2+

Figure 7. Proposed model of Ca2+ signaling transduction and 
function in Ascaris suum sperm activation. The sperm acti-
vator activates PLC through its receptor to generate IP3, which 
triggers IP3R to release Ca2+   from the intracellular Ca2+ store. The 
released Ca2+, on the one hand, is taken up by mitochondria and 
increases mitochondrial membrane potential to boost ATP pro-
duction; ATP may be further used in phosphorylation and other 
processes to promote MSP cytoskeleton assembly and MO fu-
sion. On the other hand, after binding to CaM, Ca2+ regulates MO 
fusion via an unidentifi ed factor and activates CaN to promote 
MSP disassembly. The coordination of Ca2+ release by IP3R and 
recycling by Ca2+ pump generates [Ca2+]i oscillations.
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Reconstitution of MSP fi lament assembly in vitro

MSP fiber reconstitution was performed as described (Shimabukuro 
et al., 2011). Sperm extract (20%) and ATP (0.2 mmol/L or 1 mmol/L) 
with or without other reagents were prepared in KPM buffer (10 mmol/L 
potassium phosphate, 0.5 mmol/L MgCl2, pH 6.8) and pipetted into a 
chamber, and then examined on an Axio Imager A1 microscope (Carl 
Zeiss, Germany) equipped with a phase-contrast objective lens. The 
elongation rate and optical density of MSP fi lament were analyzed with 
MetaMorph software.

TEM of Ascaris sperm

Sperm were fi xed with GTS-Fixative (2.5% glutaraldehyde, 2 mg/mL 
tannic acid and 0.5 mg/mL saponin in HKB) for 40 min on a Thermanox 
plastic coverslip (EMS, USA), followed by washing in HKB buffer and 
then water. They were post-fi xed in 1% osmium tetroxide for 30 min, 
dehydrated in a graded series of ethanol followed by propylene oxide, 
and then infi ltrated and embedded with EMbed-812 resin (EMS, USA). 
Ultrathin sections (80 nm) were cut on a Leica UC6 ultramicrotome, 
collected on formvar-coated copper grids and stained with uranyl ac-
etate and lead citrate. TEM images were captured using an FEI Spirit 
120 kV electron microscope (FEI Co., USA) operated at 100 kV.
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