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ABSTRACT

With defined culture protocol, human embryonic stem
cells (hESCs) are able to generate cardiomyocytes
in vitro, therefore providing a great model for human
heart development, and holding great potential for car-
diac disease therapies. In this study, we successfully
generated a highly pure population of human cardio-
myocytes (hCMs) (>95% cTnT+) from hESC line, which
enabled us to identify and characterize an hCM-specific
signature, at both the gene expression and DNA meth-
ylation levels. Gene functional association network and
gene-disease network analyses of these hCM-enriched
genes provide new insights into the mechanisms of hCM
transcriptional regulation, and stand as an informative
and rich resource for investigating cardiac gene func-
tions and disease mechanisms. Moreover, we show that
cardiac-structural genes and cardiac-transcription fac-
tors have distinct epigenetic mechanisms to regulate
their gene expression, providing a better understanding

of how the epigenetic machinery coordinates to regulate
gene expression in different cell types.

KEYWORDS human cardiomyocyte, DNA methylation,
microarray, heart development

INTRODUCTION

Heart failure, caused by massive loss or dysfunction of
hCMs, is the main cause of death and morbidity in the
developed world. Treatments for this devastating disorder
are inefficient and usually focused around symptomatic
alleviation, while the main cause of the disease, that is, loss
of hCMs and associated contractile function, remains
unchallenged. Thus, identification of factors reducing fibrotic
scarring or promoting hCM proliferation is of the utmost
importance for public health. Achieving this goal is compli-
cated by the difficulty of obtaining large numbers of pure,
fully differentiated hCMs and their intermediate stages.

hESCs have the potential to differentiate into cells of all
lineages, therefore providing an ideal in vitro model to study
organ development and disease mechanisms. Recent
efforts have successfully developed several protocols, by
which hESCs can be differentiated into hCMs (Yang et al.,
2008; Kattman et al., 2011; Lian et al., 2012; Willems et al.,
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2012; Zhang et al., 2012). Furthermore, hESC-derived hCMs
have been analyzed by microarray and a group of cardio-
specific genes were revealed (Beqqali et al., 2006; Cao
et al., 2008; Synnergren et al., 2008). However, one inevi-
table concern is that by these published differentiation pro-
tocols, it is difficult to obtain pure hCMs. Hence, any
following study using the mixed cell population may poten-
tially give some misleading results. To overcome this, an
improved protocol is needed in order to achieve a satisfac-
tory purity of hESC-derived hCMs. Moreover, while the gene
expression profile for hCMs has been provided, a more
comprehensive investigation on gene expression together
with epigenetic regulation, such as DNA methylation, during
the hCM differentiation is still lacking.

In an effort to overcome these limitations, we have
developed a new cardiac differentiation protocol starting
from hESCs that yields a highly pure population of hCMs
(>95%) suitable for genomic studies. As proof-of-concept,
and in an effort to uncover new cardiac-specific targets rel-
evant for therapeutic applications, we performed global epi-
genetic and transcriptional analyses during cardiac
specification using this protocol. We performed transcrip-
tional profiling and genome-wide DNA methylation analyses
of hCMs and compared them to undifferentiated hCMs and
hESC-derived neural stem cells (hNSCs). Our results pro-
vide a step forward towards the characterization of hCMs at
both the transcriptional and epigenetic levels, and offer a

powerful tool towards better understanding heart physiology
and disease.

RESULTS

Derivation of highly enriched cardiomyocytes
from hESCs

Following Palecek’s previous protocol (Lian et al., 2012),
hESCs were seeded as single cells on Matrigel and main-
tained in mTeSR. The GSK3 specific inhibitor CHIR99021
was added on the first day of differentiation, followed by the
Wnt inhibitor IWP4 on day 3. After 15 days, a relatively pure
and contracting cardiomyocyte population was obtained
(Movie S1). We enriched this fraction by collecting and
washing the contracting hCM sheets and re-plating them on
fresh Matrigel plates (Movies S2 and S3). These subcultured
hCMs expressed the CM-specific markers cardiac troponin T
(cTnT) and sarcomeric myosin (MF20), and exhibited normal
cardiac sarcomere organization, as indicated by alpha-Acti-
nin and MLC2v co-staining (Fig. 1A). Flow cytometry analysis
indicated a majority of definitive cardiac cells were present at
day 25 (96% cTnT+ cells and 91% MF20+, Fig. 1B).

Global gene expression profiling in hCMs

We obtained RNA from undifferentiated hESCs and hCMs
and used it for microarray analysis. hESC-derived hNSCs
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Figure 1. Characterization of hESC-derived hCMs. (A) Immunofluorescence analyses showing the expression of key cardiac

markers in d25 hCMs derived from H9 hESCs. Top panel: cTnT (green). Middle panel: MF20 (green). Bottom Panel: alpha-Actinin

(green) and MLC-2v (red). Scale bar: 20 μm. (B) Flow cytometry analysis of cells expressing cTnT (top panel) or MF20 (bottom

panel). Cells were collected on day 25 of hCM differentiation.
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(Liu et al., 2012) were used as a control population. All the
cells shared the same genetic background (H9), allowing for
an unbiased side-by-side comparison of their gene expres-
sion profile. Three biological replicates from each cell type
were measured with PrimeView Human Gene Expression
Arrays, covering more than 36,000 transcripts and variants.
All of the replicates were highly reproducible, supporting the
purity and reliability of the method. Clustering data indicated
that hESCs and hNSCs were closer to each other in terms of
expression, while hCMs showed a more distinct expression
pattern (Fig. 2A). Among represented transcripts, we iden-
tified 695 genes that showed at least a two-fold up-regulation
and 401 genes that showed at least a two-fold down-regu-
lation in hCMs compared to both hESCs and hNSCs (Tables
S1 and S2). A group of the cardiac-enriched genes were
validated by qRT-PCR (Fig. 2B).

To gain further insight into the functions of these hCM
differentially expressed genes, we performed Gene Ontology
(GO) analyses using the BiNGO (Maere et al., 2005) Cyto-
scape (Shannon et al., 2003) plugin. Interestingly, hCM up-
regulated genes were significantly over-represented in car-
diac function-related GO terms (complete lists of GO terms
are shown in Tables S3–5), including muscle contraction,
heart development, and sarcomeric structures. In contrast,
hCM differentially down-regulated genes were significantly
clustered into GO terms such as M phase, nuclear division,
and mitosis (complete lists of GO terms are shown in Tables
S6–8), suggesting that mitosis in hCMs is strongly repres-
sed, as has been consistently observed in hCMs during
maturation (Zhang et al., 2012).

Next, we analyzed differentially regulated targets in the
context of gene regulatory networks. We could identify the
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Figure 2. Global gene expression profiling of hCMs. (A) Heatmap and hierarchical clustering analysis of gene expression profiles

of hESC, hNSCs, and hCMs performed in triplicate. Color represents the expression level relative to mean. (B) RT-qPCR analysis of

transcript expression in hESCs, hCMs, and hNSCs. The expression levels of genes in hCMs were set to one. Data are shown as

mean ± s.d., n = 3. (C) The gene regulation network that includes a stability core of 9 genes distributed in two strongly connected

components (SCCs). These two SCCs or clusters of circuits, named as SCC1 and SCC2 could be broadly linked to pluripotency

cellular features and the hCM-specific properties, respectively. Nodes represent genes and edges regulatory interactions positive

(“→”) and negative (“—|”).
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minimal combinations of reprogramming determinants
responsible for the transition of hESCs towards hCMs.
Specifically, our computational model defined a gene regu-
latory network stability core with two major components
associated with both pluripotency and hCMs. Perturbation of
these genes (up- or down-regulation, depending on the ori-
ginal state) triggered a regulatory chain reaction resulting on
the transition of hESCs to hCMs (Fig. 2C).

Interaction network and gene-disease network analyses
of hCM-enriched genes

To better understand the functional interaction between the
identified hCM-specific genes, all of the 695 hCM-enriched
genes were screened into GeneMANIA (Montojo et al.,
2010) Cytoscape plugin to produce a functional association
network based on their relationships, such as co-expression,
co-localization, genetic interaction, and physical interaction
(a complete information of the interactions is shown in Table
S9). Subnetworks of functional associations between genes
involved in muscle contraction, heart development and car-
diac transcriptional regulation were also generated (Fig. 3,
complete information of interactions are shown in Tables
S10–12). These networks may help in describing new rela-
tionships and provide a systematic resource for cardiac gene
function prediction.

Phenotype-genotype relationship studies facilitate the
understanding of the normal and diseased physiology. We
used the DisGeNET (Bauer-Mehren et al., 2010) plugin of
Cytoscape to generate a gene-disease network of highly
expressed hCM-specific genes. Of the top 50 up-regulated
hCM-specific genes we analyzed, 27 of them (54%) showed
associations with at least one known cardiovascular dis-
eases and 5 of them (NPPB, TNNT2, NPPA, RYR2, and
PLN) were linked to more than 10 different types of cardio-
vascular diseases (Fig. 4A, Table S13). In addition, a total
number of 142 disease-associated mutations were found in
those top hCM-enriched genes (mutations listed in Fig. 4B,
references listed in Table S14), suggesting a preferred
enrichment of disease causing mutations in hCM-specific
genes responsible for critical human heart functions.

Genome-wide DNA methylation analysis of hCMs

Up to date, relatively few studies have analyzed global DNA
methylation status in human cardiac lineages. hESCs,
hCMs, and hNSCs were collected for genome-wide DNA
methylation profiling using methylation sequencing with
bisulfite padlock probes as previously described (Diep et al.,
2012). hCMs displayed the highest global DNA methylation
level (Fig. 5A) and 985 genes showed an increase in their
promoter mCpG levels (5% or more), whereas 195 genes
exhibited a 5% or more decrease of promoter DNA methyl-
ation compared to hESCs and hNSCs (Tables S15 and S16).
Interestingly, these hCM-specific demethylated genes were
significantly over-represented in our cardiac-related GO

terms search, suggesting that promoter DNA demethylation
may contribute to the regulation of cardiac functions (Tables
S17–19). Since DNA methylation represents an essential
epigenetic mechanism for gene repression, we speculated
whether decreased DNA methylation correlated with the
increased expression in cardiac-related genes. We com-
bined DNA methylation and microarray data together and
identified a group of 29 genes that exhibited hCM-specific
promoter demethylation, as well as at least a two-fold up-
regulation in gene expression (Table S20). These genes
were highly enriched in cardiac-structural related GO terms
such as muscle contraction, structural muscle constituents,
and sarcomere-related transcripts (Tables S21–23). Again,
this data supported the notion that genes encoding cardiac-
structural proteins are largely regulated by DNA methylation
in hCMs. However, and since the majority of demethylated
genes did not show significant changes in gene expression,
other layers of regulation, such as histone modifications,
might also play a significant role (Xie et al., 2013).

Among those cardiac-structural genes that were specifi-
cally demethylated in hCMs, a majority of them exhibited
hypermethylated mCpG (>70%) at the promoter regions in
hESC and hNSCs (Fig. 5B), indicating that DNA methylation
in the promoter region of these genes may function as a
major repressive signal in non-cardiac lineages. In contrast,
cardiac-specific transcription factors (TFs), such as NKX2.5,
GATA6, GATA4, MYOCD, HAND2, TBX5, and TBX18, were
more expressed in hCMs than in hESCs or hNSCs, while
displaying a similar pattern of low promoter mCpG levels
(<10%) in all three lineages, suggesting that the regulation of
the expression of cardiac-specific TFs is largely independent
of DNA methylation (Fig. 5B).

DISCUSSION

In this study, we report on an improved protocol for the
generation of hCMs from hESCs, which enabled us to
identify and characterize a hCM-specific signature, at both
the gene expression and DNA methylation levels. The
interaction networks we present in this study describe the
precise mutual relationships between every hCM-enriched
genes, as well as the critical genes involved in the funda-
mental heart functions, therefore providing an informative
and systematic resource for gene function prediction in
cardiac research field. In regard to understanding disease
mechanisms, we identified a tight correlation between vari-
ous heart diseases and hCM highly up-regulated genes.
These findings not only highlight the importance of these
cardiac-specific genes in maintaining normal heart devel-
opment and functions, but may also provide novel gene
targets for uncovering heart disease mechanisms.

By combining the promoter DNA methylation and gene
expression profile, we got an overall glance at the gene
regulation by DNA methylation in hCMs. Interestingly, we
found that a group of cardiac-structural genes exhibited
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hypermethylated mCpG at the promoter regions in hESCs
and hNSCs, but were demethylated in hCMs, suggest-
ing that promoter DNA methylation may be employed as a
major transcription repression mechanism in these genes.

Supporting this notion, cardiac-structural genes were mini-
mally expressed and often lacked another essential repres-
sive mark, H3K27me3, in human ESCs and early stage cells
of multiple non-cardiac lineages (Paige et al., 2012; Xie
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Figure 3. Association networks of hCM-enriched genes involved in function groups of muscle contraction, heart

development, and cardiac transcriptional regulation. Networks were generated by GeneMANIA Cytoscape plugin. Nodes

represent genes involved in the selected function group, and edges represent the relationships between linked genes. Node colors

represent the average expression fold changes in hCMs compared to both hESCs and hNSCs.
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et al., 2013). In contrast, a group of cardiac TFs display
similar low promoter mCpG levels in all three linages we
tested. These observations are also in line with the idea that
these developmental-related genes are more likely to locate
in large genomic domains devoid of DNA methylation in most
lineages (Xie et al., 2013). Interestingly, these cardiac-spe-
cific TFs were previously found to have high levels of the
repressive histone mark H3K27me3 in hESCs and many
other non-cardiac lineages. However, during hESC differ-
entiation towards hCM, the levels of H3K27me3 were
decreased in hCM specific TFs, highlighting this mark as a
major repressing factor in non-cardiac cell types (Paige
et al., 2012; Xie et al., 2013). Whether DNA methylation
offers a more stable regulation for cardiac-structural genes
expression and whether the highly flexible nature of histone
modifications is required for the dynamic cardiac-TF
expression in a time-sensitive manner will be interesting
questions to ask in future studies.

Overall, our analysis provides new insights into the
mechanisms of hCM transcriptional regulation, and stands
as an informative and rich resource for investigating cardiac
gene functions, as well as providing a better understanding
of how the epigenetic machinery coordinates to regulate
gene expression in different cell types. Furthermore, the
cardiac-specific molecular hallmarks and epigenetic signa-
tures presented in this study might be of relevance for clinical
applications as biomarkers for diagnosis and treatment of
heart-related diseases.

MATERIALS AND METHODS

Cell culture and differentiation

H9 hESCs were purchased from WiCell Research, and cultured

under standard hESC culture conditions as previously described (Liu

et al., 2011). Differentiation of H9 hESC into hNSC was followed by

the protocol described previously (Liu et al., 2012).

The hCM derivation from H9 hESCs was performed as previously

described (Lian et al., 2012), with important modification to further

improve the purity. Briefly, single cell suspension of H9 hESCs were

seeded onto Matrigel (BD Biosciences) pre-coated cell culture dishes

at a density of 100,000 cells per cm2 in mTeSR (StemCell Technol-

ogies) in the presence of ROCK inhibitor Y-27632 (Sigma-Aldrich) for

24 h. Cells were then cultured in mTeSR for another 2 days. Differ-

entiation was initiated by treatment with 12 μmol/L CHIR99021

(Selleck) in RPMI/B27-insulin (Life Technologies) for 24 h (day 0 to

day 1), and medium was then changed to RPMI/B27-insulin. On day

3, 5 μmol/L Wnt inhibitor IWP4 (Stemgent) was added into RPMI/

B27-insulin and cells were cultured without medium change for 48 h.

From day 5, cells were maintained in RPMI/B27 with medium change

every 2–3 days. On day 15, contracting hCM sheets or clusters were

collected by intensive mechanic washing or manually picking,

re-plated onto fresh Matrigel pre-coated dishes and maintained in

RPMI/B27.

Immunofluorescence

Cells were fixed with 4% paraformaldehyde, permeabilized in 0.3%

Triton X-100/PBS and incubated with primary antibodies overnight at

4°C at following dilutions: mouse anti-cTnT (1:200, Lab Vision),

mouse anti-MF-20 (1:20 Developmental Studies Hybridoma Bank),

rabbit anti-MLC2v (1:200, ProteinTech Group), mouse anti-alpha-

Actinin (1:200, Sigma-Aldrich). Cells were then washed and incu-

bated with Alex Fluor 488 goat anti-mouse IgG (1:500, Life Tech-

nologies) and/or Alex Fluor 568 goat anti-rabbit IgG (1:500, Life

Technologies) for 1 h at RT. Cell nuclei were counter stained with

DAPI (1 μg/mL, Sigma-Aldrich). Images were captured using a Zeiss

LSM780 confocal microscope, and were analyzed in ZEN 2011

software.

Flow cytometry

Flow cytometry analyses were performed as described previously

(Zhang et al., 2012), with antibody concentrations as following:

mouse anti-cTnT (1:200, Lab Vision), mouse anti-MF-20 (1:20

Developmental Studies Hybridoma Bank), and Alex Fluor 488 goat

anti-mouse IgG (1:500, Life Technologies). Data were collected and

analyzed on a LSRII flow cytometer (Becton-Dickinson).

Microarray analysis

hESC, hNSC, and hCM samples were prepared in biological tripli-

cates. Total RNA was extracted using Trizol Reagent (Life Tech-

nologies) and further purified by RNeasy Mini Kit (Qiagen).

Microarray experiments were performed using Affymetrix GeneChip

PrimeView Human Gene Expression Arrays in the Functional

Genomics Core Facility at the Salk Institute for Biological Studies

according to the manufacturer’s protocol (Affymetrix, Santa Clara,

CA). Expression signals were scanned on Affymetrix GeneChip

Scanner 3000 7G. Gene expression values were calculated and

normalized with RMA using R/Bioconductor. Expression levels

were clustered using Cluster 3.0 and visualized using Java Tree-

View. All data have been deposited in NCBI’s Gene Expression

Omnibus and are accessible through GEO Series accession number

GSE48257. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=

fxqpxgigmoaggzg&acc=GSE48257

Quantitative RT-PCR

RT-qPCR was performed as described previously (Liu et al., 2011).

The primer sequences were listed in Table S24.

Genome-wide DNA methylation analysis

Bisulfite padlock probe sequencing was performed as previously

described (Diep et al., 2012). Briefly, genomic DNA was extracted

Figure 4. Disease associations of hCM-enriched genes.

(A) Gene-disease network of hCM-enriched genes and cardio-

vascular diseases. Networks were generated by DisGeNET

Cytoscape plugin. Nodes represent genes that showed asso-

ciation with cardiovascular diseases, and edges represent the

relationship between linked genes and diseases. (B) List of

cardiovascular disease-associated mutations in the top hCM-

enriched genes. Among the top 50 expressed genes, the ones

with known disease-related mutations were listed.
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from H9-hESC, H9-hNSC, and H9-hCM using QIAamp DNA Micro

Kit (QIAGEN), and approximately 1000 ng of genomic DNA was

bisulfite converted with EZ-96 DNA Methylation-Lightning MagPrep

kit (Zymo Research). Approximately 250 ng of bisulfite converted

genomic DNAs were mixed with normalized amount of the genome-

wide scale padlock probe set. The annealed padlock probes were

polymerized, gap-filled, and ligated to generate circularized DNA.

The circularized captured targets were amplified and barcoded by

PCR using the library-free BSPP protocol as previously described

(Diep et al., 2012). The resulting bisulfite sequencing libraries were

pooled in the same molar ratio, size-selected at the fragment size

approximately 375 bp in 6% TBE PAGE gel (Life Technologies), and

sequenced by Illumina HiSeq2000 sequencer (110 bp, paired-end

reads). The bisulfite reads were mapped to the in silico bisulfite-

converted human genome sequences (hg19) by bisREADMapper

(Diep et al., 2012). DNA methylation frequency (at level from 0–1) at

each CpG site with minimum 10× depth coverage was calculated.

Only CpG sites with 10× coverage in each cell type were used for

differential analysis. Promoter CpG methylation levels were calcu-

lated by averaging the mCpG/CpG ratio for all CpG dinucleotides

with 10× coverage within 1 kb of the TSS. Clustering of promoter

methylation ratios was carried out using Cluster 3.0 and visualized

using Java TreeView.

Gene Ontology (GO) analysis

Functional properties of the differentially expressed or methylated

genes were categorized using the BiNGO Cytoscape plugin as

Figure 5. Genome-wide DNA methylation analysis of hCMs. (A) Heatmap and hierarchical clustering of CpG methylation levels

measured within 1 kb of promoter regions. Color represents the mCpG/CpG level relative to mean. (B) List of cardiac-structural

factors and cardiac-transcription factors with their mCpG levels and relative fold changes in their gene expression.
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described previously (Maere et al., 2005). A P-value of less than

0.05 was considered statistically significant.

Gene regulatory networks reconstruction

Differentially expressed genes obtained after the performance of a

t-test with a P-value < 0.05 were connected to expression regulatory

interactions from literature. For this specific purpose we use the

information contained in the ResNet mammalian database from Ari-

adne Genomics (http://www.ariadnegenomics.com/) (Novichkova

et al., 2003; Daraselia et al., 2004). We selected only the interactions

included in the category of Promoter Binding and Direct Regulation.

In order to contextualize the network to the biological conditions

under which the expression data was obtained we applied an algo-

rithm that exploits the consistency between predicted and known

stable states from experimental data to guide an iterative network

pruning. The algorithm predicted missing expression values in gene

regulatory networks, and could be applied to contextualize the net-

work when all the expression values in two attractors are known. The

method assumes a Boolean model to compute attractors of networks

that are iteratively pruned by means of an evolutionary algorithm. The

evolutionary algorithm samples the probability distribution of positive

circuits and individual interactions within the subpopulation of the

best-pruned networks at each iteration. The resulting contextualized

network is based not only on previous knowledge about local con-

nectivity but also on a global network property (stability).

Attractor computation was performed assuming a Boolean model

applying a synchronous updating scheme (Garg et al., 2008) that

updates all gene states simultaneously at each step until the system

reaches an attractor. For this purpose we used our own implemen-

tation (Crespo et al., 2013) written in Perl of the algorithm described

by Garg and co-workers (Garg et al., 2007). We implemented the

Johnsons algorithm (Johnson, 1975) to detect all elementary circuits

in the network. Both elementary circuit detection and positive circuits

sorting scripts were implemented in Perl.

Gene functional association network analysis

Networks of gene associations (co-expression, co-localization,

genetic interaction, pathway, and more) were generated using the

GeneMANIA Cytoscape plugin as described previously (Montojo

et al., 2010). The “query gene based” weighting method was used in

this study. Sub-networks were generated by selecting genes that

were categorized in the same functional GO group.

Gene-disease association network analysis

Network of gene-disease associations (altered expression, casual

mutation, genetic variation, marker, and more) were generated using

DisGeNET Cytoscape plugin as described previously (Bauer-Meh-

ren et al., 2010). The top 50 hCM up-regulated genes were inquired

individually for disease association in the cardiovascular disease

class. All the individual gene-disease networks were then combined

based on the shared disease type.
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