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ABSTRACT

Embryonic and induced pluripotent stem cells (ESCs
and iPSCs) hold great promise for regenerative medi-
cine. The therapeutic application of these cells requires
an understanding of the molecular networks that regu-
late pluripotency, differentiation, and de-differentiation.
Along with signaling pathways, transcription factors,
and epigenetic regulators, microRNAs (miRNAs) are
emerging as important regulators in the establishment
and maintenance of pluripotency. These tiny RNAs
control proliferation, survival, the cell cycle, and the
pluripotency program of ESCs. In addition, they serve as
barriers or factors to overcome barriers during the
reprogramming process. Systematic screening for novel
miRNAs that regulate the establishment and mainte-
nance of pluripotent stem cells and further mechanistic
investigations will not only shed new light on the biology
of ESCs and iPSCs, but also help develop safe and
efficient technologies to manipulate cell fate for regen-
erative medicine.
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INTRODUCTION

Pluripotent stem cells (PSCs), including ESCs and iPSCs,
can self-renew indefinitely while maintaining full develop-
mental potential to produce any cell type (NIH, 2009; Bug-
anim et al., 2013). These remarkable properties hold great
potential for clinical applications in regenerative medicine. In
particular, iPSCs generated from patient-specific somatic
cells provide promise for personalized cell therapy, which
could avoid immune rejection and the ethical issues asso-
ciated with human ESCs. To fully realize their potential and
avoid safety issues, proper strategies must be developed to
control the self-renewal and differentiation of PSCs; this

requires an understanding of the molecular details underly-
ing these processes. Important regulatory modules in ESCs
include signaling pathways, transcription factors, epigenetic
factors, and noncoding RNAs (Melton and Blelloch, 2010; Ng
and Surani, 2011; Wang and Blelloch, 2011; Watanabe et al.,
2013). The dynamic interplay among these modules controls
the switch between the pluripotent/self-renewal state and the
differentiated state by regulating gene expression at the level
of chromatin state, transcription, post-transcription, and post-
translation.

MiRNAs are a class of small (18–25 nucleotides) regu-
latory non-coding RNAs (Bartel, 2009). With some excep-
tions (Vasudevan et al., 2007; Eiring et al., 2010), miRNAs
regulate gene expression at the post-transcriptional level by
inhibiting protein translation and/or reducing mRNA stability.
Most mature miRNAs are produced through two sequential
steps: cleavage of a long pri-miRNA ranging from hundreds
to thousands of nucleotides to a hairpin pre-miRNA of 70
nucleotides by DROSHA/DGCR8 in the nucleus and then
cleavage to the mature miRNA by DICER in the cytoplasm
(Kim et al., 2009b; Winter et al., 2009). The mature miRNA is
then incorporated into the RNA-induced silencing complex
(RISC) to regulate gene expression. Genomic studies have
revealed that a single miRNA can regulate hundreds of tar-
gets (Lewis et al., 2005; Helwak et al., 2013). In addition,
>60% of human genes are predicted to be miRNA targets
(Friedman et al., 2009), suggesting the large potential of
these RNAs in shaping the scope of gene expression. The
large number of targets regulated by a single miRNA is due
to their imperfect target recognition, often only requiring
partial complementarity in the seed sequence (positions 2–8
at the 5′ end). Because of their ability to simultaneously
control the expression of a large number of genes, miRNAs
are well-positioned as master regulators to maintain or
switch cell fate.

Deletion of proteins in the miRNA biogenesis pathway,
such as DGCR8, DROSHA, or DICER, results in the loss of
miRNAs in mammalian cells (Kanellopoulou et al., 2005;
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Murchison et al., 2005; Wang et al., 2007; Wu et al., 2012).
These global miRNA-knockout cells provide invaluable
reagents to tackle the functions of miRNAs, as the functional
characterization of miRNAs is often complicated by the
redundancy of miRNA families (Miska et al., 2007). ESCs
with Dgcr8 or Dicer knockout proliferate at a slower rate, with
a slight accumulation of cells in G1 phase, and when induced
to differentiate, cannot silence the self-renewal program,
suggesting important roles of miRNAs in controlling the self-
renewal and differentiation of ESCs (Kanellopoulou et al.,
2005; Murchison et al., 2007). In addition, various studies
have established miRNAs as important regulators during the
generation of iPSCs. Functionally, these miRNAs can be
categorized into five groups: those that regulate ESC cell
cycle, stabilize the pluripotent state, silence the pluripotent
state, promote reprogramming, and repress reprogramming.
In this review, we summarize recent findings on miRNAs
acting as essential regulators of ESCs and somatic cell
reprogramming based on these categories.

MIRNAS THAT REGULATE THE ESC CELL CYCLE

ESCs have an unusual cell-cycle structure with an extremely
short G1 phase (Wang and Blelloch, 2009). In the mouse,
this is due to the constitutively-active Cdk2-Cyclin E complex
which causes the hyperphosphorylation of the RB protein to
maintain high activity of E2F1, a transcription factor pro-
moting G1/S transition (Savatier et al., 1996; Stead et al.,
2002; White and Dalton, 2005). Interestingly, Dgcr8-knock-
out mouse ESCs proliferate slowly with more cells accu-
mulating in G1 phase (Wang et al., 2007), suggesting a
function of miRNAs in shaping the ESC-specific cell-cycle
structure. Screening using chemically-synthesized miRNA
mimics has identified 11 miRNAs that promote the prolifer-
ation of Dgcr8-knockout ESCs (Wang et al., 2008). All but
one (miR-19a) of the screening positive miRNAs have a
similar seed sequence “AAGUGCU” or “AAAGUGC”. Four
members of the miR-290-295 cluster and four members of
the miR-302 cluster share the seed sequence “AAGUGCU”

(Table 1). More interestingly, these miRNAs are highly
expressed in ESCs and are quickly downregulated upon
ESC differentiation (Houbaviy et al., 2003; Babiarz et al.,
2008), suggesting a specific function of these miRNAs in
ESCs. Consistent with their important roles in ESC biology,
the transcription of these miRNAs is regulated by pluripo-
tency factors such as OCT4, SOX2, and NANOG (Marson
et al., 2008), and have recently been shown to be regulated
by the super-enhancer that is formed by master transcription
factors and the mediator (Whyte et al., 2013). Because of
their roles in regulating the G1/S transition of the ESC cell
cycle, they are named ESCC miRNAs for Embryonic Stem
cell specific Cell Cycle regulating miRNAs (Fig. 1).

ESCC miRNAs target many inhibitors of the G1/S transi-
tion including Cdkn1a (also called p21), Lats2, Rb1, and
Rbl2. Rbl1, another member of the Rb family, is also inhib-
ited indirectly by ESCC miRNAs (Wang et al., 2008, 2013b).
These results strongly suggest that ESCC miRNAs promote
the G1/S transition and proliferation by inhibiting the Rb
family. However, triple-knockout of Rb family proteins in the
Dgcr8-knockout background neither increases the prolifera-
tion nor reduces the accumulation of cells in G1 phase
(Wang et al., 2013b). These data raise questions about the
exact function of repressing Rb family proteins by ESCC
miRNAs in ESCs. Interestingly, further investigation indi-
cates that repression of the Rb family proteins accounts for
another important characteristic of ESCs, the lack of G1

restriction point (Schratt et al., 2001; Blagosklonny and
Pardee, 2002; Wang et al., 2013b). Like cancer cells, ESCs
do not accumulate in G1 phase under serum starvation or at
cellular confluence. However, Dgcr8-knockout ESCs signifi-
cantly accumulate in G1 phase (up to 60% under contact-
inhibition conditions). ESCC miRNAs and triple Rb knockout
effectively rescue this dramatic phenotype. Therefore the
repression of Rb family proteins by ESCC miRNAs contrib-
utes to the lack of G1 restriction point in ESCs (Wang et al.,
2013b).

MiRNAs are also important for proliferation and cell-cycle
regulation in human ESCs. Qi et al. identified miR-372 that

Table 1. miRNAs that regulate ESC cell cycle

miRNA Seed
sequence

Function Targets Species Reference

miR-291a-3p, miR-291b-
3p, miR-294, miR-295,
miR-302a-d

AAGUGCU Promoting G1/S transition at normal
culture condition or cytostatic
conditions

Cdkn1a,
Rb1, Rbl2,
Lats2

Mouse Wang et al.,
2008; Wang
et al., 2013b

miR-302a-d AAGUGCU Promoting G1/S transition CCND1
and
CCND2

Human Card et al.,
2008

miR-372 AAGUGCU Promoting G1/S transition CDKN1A Human Qi et al., 2009

miR-195 AGCAGCA Promoting G2/M transition WEE1 Human Qi et al., 2009

miR-92b GGGACGG Promoting G1/S transition CDKN2B Human Sengupta et al.,
2009
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promotes the G1/S transition by targeting CDKN1A (Qi et al.,
2009). The same study also identified miR-195 that pro-
motes the G2/M transition by suppressing the G2/M check-
point kinase WEE1 in human ESCs. This regulation is likely
to be specific to human ESCs, as miR-195 is not highly
expressed in mouse ESCs. In addition, Sengupta et al.
identified miR-92b that promotes the G1/S transition by tar-
geting the Cdk2-Cyclin D complex inhibitor Cdkn2b (also
called p57) (Sengupta et al., 2009). Interestingly, not only the
Cdk inhibitors but also Cdk4 and Cyclin D1 are repressed by
miR-302 in human ESCs (Card et al., 2008). However, the
function of this seemingly negative regulation of cell-cycle
progression is not clear. Based on the recent discovery that
Cdk2/Cyclin D activity is essential for the self-renewal of
human ESCs and suppresses differentiation into the endo-
derm lineage by repressing TGF-beta-SMAD2/3 transcrip-
tional activity (Pauklin and Vallier, 2013), this regulation likely
monitors the differentiation process of human ESCs.

MIRNAS THAT SILENCE THE PLURIPOTENCY
PROGRAM

Dgcr8-knockout ESCs do not silence their self-renewal
under differentiation conditions, therefore ESCs require
miRNAs to silence the pluripotency program. A direct way to
silence the pluripotency program is to repress the pluripo-
tency transcription factors such as Oct4, Sox2, and Nanog
(Table 2, Fig. 2). Indeed, Tay et al. identified three MiRNAs
(miR-134, miR-296, and miR-470) that inhibit the expression
of these genes (Tay et al., 2008a, 2008b). miRNAs usually
regulate gene expression through the 3′ untranslated
regions (3′UTRs) of target mRNAs. However, the authors
found that these miRNAs repress the expression of pluri-
potency factors by binding to their coding regions. This study
for the first time demonstrated that regions other than 3′
UTRs can be recognized and regulated by miRNAs. In fact,
this type of regulation may be widespread for many miRNAs

as revealed by recent large-scale studies (Helwak et al.,
2013). Furthermore, this study demonstrated that species-
specific interactions can also be functionally important, since
four out of five identified targeting sites are not conserved in
human and rhesus. Echoing this study, Xu et al. identified
miR-145 that specifically binds the 3′UTR of human OCT4 to
repress pluripotency in human ESCs (Xu et al., 2009). In
addition, miR-145 also directly regulates two other pluripo-
tency transcription factors, SOX2 and KLF4. The miR-145
binding sites in the 3′UTRs of SOX2 and KLF4 are con-
served in mice, suggesting that this miRNA also regulate
pluripotency in mouse ESCs.

Another pluripotency-silencing miRNA is let-7, one of the
founding and the most conserved members of the miRNA
family (Pasquinelli et al., 2000; Reinhart et al., 2000). It was first
discovered as a heterochronic gene to control the switching of
developmental timing in Caenorhabditis elegans. Loss of let-7
bymutation leads to the reiteration of larval cell fates during the
adult stage, and an increased let-7 gene dosage leads to the
precocious expression of adult fates during larval stages. The
human and mouse let-7 family contains 9 closely-related
miRNAs (with the seed sequence “GAGGUAG”) distributed
over 8 and 7 chromosome locations, respectively. Interestingly,
let-7 is repressed in ESCs but rapidly upregulated during ESC
differentiation (Newman et al., 2008; Viswanathan et al., 2008).
The expression of let-7 remains high in a variety of somatic
cells. Consistent with its role in enabling differentiation, the
introduction of let-7 into Dgcr8-knockout ESCs successfully
silences their self-renewal and pluripotency program (Melton
et al., 2010). More interestingly, although mature let-7 is not
expressed, primary transcripts of let-7 are expressed even in
undifferentiated ESCs (Newman et al., 2008; Viswanathan
et al., 2008). The production of mature let-7 is blocked by the
RNA-binding protein LIN28 at the step of DICER processing.
LIN28 recruits the terminal uridine transferase TUT4 to add a
string of uridines to the 3′ endof pre-let-7,which then triggers its
degradation by the exonucleaseDis3l2 (Heo et al., 2009, 2012;
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Figure 1. miRNAs that regulate cell cycle of mouse or human ESCs.
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Thorntonet al., 2012;Changet al., 2013). Theevolutionof such
a complicated post-transcriptional regulatory program instead
of shutting down the transcription is not clear. However, by
keeping the precursor let-7 readily available, ESCs could
respond quickly to differentiation cues to produce the mature
let-7.

During ESC differentiation, numerous miRNAs are
upregulated (Wang et al., 2013b; Marson et al., 2008; Bar
et al., 2008). However, whether all these miRNAs play a
causal role in inducing differentiation is not known. To sys-
tematically identify miRNAs that silence the pluripotent state,
an unbiased screen was designed based on the impact of
transfected miRNAs on Dgcr8-knockout ESCs (Wang et al.,

2013b). From a library of 250 miRNA mimics, 32 miRNAs
were found to silence the pluripotency program (AP activity
decreased 75% or more). Fourteen of these miRNAs were
confirmed to be upregulated in two differentiation conditions:
in the absence of leukemia inhibitory factor or in the pre-
sence of retinoic acid. Consistent with previous reports,
these miRNAs include miR-134 and miR-145 (Tay et al.,
2008a, 2008b; Xu et al., 2009). More interestingly, five other
miRNAs (miR-26a, miR-99b, miR-193, miR-199a-5p, and
miR-218) are able to silence ESC self-renewal. These
miRNAs have different seed sequences and are expressed
in different cell lineages (Landgraf et al., 2007). It remains a
mystery whether these miRNAs function through a common

Table 2. miRNAs that silence ESC self-renewal

miRNAs Seed
sequence

Upregulated in
differentiation

Targets Species Reference

Let-7 GAGGUAG -LIF, -LIF + RA nMyc, Sall4, Lin28a Mouse Melton et al., 2010

miR-134 GUGACUG -LIF, -LIF + RA Nanog, Sox2, Lrh1 Mouse Tay et al., 2008a;
Tay et al., 2008b

miR-296 GGGCCCC -LIF, -LIF + RA Nanog Mouse Tay et al., 2008a

miR-470 UCUUGGA -LIF, -LIF + RA Oct4, Nanog Mouse Tay et al., 2008a

miR-145 UCCAGUU -LIF, -LIF + RA OCT4, SOX2, KLF4 Human Xu et al., 2009

miR-26a UCAAGUA -LIF, -LIF + RA Unknown Mouse Wang et al., 2013b

miR-99b ACCCGUA -LIF, -LIF + RA Unknown Mouse Wang et al., 2013b

miR-193 GGGUCUU -LIF, -LIF + RA Unknown Mouse Wang et al., 2013b

miR-199a-5p CCAGUGU -LIF, -LIF + RA Unknown Mouse Wang et al., 2013b

miR-218 UGUGCUU -LIF, -LIF + RA Unknown Mouse Wang et al., 2013b
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Figure 2. miRNAs that regulate the pluripotency and differentiation of mouse and human ESCs.
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mechanism or induce different differentiation programs in
various contexts. Evaluating the targets and pathways reg-
ulated by these miRNAs is required to understand how they
exert their self-renewal silencing function.

During ESC differentiation, the pluripotency program is
shut off and a differentiated program is established. This is
accompanied with the switch of cell cycle structure (Wang
et al., 2013b; Savatier et al., 1996). At the onset of differ-
entiation, the G1 phase of cell cycle is gradually elongated
and cells start to accumulate in G0/G1 phase. MiRNAs
silencing ESC self-renewal are clearly involved in the switch
of cell cycle structure, as Let-7, miR-26a, miR-99b, miR-193,
and miR-218 significantly arrested cells in the G1 phase
(Wang et al., 2013b). In addition, the ESCC miRNAs oppose
the G1 arrest induced by these miRNAs, indicating ESCC
miRNAs maintain the unique ESC cell cycle structure at
multiple conditions. This opposing regulation of the G1 arrest
is at least in part dependent on the RB proteins, since
knocking out three RB family proteins partially rescued the
G1 arrest induced by four differentiation-inducing miRNAs
(Let-7, miR-26a, miR-99b, and miR-193) in the Dgcr8
knockout ESCs. How differentiation-inducing miRNAs acti-
vate the RB pathway is unknown. Systematic dissection of
functional targets is required to reveal the answer in future.

MIRNAS THAT STABILIZE THE PLURIPOTENCY
PROGRAM

Interestingly, the let-7, miR-26a, miR-99b, miR-193, miR-195a-
5p, andmiR-218are found to silence theESCself-renewal only
in the Dgcr8 knockout but not wild type background (Wang
et al., 2013b; Melton et al., 2010), suggesting somemiRNAs in
wild typeESCsblock the function of thesemiRNAs. Indeed, co-
introduction of highly ESC enriched ESCC miRNAs success-
fully prevented the silencing of self-renewal by the differentia-
tion-inducingmiRNAs (Fig. 2). How thesemiRNAs stabilize the
pluripotencyprogram in thepresenceof differentiation-inducing
miRNAs is not clear. In the case of let-7–miR-294/302 antago-
nism, these miRNAs opposingly regulate the level of Sall4 and
c-Myc. More interestingly, transfection of miR-294/302 upreg-
ulates theexpressionof Lin28a (Meltonetal., 2010),which then
negatively regulates the maturation of let-7 family of miRNAs
(Newman et al., 2008; Viswanathan et al., 2008). Therefore
miR-294/302 family blocks the function of let-7 at multiple lev-
els. However, because other differentiation-inducing miRNAs
have different seed sequences and seem not to regulate the
Sall4 and c-Myc directly; miR-294/302 may act through some
unidentified common pathways to antagonize these miRNAs.
An interesting hypothesis suggests the possible role of cell-
cycle-regulating pathways, as the ESCC miRNAs and several
differentiation-inducing miRNAs opposingly regulate the G1/S
transition through the RB pathway. However, triple knockout of
Rb family did not have any effects in blocking the silencing of
self-renewal by differentiation-inducing miRNAs (Wang et al.,
2013b). Therefore miR-294/302 family of miRNAs likely

regulates the cell cycle and self-renewal through separate
mechanisms. Future studies are required to identify other
pathways responsible for the self-renewal-promoting function
of miR-294/302.

Another interesting function of the miR-294/302 family of
miRNAs is to control global DNA methylation through indi-
rectly activating the transcription of DNA methyltransferases
Dnmt3a, Dnmt3b, and Dnmt3l (Benetti et al., 2008; Sinkko-
nen et al., 2008), although this regulation may play little role
in its pluripotency-stabilizing function. A possible direct tar-
get underlying this function is the transcriptional repressor
Rbl2. DNA methylation is important for a variety of cellular
processes such as transposon silencing, telomere recom-
bination, and the silencing of gene expression (Curradi et al.,
2002; Irvine et al., 2002; Gonzalo et al., 2006; Huang et al.,
2012). It is found that the miR-294/302 keeps the high level
of methylation at the subtelomeric region to limit telomere
recombination, therefore controlling the abnormal elongation
of telomeres in ESCs (Bentti et al., 2008). More interestingly,
the miR-294/302 was shown to be important for the meth-
ylation of the Oct4 promoter in ESCs under a differentiation
condition (-LIF + RA) (Sinkkonen et al., 2008). This obser-
vation was counterintuitive as this function is against the role
of miR-294/302 in stabilizing the pluripotency. However, it
may not be surprising since the opposite function for some
protein coding genes is observed under different biologic
contexts (Lin et al., 1999; Boxer and Dang, 2001; Massagué,
2012). It is worth to note that these studies were carried out
in Dicer-knockout ESCs and are controversial based on a
recent study (Ip et al., 2012). As DICER processes various
types of small RNAs other than miRNAs and has been
shown to be important for the genomic stability (Murchison
et al., 2007; Kanellopoulou et al., 2005), independent
investigations using miRNA-specific-knockout ESCs (e.g.
Dgcr8 knockout) may help resolve the discrepancy.

The miR-200 family is another pluripotency-stabilizing
miRNA family which contains 5 members (miR-200c/141
and miR-200b/200a/429) located at two genomic loci
(Kozomara and Griffiths-Jones, 2011). These miRNAs are
expressed in ESCs but downregulated during ESC differ-
entiation (Lin et al., 2009; Gill et al., 2011). The miR-200
family is transcriptionally regulated by c-Myc, and the regu-
lation seems to be specific for ESCs as the overexpression
of c-Myc does not change the expression of miR-200 family
in ESC-derived-hematopoietic stem cells or mixed B/T cell
lymphomas. Interestingly, the overexpression of miR-200
family attenuates the downregulation of pluripotency factors
in ESCs under the culture condition without LIF, suggesting
these miRNAs block the differentiation of ESCs. Close
inspection indicates that the overexpression of miR-200
family traps the ESCs at the epiblast stem cell (EpiSC) stage
(Gill et al., 2011), a primed pluripotent state that are thought
to be more similar to human ESCs. The essential targets of
miR-200 include Zeb1 and Zeb2, two key transcription
factors promoting the EMT process (Burk et al., 2008;
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Gregory et al., 2008; Korpal et al., 2008; Park et al., 2008).
Since EMT plays important roles during ESC differentiation
(Eastham et al., 2007; Spencer et al., 2007; Martínez-Es-
trada et al., 2010), miR-200 may modulate ESC differentia-
tion through regulating the EMT process.

MIRNAS THAT PROMOTE OR SUPPRESS
REPROGRAMMING

iPSCs are pluripotent stem cells generated by de-differenti-
ating somatic cells using defined factors (Takahashi and
Yamanaka, 2006; Hanna et al., 2010; Okita and Yamanaka,
2011). Initially the reprogramming is only enabled by virally
introducing pluripotency factors Oct4, Sox2, Klf4, and c-Myc.
However, the technology has been improved significantly
since the invention. For example, the integration-free
induction strategies using in vitro-synthesized mRNAs, pro-
teins or episomal vectors avoid the potential danger from the
integration of viral sequence into the host genome (Kim
et al., 2009a; Zhou et al., 2009; Warren et al., 2010; Okita
et al., 2011). More excitingly, Hou et al. recently repro-
grammed mouse fibroblasts to iPSCs with only small mole-
cules (Hou et al., 2013). The key objectives in studying
reprogramming include enhancing reprogramming efficiency,
understanding the molecular mechanisms of reprogram-
ming, and more importantly improving the quality of iPSCs,
which is important for their potential therapeutic applications.
Various studies have shown that miRNAs can be manipu-
lated to improve the efficiency of reprogramming and
potentially the quality of iPSCs. Because miRNAs can be
introduced into cells through the transfection of chemically-
synthesized double-strand RNAs, the reprogramming
approach based on miRNAs are naturally safer than using

virus or DNA vectors that could interfere with the genome of
targeted cells. In addition, as we discuss below, dissecting
miRNA targets could also provide insights on the mechanism
of reprogramming process.

MiR-294/302 family of miRNAs is the first example that
miRNAs can promote the mouse iPSC generation (Judson
et al., 2009). This may not be surprising since these miRNAs
stabilize the pluripotency state of ESCs. Interestingly, these
miRNAs promoted the reprogramming of mouse fibroblasts
along with Oct4, Sox2, and Klf4 (OSK) at both the early and
later stages (Table 3 and Fig. 3). It is amazing that a single
miRNA promotes both stages as different pathways are
required to be shut down during the early and later stages of
reprogramming. Later the miR-294/302 has also been
shown to promote the generation of human iPSCs (Subr-
amanyam et al., 2011). Mechanistically, the miR-294/302
seems to act at multiple levels to break barriers towards the
pluripotency. These barriers include the epithelial to mes-
enchymal transition, cell cycle, cell death, and mitochondrial
function (Judson et al., 2013).

MiRNAs that regulate p53 pathway

Consistent with miRNAs functioning to regulate a variety of
biologic pathways, many different miRNAs have been shown
to promote the iPSC generation through overcoming differ-
ent barriers toward reprogramming. Activation of the p53
pathway triggers cell cycle arrest, senescence or cell death.
During reprogramming, Klf4 and c-Myc upregulate the
expression of p53, a potential beneficial response by cells to
maintain the genomic integrity under stress. Knocking down
p53 significantly promoted the iPSC generation, likely due to
the increase of cell numbers (Zhao et al., 2008; Hong et al.,

Table 3. miRNAs that promote or suppress somatic reprogramming

miRNAs Seed
sequence

Targets Function in
reprogramming

Species Reference

miR-291a-3p,
miR-291b-3p,
miR-294, miR-
295, miR-302a-
d, miR-372

AAGUGCU Tgfbr2, RhoC, Mbd2, Nr2f2,
Lefty, Cdkn1a, Brp44 l, Zfp128,
Hivep2, Hipk3, Ddhd1, Dpysl2,
Pten, Cfl2, 9530068E07Rik

Promotion Mouse
Human

Judson et al., 2009;
Subramanyam et al.,
2011; Liao et al., 2011;
Judson et al., 2013; Lee
et al., 2013

miR-17-92 AAAGUGC Tgfbr2, p21 Promotion Mouse Li et al., 2011

miR-138 GCUGGUG TP53 Promotion Mouse Ye et al., 2012

miR-181 ACAUUCA Bptf, Lin7c, Tox, Cpsf6,
Dnaj13, Nr2c2, Bclaf1, Ywhag,
Nol8, Igh2bp2, Marcks, Cdyl

Promotion Mouse Judson et al., 2013

miR-29b AGCACCA Dnmt3a, Dnmt3b Promotion Mouse Guo et al., 2013

miR-34a GGCAGUG Nanog, Sox2, nMyc Repression Mouse Choi et al., 2011

miR-21 AGCUUAU P85alpha, Spry1 Repression Mouse Yang et al., 2011

miR-29a AGCACCA Cdc42, p85alpha, Spry1 Repression Mouse Yang et al., 2011

miR-766 CUCCAGC SIRT6 Repression Human Sharma et al., 2013
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2009; Kawamura et al., 2009; Li et al., 2009; Marión et al.,
2009; Utikal et al., 2009). However, the complete block of the
p53 pathway could cause genomic instability therefore
affecting the quality of iPSCs. On the other hand, fine-tuning
p53 expression may promote the reprogramming efficiency
without dampening the quality of iPSCs. Ye et al. predicted
and confirmed that miR-138 can promote the iPSC genera-
tion through regulating p53 expression (Ye et al., 2012).
Interestingly, the upregulation of miR-138 seems to be
required for iPSC generation in that context. Moreover, miR-
138 may not reduce the quality of iPSCs based on functional
tests such as teratoma formation and the activation of an
imprinting locus Dlk-Dio3 region. In addition, targeting other
inhibitors along the p53 pathway is also beneficial for the
reprogramming process. For example, miR-294/302 and the
miR-17-106-92 cluster have been shown to repress Cdkn1a
and Rb family genes to promote the iPSC formation (Judson
et al., 2009; Li et al., 2011).

MiRNAs that promote MET

Genomic and genetic studies as well as the pure observation
of morphologic changes during the iPSC induction process
suggest that mesenchymal-to-epithelial transition (MET) or
blocking the opposite process epithelial-to-mesenchymal
transition (EMT) is required for the reprogramming (Li et al.,
2010; Samavarchi-Tehrani et al., 2010). The epithelial or
mesenchymal cell fate is controlled by a variety of signaling
pathways such as BMP and TGF-beta signaling pathways
as well as key transcription factors including Zeb1/2, Snai1/2
and Twist1/2 (Acloque et al., 2009; Kalluri, 2009; Kalluri and
Weinberg, 2009; Zeisberg and Neilson, 2009; Massagué,

2012). Modulating these regulators is expected to increase
the efficiency of reprogramming. Indeed the miR-200 family
of miRNAs, containing miR-200a/b/c, miR-203, miR-205,
and miR-141, represses the mesenchymal promoter Zeb1
and significantly promotes the reprogramming process (Sa-
mavarchi-Tehrani et al., 2010; Wang et al., 2013a). Likewise,
the miR-294/302 family (the miR-372/302 family in human)
and the miR-17-92 cluster increase the reprogramming effi-
ciency by negatively regulating TGF-beta pathway (Li et al.,
2011; Liao et al., 2011; Subramanyam et al., 2011).

MiRNAs that regulate epigenetic factors

During the reprogramming, differentiated cells gradually lose
the epigenetic signature of the somatic cell and adopt the
epigenetic signature of the pluripotent stem cell (Maherali
et al., 2007; Fussner et al., 2011; Hochedlinger and Plath,
2009; Buganim et al., 2013). This epigenetic reprogramming
includes the resetting of histone modifications, DNA meth-
ylation, and chromatin conformations, which are catalyzed
and regulated by a variety of enzymes and protein com-
plexes. Many regulators such as H3K36 demethylases
KDM2A/B and H3K9 methyltransferase SETDB1 are
required for the reprogramming process (Wang et al., 2011;
Liang et al., 2012; Onder et al., 2012), while several other
regulators such as H3K9 methyltransferase SUV39h1 and
H3K79 methyltransferase DOT1L inhibit the reprogramming
process (Onder et al., 2012). miRNAs targeting these
enzymes or regulators have been shown to modulate the
reprogramming process. The ESCC MiRNAs have been
found to repress the expression of methyl CpG binding
protein MBD2; and knocking down MBD2 can increase the
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Figure 3. miRNAs that promote or suppress somatic reprogramming.
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efficiency of reprogramming (Subramanyam et al., 2011; Lee
et al., 2013). In addition, miR-29b is upregulated by SOX2
during reprogramming process and overexpressing miR-29b
promotes the iPSC formation. This promotion is at least in
part explained by the inhibition of Dnmt3a/b at the 3′UTR by
miR-29b (Guo et al., 2013). Given that epigenetic regulators
are important for the reprogramming and a large number of
examples of miRNA-epigenetic factor regulation, more epi-
genetic factor-targeting miRNAs are expected to function as
either the promoter or the barrier of the reprogramming
process.

Other miRNAs that promote reprogramming

To systematically identify miRNAs that can modulate the
iPSC production, Judson et al. screened 570 chemically-
synthesized mature mouse miRNA mimics for their ability to
promote OSK-induced reprogramming of mouse embryonic
fibroblasts (MEFs) (Judson et al., 2013). This study identi-
fied many previously reported iPSC-promoting miRNAs
such as ESCC miRNAs, as well as several novel miRNAs
including miR-181, miR-19a*, miR-30, miR-34*, miR-144,
miR-324, miR-451, and miR-677. By testing a small set of
miR-181 targets in the reprogramming, Judson et al. then
showed that miR-181, much like miR-294/302, represses
multiple targets involved in the EMT, cell death, cell cycle,
and mitochondria function. Repression of these targets
produces cooperative effects on the efficiency of repro-
gramming and the morphology of reprogrammed iPSC
colonies. These data are consistent with miRNAs func-
tioning through fine-tuning multiple targets to remove the
molecular barriers that divert the reprogramming cells away
from the pluripotency.

MiRNAs that suppress reprogramming

MiRNAs are not only promoters but also barriers of the
reprogramming process. The first example of such barriers is
let-7 (Melton et al., 2010). The inhibition of let-7 successfully
increased the reprogramming efficiency. Since the repro-
gramming requires the activation of some of let-7 targets such
as Lin28a, and let-7 is broadly expressed in various differen-
tiated cells, the let-7might act as the reprogramming barrier by
repressing the expression of genes that are important for
PSCs. In addition, several studies have shown that let-7 reg-
ulates cell cycle and glucose metabolism (Legesse-Miller
et al., 2009; Zhuet al., 2011;Wanget al., 2013b). Therefore it is
likely that let-7 stabilize the differentiated cell fate to block
reprogramming through multiple pathways. Another promi-
nent example is themiR-34 familywhich containsmiR-34a/b/c
(Kozomara and Griffiths-Jones, 2011). Inhibition of members
of miR-34 family, particularly miR-34a, significantly increases
the efficiency of iPSC production (Choi et al., 2011). Again this
miRNA function as the barrier to block reprogramming by
targeting pluripotency factors and possibly also cell cycle
regulators. In retrospect, it may not be coincidental and

surprising that let-7 and miR-34 are barriers of the repro-
gramming process, since both miRNAs induce differentiation
inESCs (Melton et al., 2010;Choi et al., 2011; Jain et al., 2012;
Wang et al., 2013b). However, given that miR-181 family acts
as both differentiation-inducing and yet also reprogramming-
promoting factors (O’Loghlen et al., 2012;Wanget al., 2013b),
it would be interesting to test whether other differentiation-
inducing miRNAs can act as the reprogramming inducer or
barrier. Equally important is to perform unbiased inhibitor
screen for the miRNAs that block the reprogramming. Such
efforts will certainly deepen our understanding on the mech-
anism of the reprogramming process.

CONCLUSION AND FUTURE DIRECTIONS

In less than a decade, researchers have established miRNAs
as important regulators during the maintenance and differen-
tiation of ESCs as well as the establishment of iPSCs. These
RNAs control proliferation, survival, cell cycle, and the pluri-
potency program of ESCs. They also serve as the barriers or
the inducers during the reprogramming process. Systematic
gain or loss of function screens are discovering more miRNAs
playing important roles in ESCs and during reprogramming
(Judson et al., 2013; Wang et al., 2013b). Advanced genomic
approaches are paving the way for discovering functional
miRNA targets and understanding howmiRNAs execute their
function (Hanina et al., 2010; Leung et al., 2011; Helwak et al.,
2013). However, many important questions are still waiting to
be answered. Since pluripotent stem cells exist in two different
states (naïve and prime), domiRNAs play any roles in defining
these two developmentally related states? What is the rela-
tionship between differentmiRNAs that stabilize or silence the
pluripotency program? The opposing function between ESCC
miRNAs and let-7 and maybe other differentiation-inducing
miRNAs suggest that these miRNAs could form functional
feedback networks. In addition, how is the transcription and
maturation of these miRNAs regulated and incorporated into
the pluripotency network? Stories about the super enhancer
controlling the expression of miR-290 cluster and intensive
post-transcriptional regulation on let-7 maturation (Newman
et al., 2008; Viswanathan et al., 2008; Heo et al., 2009, 2012;
Thornton et al., 2012; Chang et al., 2013; Whyte et al., 2013)
suggest that novelmechanisms regulatingmiRNAexpression
could be discovered through studying various miRNAs that
control theestablishment andmaintenanceof thepluripotency
program. Finally, what is the relationship between different
targets or pathways regulated by a miRNA that controls the
pluripotency program? Small scale analysis reveals that
repression of different targets of miR-294/302 leads to coop-
erative effects on reprogramming (Judson et al., 2013). It is
expected that more complex relationships between different
targets will be discoveredwhen large scale functional analysis
of miRNA targets are performed. Answering these questions
will not only offer huge insights for the mechanistic under-
standing of the establishment and maintenance of PSCs, but
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also help the development of safe and efficient technologies to
manipulate the cell fate for regenerative medicine.
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