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ABSTRACT

Retinoic acid inducible gene-I (RIG-I) is a caspase
recruitment domain (CARD) containing protein that acts
as an intracellular RNA receptor and senses virus
infection. After binding to double stranded RNA
(dsRNA) or 5′-triphosphate single stranded RNA
(ssRNA), RIG-I transforms into an open conformation,
translocates onto mitochondria, and interacts with the
downstream adaptor mitochondrial antiviral signaling
(MAVS) to induce the production of type I interferon and
inflammatory factors via IRF3/7 and NF-κB pathways,
respectively. Recently, accumulating evidence suggests
that RIG-I could function in non-viral systems and
participate in a series of biological events, such as
inflammation and inflammation related diseases, cell
proliferation, apoptosis and even senescence. Here we
review recent advances in antiviral study of RIG-I as well
as the functions of RIG-I in other fields.

KEYWORDS retinoic acid inducible gene-I (RIG-I),
antiviral signaling, inflammation, innate immunity

INTRODUCTION

RIG-I (retinoic acid inducible gene-I, also known as DDX58)
was first discovered and cloned as an up-regulated gene in
acute promyelocytic leukemia (APL) cell line NB4 upon all-
trans-retinoic acid (ATRA) stimulation (Liu et al., 2000). It
encodes a protein of 925 amino acids in human, which
contains an N-terminal caspase recruitment domain (CARD),
a DExD/H box helicase domain and a C-terminal repression
domain (RD) (Yoneyama et al., 2004; Saito et al., 2007). RIG-
I, together with MDA5 (melanoma differentiation associated

gene 5) and LGP2 (laboratory of genetics and physiology 2),
belong to RIG-I-like receptors (RLRs). They constitute an
intracellular virus-sensing system to regulate type I interferon
(IFN) production, which is independent of toll-like receptors
(TLR) (Yoneyama et al., 2005).

The antiviral role of RIG-I has been well recognized, and
most studies focus on its activation mechanism and down-
stream signaling pathway in antiviral response. However, like
many other proteins, RIG-I has multiple functions that are
involved in a variety of cellular and physiological processes.
This review discusses the recent studies on the role of RIG-I
in antiviral response as well as in inflammation, apoptosis and
development.

SENSING VIRUS INFECTION

Viruses are infectious pathogens and are extremely harmful
for human health. They can utilize the replication machinery
of the host to replicate themselves and amplify infection. As
the first line of host defense, innate immunity has several
sensors to detect viruses and produce type I IFN to limit the
infection. RIG-I is one of such virus sensors that recognizes
double stranded RNA (dsRNA) and induces IFN-β production
in a TLR-independent manner (Yoneyama et al., 2004). The
different locations of TLRs and RLRs could detect different
kinds of viruses. Unlike TLRs, which are membrane proteins
and localized on the plasma membrane or endosome, RIG-I
and other RLR family members are localized in cytoplasm
and sense intracellular viral RNA (Yoneyama et al., 2005).

The structure and function of RIG-I

RIG-I contains two CARDs at N-terminus that holds the
signaling activation property. Over-expression of these
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tandem domains can potently drive IFN-β production in the
absence of virus (Yoneyama et al., 2004; Saito et al., 2007).
Recent RIG-I signaling reconstitution study shows that RIG-I
CARD can also function as a receptor to bind the unanchored
K63-linked unbiquitin chains in an RNA- and ATP-dependent
manner, which is essential for the full activation of RIG-I (Zeng
et al., 2010). In the middle of N-terminal CARD domain and C-
terminal repressor domain, there is a helicase domain that
contains an ATP binding motif and a TAS motif. The ATP
binding motif is essential for RIG-I signaling because K270A
mutation at this region disrupts IFN-β induction (Sumpter et
al., 2005). The C-terminus of RIG-I contains a repression
domain (Saito et al., 2007), also called regulatory domain
(RD) (Cui et al., 2008). Over-expression of RD can inhibit the
virus-induced IFN-β production. Moreover, the crystal struc-
ture of RD indicates that RD binds RNA and the zinc binding
site in this domain is essential for RIG-I signaling (Cui et al.,
2008). These results are consistent with the structural study
of RIG-I C-terminal domain (CTD) by nuclear magnetic
resonance (NMR) (Takahasi et al., 2008).

RIG-I is initially reported to bind dsRNA, which is
considered to be the mechanism to distinguish self RNA
and non-self infection (Yoneyama et al., 2004). Further study
indicates that the dsRNA mimic poly (I:C) can only activate
MDA5 but not RIG-I (Gitlin et al., 2006; Kato et al., 2006),
while long dsRNA is the ligand for RIG-I (Kato et al., 2006).
However, influenza A virus only generates single stranded
RNA (ssRNA) rather than dsRNA, and it can also activate
RIG-I, indicating that there should be a more accurate
mechanism for RIG-I to distinguish self and non-self RNA
(Pichlmair et al., 2006). Recent study also showed that RIG-I
can recognize 5′-triphosphate RNA. However, if the 5′-
triphosphate RNA is capped or modified by nucleoside, both
types of post-transcriptional modifications fail to activate RIG-
I (Hornung et al., 2006).

RIG-I functions as a virus sensor in a certain type of cells,
such as fibroblasts, macrophages, conventional dendritic
cells (cDC), but not in plasmacytoid dentritic cells (pDC)
which use TLR system instead of the RIG-I-like receptor
(RLR) system for the antiviral activity (Kato et al., 2005). As
RNA binding proteins, RLRs mainly sense RNA virus.
However, RIG-I and MDA5 have distinct spectra of viral
detection. RIG-I mainly senses paramyxovirus, vesicular
stomatitis virus (VSV) and influenza virus, while MDA5 mainly
detects picornavirus (Kato et al., 2005; Kato et al., 2006).

RIG-I signaling pathway

Most knowledge of RIG-I signaling pathway comes from the
related antiviral study. A CARD containing protein MAVS (also
called VISA, IPS-1 or Cardif ) that acts as RIG-I downstream
adaptor was independently identified by four groups (Kawai et
al., 2005; Meylan et al., 2005; Seth et al., 2005; Xu et al.,
2005). MAVS has an N-terminal CARD domain, a proline-rich

region (PRO) and a C-terminal trans-membrane domain (TM)
that is required for its mitochondrial localization and signaling.
The CARD domain is essential for MAVS to initiate cellular
signaling and to interact with RIG-I. Moreover, TM is also
required for its signaling, and TM deletion results in the
detaining of MAVS in cytosol and loss of its activity (Seth
et al., 2005).

RIG-I pathway is further divided into two branches that
activate IRF3 and NF-κB, respectively. MITA (also called
STING) was identified as a downstream adaptor of MAVS
(Ishikawa and Barber, 2008; Zhong et al., 2008). After binding
MITA, MAVS recruits TBK1 and IKKε to phosphorylate IRF3
and IRF7. Activated IRF3 and IRF7 form either homo-dimers
or hetero-dimers, and enter the nucleus to initiate type I IFN
transcription. On the other hand, MAVS also binds TRAF6,
FADD and RIP1, recruits IKKα, IKKβ and IKKγ, and finally
activates NF-κB (Seth et al., 2005). Shorter form of zinc-finger
CCCCH-type antiviral protein 1 (ZAPS) is a newly identified
protein that associates with RIG-I and promotes RIG-I activity.
Disruption of ZAPS causes impaired induction of IFNs and
other cytokines, indicating that it is a key stimulatory factor of
RIG-I (Hayakawa et al., 2011).

The regulation of RIG-I signaling

To avoid exaggerated IFN production, RIG-I signaling path-
way is strictly regulated by several cellular mechanisms.
LGP2 is the first molecule identified to suppress RIG-I
signaling by competitively sequestrating dsRNA (Komuro
and Horvath, 2006). However, genetic study demonstrates
that LPG2 facilitates or enhances RIG-I signaling in certain
virus infection (Venkataraman et al., 2007; Satoh et al., 2010).
NS1 protein of influenza A virus inhibits RIG-I signaling
through the interaction with RIG-I (Mibayashi et al., 2007).
Autophage related protein Atg5-Atg12 complex and NLRC5
directly bind RIG-I and block the signaling (Jounai et al., 2007;
Cui et al., 2010). NLRX1, gC1qR and PSMA7 are three newly
identified proteins that inhibit RIG-I signaling (Moore et al.,
2008; Jia et al., 2009; Xu et al., 2009). NLRX1 and gC1qR are
localized on the outer membrane of mitochondria and interact
with MAVS upon viral infection (Moore et al., 2008; Xu et al.,
2009). NS3/4A of hepatitis C virus (HCV) cleaves MAVS at
C508 and drives the export of MAVS from mitochondria,
leading to inactivation of MAVS protein (Lin et al., 2006). A20,
SIKE and FLN29 suppress RIG-I signaling through the
interaction with other downstream molecules (Huang et al.,
2005; Saitoh et al., 2005; Sanada et al., 2008).

Several post-translational modifications of RIG-I, including
ubiquitylation, phosphorylation and SUMOylation, also reg-
ulate RIG-I signaling. The E3 ligase TRIM25 interacts with
RIG-I and efficiently delivers the Lys63-linked ubiquitin moiety
to its CARD, leading to increased activity of RIG-I signaling
(Gack et al., 2007). Riplet/RNF135 ubiquitinates RIG-I and
promotes IFN production both in vitro and in vivo (Oshiumi
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et al., 2009, 2010). RNF125 is another ubiquitin E3 ligase that
binds CARD and helicase domain of RIG-I and enhances the
Lys48-linked ubiquitinization to cause RIG-I degradation
(Arimoto et al., 2007). CYLD and DUBA are two
RIG-I inhibitors with deubiquitinization activity, and both
remove the Lys63-linked ubiquitin from RIG-I and TRAF3,
respectively (Kayagaki et al., 2007; Friedman et al., 2008;
Zhang et al., 2008a). A linear ubiquitin assembly complex
(LUBAC) of HOIL-1L and HOIP specifically suppresses RIG-I
activation by inducing TRIM25 degradation (Inn et al., 2011).
Unlike most phosphorylation regulations, phosphorylated
RIG-I is barely activated. Casein kinase 2 (CK2) phosphor-
ylates RIG-I at T770, S854 and S855 in resting cells, which
results in RIG-I inactivation. Once infected by RNA virus, but
not DNA virus, these sites are dephosphorylated and RIG-I is
consequently activated (Sun et al., 2011). Further study
indicates that S8 and T170 of RIG-I are two other
phosphorylation sites to keep RIG-I latent (Gack et al.,
2010; NistalVillán et al., 2010). In addition to ubiquitylation
and phosphorylation, recent study reports that RIG-I is also
modified by small ubiquitin-like modifier-1 (SUMO-1), which
enhances type I IFN production (Mi et al., 2010).

RIG-I AND INFLAMMATION

Inflammation is a defensive reaction for the host to remove
harmful infection or repair damaged tissues. Acute inflamma-
tion is usually triggered by micro-organism infection and
tissue injury. On the contrary, chronic inflammation is often
accompanied with a variety of chronic diseases, such as type
2 diabetes and cardiovascular diseases (Medzhitov, 2008). In
addition to its role in anti-viral immunity, emerged evidences
also show that RIG-I participates in both acute and chronic
inflammation.

Possible roles of RIG-I in inflammation and inflammation
related diseases

Lipopolysaccharides (LPS) are large molecules localized at
the outer membrane of Gram-negative bacteria, and they act
as endotoxin to induce acute inflammation response by
binding to TLR4 complex (Poltorak et al., 1998). Interestingly,
RIG-I is found to be induced in LPS-stimulated endothelial
cells. Moreover, over-expression of RIG-I also up-regulates
cyclooxygenase-2 (COX-2) expression, indicating that RIG-I
may have an important role in LPS-induced acute inflamma-
tion (Imaizumi et al., 2002). Several studies reveal that IFN-γ
induces the expression of RIG-I in a variety of cell types,
including human umbilical vein endothelial cells (HUVEC),
vascular smooth muscle cells (SMC), urinary bladder
epithelial cells, bronchial epithelial cells and pericardial
mesothelial cells (Imaizumi et al., 2004a, 2004b, 2004c,
2005; Hatakeyama et al., 2007). In addition to IFN-γ, several
pro-inflammatory factors are able to stimulate RIG-I

expression. TNF-α and IFN-γ up-regulate RIG-I expression in
keratinocytes, which is believed to be involved in psoriasis
vulgaris (Kitamura et al., 2007). TNF-α alone can increase
RIG-I expression in fibroblast-like synoviocytes in an IFN-β
dependent manner (Imaizumi et al., 2009). Interleukin (IL)-1β
drives the expression of RIG-I in human gingival fibroblasts
(Sakaki et al., 2005). All these studies indicate that RIG-I is
involved in the regulation of inflammation.

Higher level of RIG-I has been found in several inflamma-
tion related diseases, indicating its possible modulatory role in
inflammation. Atherosclerosis is considered as an inflamma-
tory disease, and the intimal macrophages in atherosclerotic
lesions contain high level of RIG-I protein, suggesting that
RIG-I may be involved in the activation of macrophage during
atherosclerotic genesis (Imaizumi et al., 2007). In lupus
nephritis patients, the expression level of RIG-I increases in
the urinary sediment (Tsugawa et al., 2008; Imaizumi et al.,
2010). Elevated RIG-I expression is also observed in synovial
tissues of rheumatoid arthritis, suggesting a possible role of
RIG-I in the pathogenesis of synovial inflammation (Imaizumi
et al., 2008). Moreover, RIG-I knockout mice develop a colitis-
like phenotype and RIG-I protein is shown to regulate T cell
activation (Wang et al., 2007).

Regulatory mechanism of RIG-I in inflammation

Compared to the antiviral research, the mechanism of
inflammation modulatory role of RIG-I is less studied. Until
recently, several groups uncover the regulatory mechanism of
RIG-I in acute and chronic inflammation. As a result of NF-κB
activation, RIG-I induces the expression of inflammatory
factors and chemokines, including IL-1β, IL-6, IL-8, IL-28, IL-
29 and RANTES, in response to inflammatory stimulations
(Kubota et al., 2006; Matikainen et al., 2006; Yoshida et al.,
2007). In macrophage, RIG-I is induced by LPS through TRIF
pathway, which partially results from IFN-β autocrine secre-
tion. The induced RIG-I leads to activation of tumor necrosis
factor (TNF)-α promoter and regulates LPS induced expres-
sion of TNF-α at late phase; thus, it acts as a key factor in the
auto-loop cascade for the amplification of inflammatory
factors (Wang et al., 2008). Our latest study reveals a novel
role of RIG-I in senescence associated inflammation (Liu et
al., 2011). Senescent cells secrete a spectrum of pro-
inflammatory factors and chemokines, such as IL-6 and IL-
8, which is called senescence associated secretory pheno-
type (SASP) (Coppé et al., 2008). The expression of RIG-I
increases with cell passages through a mechanism relying on
ATM-IRF1 activation. RIG-I mediated senescence associated
inflammation requires its downstream adaptor MAVS, which
activates NF-κB and AP-1 to induce the expression of
inflammatory factors. An anti-ageing protein klotho sup-
presses senescence associated inflammation by directly
interacting with RIG-I and blocking its multimer formation
during senescence (Liu et al., 2011). Block of RIG-I signaling
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not only inhibits senescence associated inflammation but also
prolongs cell growth. It should be noted that RIG-I induced by
non-viral factors only promotes the expression of inflamma-
tory factors, but not the production of IFN-β. Therefore, the
activation of NF-κB and IFN-stimulated response element
(ISRE) by RIG-I should be regulated by different mechan-
isms.

OTHER POSSIBLE ROLES OF RIG-I

RIG-I was initially found as an inducible gene in a leukemia
cell line treated with ATRA, which is an acknowledged agent
to promote cell differentiation and widely used as an anti-
cancer drug for leukemia (Liu et al., 2000). Therefore, it is
possible that RIG-I is involved in some other cellular events
such as carcinogenesis, apoptosis, senescence, cell differ-
entiation and development.

RIG-I and cancer

It has been demonstrated that the level of RIG-I is quite low,
even undetectable in most cancer cells such as prostate,
breast, melanocyte and astrocyte malignant cells. However,
RIG-I can be easily detected in their counterparts of normal
cells (Su et al., 2007). RIG-I can be induced by IFN-γ, an
immuno-modulatory factor, in human breast cancer cell MCF-
7 and cervical cancer cell HeLa. Furthermore, RIG-I mediates
the IFN-γ stimulation of ISG15 and CXCL11 in these cells,
suggesting that RIG-I is involved in the immuno-modulatory
function (Cui et al., 2004; Yuzawa et al., 2008). A micro-array
screen of MDA-MB-435 human breast cancer cells showed
that RIG-I is up-regulated in retinoic acid receptor β2 (RARβ2)
transfected cells, indicating a possible role of RIG-I in anti-
metastasis (Wallden et al., 2005). Viral infection can lead to
carcinogenesis. As a viral RNA receptor, RIG-I and its
signaling molecules are frequently targeted by different
components of virus, which leads to virus-induced progres-
sion of malignant mesothelioma by increasing vascular
endothelial growth factor (VEGF) production (Wörnle et al.,
2009). These studies provide novel insight into the role of
RIG-I in cancer development.

RIG-I and apoptosis

It has been reported that RIG-I is involved in the apoptosis
induced by poly (I:C) or synthetic retinoid in hepatoma or
melanoma cells (Pan et al., 2009; Peng et al., 2009).
However, the underlying mechanism is poorly understood.
IFN-β has a great potential to induce apoptosis. Although
RIG-I signaling triggers the production of IFN-β, some reports
show that RIG-I and MDA5 initiate a pro-apoptotic pathway
independent of type I IFN. Noxa and downstream caspase-9,
as well as Apaf-1, but not p53, are required for RIG-I induced
apoptosis in melanoma cells, while in non-malignant cells, the

RIG-I induced apoptosis can be blocked by the anti-apoptotic
protein Bcl-xL (Besch et al., 2009).

RIG-I in development and proliferation

The involvement of RIG-I in development and proliferation
mainly relies on the finding that RIG-I can be induced by
ATRA in leukemia. However, in normal myelopoiesis without
retinoic acid stimulation, RIG-I expression also increased in
culture, suggesting a possible role of RIG-I in granulocytic
differentiation. RIG-I deficient mice exhibit developmental
disorder in myeloproliferation due to the down-regulation of
IFN consensus sequence binding protein (Zhang et al.,
2008b). Another recent study reveals a novel RIG-I pathway
in regulating cell proliferation. Under the regulation of STAT1,
RIG-I conversely augments the activation of STAT1 on ISG
expression to inhibit the proliferation of leukemia cells, which
is independent of MAVS signaling (Jiang et al., 2011).

RIG-I in phagocytosis

It is shown that RIG-I has a pro-phagocytosis role in bacterial
infection. Knockdown of RIG-I leads to defects in phagocy-
tosis related pathway and inhibits LPS-induced phagocytosis
in macrophage. The function of RIG-I in phagocytosis is
independent of MAVS, indicating the different functions of
RIG-I and its signaling. RIG-I deficient mice are more
susceptible to Escherichia coli infection, suggesting that
RIG-I might also participate in the anti-bacterial immunity
(Kong et al., 2009).

FUTURE PERSPECTIVES

It is suggested that RIG-I is “born” to be a stress protein
induced by retinoic acid, just as described by its name. The
stimulations that up-regulate RIG-I expression include dou-
ble/single stranded RNA in virus infection (Kubota et al.,
2006), LPS in bacterial infection (Imaizumi et al., 2002),
interferons (Imaizumi et al., 2004a), TNF-α (Imaizumi et al.,
2009), oxidized cholesterol (unpublished data) and even DNA
damage in cell senescence (Liu et al., 2011). In addition, the
expression of RIG-I is shown to be up-regulated in a series of
chronic inflammatory diseases, such as atherosclerosis
(Imaizumi et al., 2007) and arthritis (Imaizumi et al., 2008).
To more accurately define the characteristics of RIG-I, we
would rather call it a “stress” protein—it is inducible and
activated under different “stresses.” Nevertheless, compared
to the role of RIG-I in antiviral response, the knowledge about
RIG-I in other fields is limited. Extensive studies are required
to answer the questions about the role of RIG-I in non-viral
conditions. For example, how is RIG-I activated in non-RNA
systems, such as inflammation and cell proliferation? Future
studies may focus on the mechanisms of RNA-independent
RIG-I activation.
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ABBREVIATIONS

AP-1, activator protein 1; Apaf-1, apoptotic protease activating factor
1; ATM, ataxia telangiectasia mutated; ATP, adenosine triphosphate;
Bcl-xL, B-cell lymphoma-extra large; Cardif, CARD adaptor inducing

IFN-β; Caspase, cysteine-aspartic proteases; CXCL, chemokine (C-
X-C motif) ligand; CYLD, cylindromatosis; DUBA, deubiquitinating
enzyme A; FADD, Fas associated protein with death domain; gC1qR,
receptor for global domain of complement 1 q subunit; IKK, IκB

kinase; IPS-1, IFN-β promoter stimulator 1; IRF, interferon regulatory
factor; ISG, interferon stimulated gene; MITA, mediator of IRF3
activation; NF-κB, nuclear factor κB; NLRC5, NOD-like receptor

family CARD domain containing 5; NLRX1, NOD-like receptor family
member X1; poly (I:C), polyriboinosinic:polyribocytidylic; PSMA7,
proteasome subunit alpha type-7; RIP, receptor interacting protein;

RNF, RING finger protein; RANTES, regulated upon activation,
normal T-cell expressed, and secreted; SIKE, suppressor of IKKε;
STAT, signal transducer and activator of transcription; STING,

stimulator of interferon genes; TBK1, TANK binding kinase 1; TRAF,
tumor necrosis factor receptor associated factor; TRIF, TIR domain
containing adaptor protein inducing IFN-β; TRIM25, tripartite motif-
containing protein 25; VISA, virus induced signaling adaptor
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