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ABSTRACT

Morphogenesis and maturation of viral particles is an
essential step of viral replication. An infectious herpes-
viral particle has a multilayered architecture, and con-
tains a large DNA genome, a capsid shell, a tegument and
an envelope spiked with glycoproteins. Unique to
herpesviruses, tegument is a structure that occupies
the space between the nucleocapsid and the envelope
and contains many virus encoded proteins called tegu-
ment proteins. Historically the tegument has been
described as an amorphous structure, but increasing
evidence supports the notion that there is an ordered
addition of tegument during virion assembly, which is
consistent with the important roles of tegument proteins
in the assembly and egress of herpesviral particles. In
this review we first give an overview of the herpesvirus
assembly and egress process. We then discuss the roles
of selected tegument proteins in each step of the
process, i.e., primary envelopment, deenvelopment,
secondary envelopment and transport of viral particles.
We also suggest key issues that should be addressed in
the near future.
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INTRODUCTION

The family Herpesviridae consists of three subfamilies
including Alphaherpesvirinae, Betaherpesvirinae and Gam-
maherpesvirinae whose members infect a broad range of
animal species including mammals, birds and reptiles
(Davison et al., 2009). Until now, more than 130 herpes-
viruses have been identified, among which there are eight

human pathogens, including the Alphaherpesvirinae mem-
bers herpes simplex virus type 1 (HSV-1), herpes simplex
virus type 2 (HSV-2) and varicella zoster virus (VZV), the
Betaherpesvirinae members human cytomegalovirus
(HCMV), human herpesvirus type 6 (HHV-6) and human
herpesvirus type 7 (HHV-7), and the Gammaherpesvirinae
members Epstein-Barr virus (EBV) and Kaposi’s sarcoma-
associated herpesvirus (KSHV). HSV most commonly cause
mucocutaneous infections, resulting in recurrent orolabial or
genital lesions (Roizman et al., 2007). HCMV infection is
responsible for approximately 8% of infectious mononucleo-
sis cases and is also associated with inflammatory and
proliferative diseases (Söderberg-Nauclér, 2006; Steininger,
2007). EBV and KSHV are associated with several malig-
nancies, such as Burkitt’s lymphoma and Kaposi’s sarcoma
(Chang et al., 1994; Kutok and Wang, 2006).

All members of the Herpesviridae family comprise two
distinct stages in their life cycle: lytic replication and latency
(Sunil-Chandra et al., 1992; Decker et al., 1996a, b; Dupin et
al., 1999; Flaño et al., 2000). Members of the Alphaherpesvir-
inae subfamily establish latency in neurons, members of the
Betaherpesvirinae subfamily establish latency in a range of
nonneuronal cells, whereas members of Gammaherpesvir-
inae subfamily members establish latency mainly in B and T
lymphocytes. Latency provides the viruses with advantages
to escape host immune surveillance so as to establish lifelong
persistent infection and thus contributes to transformation and
development of malignancies. However, it is through lytic
replication that viruses propagate and transmit among hosts
to maintain viral reservoirs. Both viral latency and lytic
replication play important roles in herpesvirus pathogenesis.

All herpesvirions have a characteristic multilayered archi-
tecture (Fig. 1). An infectious virion contains a double-
stranded DNA genome, an icosahedral capsid shell, a thick,
proteinaceous tegument compartment, and a lipid bilayer
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envelope spiked with glycoproteins (Rixon, 1993; Roizman
and Pellett, 2001; Liu and Zhou, 2006; Dai et al., 2008). As a
unique structure of herpesviruses, the tegument plays
important roles in multiple aspects of the viral life cycle,
including translocation of nucleocapsids into the nucleus as
well as virion assembly and egress (Subak-Sharpe and
Dargan, 1998; Fuchs et al., 2002a). As components that are
carried into a host cell during viral infection, tegument proteins
can also transactivate the expression of viral immediate-early
genes and cellular genes as well as modulate, host signal
transduction and innate immunity (Bresnahan and Shenk,
2000; Castillo and Kowalik, 2002; Ishov et al., 2002; Zhu et
al., 2002).

Virion assembly and egress is an essential stage of
herpesviral lytic replication, hence contributes indirectly to
herpesvirus pathogenesis. In this review we summarize the
growing range of functions attributed to tegument proteins
during the course of herpesvirus assembly and egress. We
mainly focus on tegument proteins from the Alphaherpesvir-
inae subfamily, in particular HSV-1 and the related porcine
pathogen pseudorabies virus (PrV), since they are the most
extensively studied. Meanwhile, some well studied tegument
proteins from the Betaherpesvirinae and Gammaherpesvir-
inae subfamilies are also discussed.

OVERVIEW OF HERPESVIRUS ASSEMBLY AND

EGRESS

During herpesvirus lytic infection, after attachment and
penetration, capsids are transported to the nucleus via
interaction with microtubules, docking at the nuclear pore
where the viral genome is released into the nucleus (Döhner
et al., 2002; Wolfstein et al., 2006), where transcription of viral
immediate-early, early and late genes and genome replication
take place. Then virion assembly and egress proceed from
the nucleus to the cytoplasm. Several models have been

proposed to explain this process, among which the most
widely accepted is the envelopment-deenvelopment-
reenvelopment model: capsid formation and viral DNA
packaging in the nucleus, primary envelopment at the inner
nuclear membrane and deenvelopment at the outer nuclear
membrane, association with tegument proteins and second-
ary envelopment (i.e., reenvelopment) in the cytoplasm, and
budding of complete virions into Golgi body-derived compart-
ments for egress via the cellular secretory pathway (Metten-
leiter, 2002, 2004). In each stage of virion assembly and
egress, tegument proteins are found to play important roles.
There are also lines of evidence suggesting direct exit from
the nucleus of unenveloped nucleocapsids via enlarged
nuclear pores or transport of perinuclear enveloped nucleo-
capsids through a continuum of outer nuclear, rough ER and
Golgi membranes (Wild et al., 2002; Leuzinger et al., 2005;
Wild et al., 2005, 2009). In this review, the functional roles of
tegument proteins will be discussed in the context of the
envelopment-deenvelopment-reenvelopment model of virion
assembly.

TEGUMENT PROTEINS

Composition of tegument in all three Herpesviridae subfami-
lies has been studied. At least 26, 38 or 17 virus-encoded
tegument components are recruited into an HSV-1, HCMV or
EBV virion, respectively (Johannsen et al., 2004; Varnum et
al., 2004; Zhu et al., 2005; Loret et al., 2008). Some of these
proteins, such as pUL36, pUL47, pUL48 and pUL49, are
classified asmajor, structurally significant components (Heine
et al., 1974), whereas some, such as vhs and the protein
kinase pUL13, are minor but nonetheless important compo-
nents (Schek and Bachenheimer, 1985; Overton et al., 1992).
Some tegument proteins are conserved in all herpesvirus
members (Table 1), and their functions are progressively
unrevealed.

As an indispensable part of mature virion, tegument plays
important roles in herpesviral particle production. Much effort
has been placed on elucidating the molecular interactions
between various tegument proteins with the hope of under-
standing the mechanisms by which this complex virus is
assembled. Tegument addition is thought to originate in the
nucleus, then more tegument proteins are added to capsids in
the cytoplasm following nuclear egress and finally at trans-
Golgi network (TGN)-derived membranes during maturation
budding (Mettenleiter, 2006). The complexity of virion
assembly route clearly raises the issue that different tegu-
ment proteins may be incorporated into herpesviral particles
at different stages of egress and that the composition of
virions in the perinuclear space may not be the same as that
of the mature extracellular viruses. For example, the UL31
and UL34 gene products of PrVare present in viral particles in
the perinuclear space but are absent from virions at later
stages of assembly and mature virions (Fuchs et al., 2002c).
In contrast, the pUL36, pUL37, pUL46, pUL47, pUL48 and

Figure 1. Diagram of herpesvirion structure. The virion
particle is approximately 200 nm in diameter. A linear double-
stranded DNA genome is packaged within an icosahedral

capsid to form the nucleocapsid. The capsid is embedded in a
matrix known as the tegument layer, which contains many virus
coded proteins. The tegument is itself surrounded by the

envelope, a lipid membrane containing several viral glycopro-
teins.

988 © Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Haitao Guo et al.Protein & Cell



pUL49 tegument proteins of PrVare found in only cytoplasmic
enveloped virions and mature PrV particles and are therefore
presumably not recruited into the virion during primary
envelopment (Fuchs et al., 2002a; Klupp et al., 2002; Kopp
et al., 2002). The PrV pUS3 protein kinase, on the other hand,
is a component of both primary and mature enveloped virions
(Granzow et al., 2004). However, some researchers showed
conflicting data on the related HSV-1 homologs, in which HSV
tegument proteins pUL36, pUL37, pUL48 and pUL49 have
been found associated with intranuclear capsids or existing in
primary enveloped virions (Mossman et al., 2000; Naldinho-
Souto et al., 2006; Bucks et al., 2007; Padula et al., 2009).
These results indicate that the sequence of tegument protein
addition and the regions in which capsid acquires the
tegument are very complicated. The inner tegument proteins
may interact with the capsid while the outer tegument proteins
may be recruited by interacting with the cytoplasmic tails of
viral glycoproteins. Several molecular interactions have been
implicated in linking the viral capsid, tegument and membrane
during the envelopment process. Examples include pUL25

(capsid)-pUL36 (tegument), pUL49 (tegument)-gD (mem-
brane), pUL48 (tegument)-gH (membrane), and pUL11
(membrane)-pUL16 (tegument/capsid) interactions (McNab
et al., 1998; Mettenleiter, 2002, 2004; Coller et al., 2007).
These interactions will be elaborated in the following sections.

PRIMARY ENVELOPMENTAND DEENVELOPMENT

After capsid assembly, the nucleocapsids will bud at the inner
nuclear membrane (NM). There, the viruses encounter the
nuclear lamina, a rigid network of lamin proteins lining the
inner NM, which is a major obstacle for budding of the
nucleocapsids. Herpesviruses disrupt the nuclear lamina in
order to bud into the perinuclear space and acquire the inner
NM as the envelope, the so called primary envelopment
(Scott and O'Hare, 2001; Muranyi et al., 2002; Leach et al.,
2007; Mou et al., 2007; Mou et al., 2008). HSV-1 and PrV
disrupt the lamina through two viral proteins, pUL31 and
pUL34, which form a complex colocalized to the inner NM
(Reynolds et al., 2002; Reynolds et al., 2004; Simpson-Holley
et al., 2004; Simpson-Holley et al., 2005; Bjerke and Roller,
2006). Research suggested that pUL31 and pUL34 promote
viral nuclear egress by several mechanisms, including (1)
affecting maturation of viral replication intermediates so that
capsids assemble adjacent to the nuclear envelope, making it
convenient for primary egress (Simpson-Holley et al., 2004,
2005), (2) causing displacement of and conformational
changes in lamins A/C and B (Reynolds et al., 2004;
Simpson-Holley et al., 2004; Bjerke and Roller, 2006), and
(3) mislocalizing the membrane lamin receptors, such as the
lamin B receptor and emerin, which tether lamins to the inner
NM (Scott and O'Hare, 2001; Leach et al., 2007; Morris et al.,
2007; Mou et al., 2008). Amazingly, expression of PrV pUL31
and pUL34 in RK-13 cells resulted in formation of vesicles in
the perinuclear space, indicating that they may compose the
essential budding machinery (Klupp et al., 2007).

pUL31 and pUL34 are conserved in all three Herpesviridae
subfamilies. In EBV, the pUL34 positional homolog BFRF1
and the pUL31 positional homolog BFLF2 also interact with
each other. HSV-1 UL34 or EBV BFRF1 mutant viruses
showed a phenotype of nuclear retention (Lake and Hutt-
Fletcher, 2004; Farina et al., 2005; Gonnella et al., 2005;
Calderwood et al., 2007). EBV BFLF2 functions in both viral
DNA packaging and primary envelopment, as deletion of
BFLF2 led to sequestration of nucleocapsids in the nucleus
and production of more empty capsids without viral genomes
(Granato et al., 2008).

Alphaherpesviruses also express a viral serine/threonine
protein kinase, pUS3, that phosphorylates lamins and lamin
receptor emerin, which are thought to be involved in
maintaining nuclear integrity (Leach et al., 2007; Morris
et al., 2007; Mou et al., 2008). In addition, both HSV-1 and PrV
pUL31 and pUL34 have been shown to be phosphorylated in
a pUS3-dependent manner, and all three proteins have been
found to be incorporated into primary virions (Purves et al.,

Table 1 Conservation of herpesvirus tegument proteins

HSV-1 tegu-
ment proteins

nomenclature of HSV-1 tegument homologs

HCMV EBV KSHV

UL7 UL103 BBRF2 ORF42

UL11 UL99 BBLF1 ORF38

UL13 UL97 BGLF4 ORF36

UL14 UL95 BGLF3 ORF34

UL16 UL94 BGLF2 ORF33

UL21 UL87 BcRF1 ORF24

UL23 NA BXLF2 ORF21

UL36 UL48 BPLF1 ORF64

UL37 UL47 BOLF1 ORF63

UL51 UL71 BSRF1 ORF55

UL41 NA NA NA

UL46 NA NA NA

UL47 NA NA NA

UL48 NA NA NA

UL49 NA NA NA

UL50 NA NA NA

UL55 NA NA NA

US2 NA NA NA

US3 NA NA NA

US10 NA NA NA

US11 NA NA NA

RL1 (ICP34.5) NA NA NA

RL2 (ICP0) NA NA NA

RS1 (ICP4) NA NA NA

NA: not applicable; HSV: herpes simplex virus.
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1991; Granzow et al., 2004; Ryckman and Roller, 2004; Kato
et al., 2005; Mou et al., 2007, 2009). pUS3 also regulates the
localization of the pUL31/pUL34 complex, as deletion of
pUS3 disrupts their localization from a smooth nuclear rim
distribution to distinct foci (Wagenaar et al., 1995; Klupp et al.,
2001a; Reynolds et al., 2002; Ryckman and Roller, 2004).
These observations indicate that pUS3might function in virion
primary envelopment.

The other tegument protein kinase, pUL13, may also play a
role in regulating the localization of pUL31 and pUL34 in HSV-
1 either directly or indirectly through phosphorylation of pUS3
(Kato et al., 2006, 2008), indicating its participating in primary
envelopment. The HCMV homolog of HSV-1 pUL13, pUL97,
which is also a kinase, is incorporated into virions (Michel et
al., 1996). pUL97 has been reported to play an important role
in virion nuclear egress, as a marked decrease in the number
of mature capsids was observed in the cytoplasm of cells
infected with UL97 null mutant compared to the wild type virus
(Wolf et al., 2001; Krosky et al., 2003). Deletion of HCMV
UL97 causes an aggregation of tegument and other structural
proteins in nuclear inclusion, suggesting that pUL97 kinase is
required for the normal function of tegument proteins in the
nucleus and may function in initiation of tegumentation or
primary envelopment (Prichard et al., 2005). Although it is not
clear where pUL97 is added onto the nucleocapsid, interac-
tion between pUL97 and the HCMV major tegument protein
pp65 is required for the incorporation of pUL97 into viral
particles (Kamil and Coen, 2007; Chevillotte et al., 2009).

HSV-1 tegument proteins pUL36, pUL37, pUL48 and
pUL49 have been found to be associated with intranuclear
capsids or exist in primary enveloped virions, though their
specific functions in nuclear egress are not clear yet (Moss-
man et al., 2000; Naldinho-Souto et al., 2006; Bucks et al.,
2007; Padula et al., 2009). pUL36 contains a capsid binding
domain and interacts with a minor capsid protein pUL25
previously found to participate in DNA encapsidation (McNab
et al., 1998; Coller et al., 2007). Such an interaction is
required for assembly of pUL36 onto capsid, indicating that
pUL36 can bind to capsid directly. This result is consistent
with those from electron microscope studies, which suggest
presence of HSV-1 pUL36 in the inner most layer of the
tegument, attached to the vertices of the capsid (McNabb and
Courtney, 1992; Zhou et al., 1999). pUL36 is conserved
throughout the Herpesviridae. It forms a complex with pUL37
as part of the capsid-associated inner tegument. Deletion of
either of the genes encoding pUL36 or pUL37 blocks further
tegumentation of the capsid in the cytoplasm (Desai, 2000;
Desai et al., 2001; Klupp et al., 2001b; Fuchs et al., 2004;
Leege et al., 2009; Roberts et al., 2009). By interacting with
pUL48, pUL36 is a major factor for recruiting pUL48 onto
capsids (Ko et al., 2010). However, in PrV, pUL36 and pUL48
only exist in mature virions, and are undetectable from
nuclear or primary enveloped virions, indicating that these
two tegument proteins are acquired in the cytoplasm

(Naldinho-Souto et al., 2006; Möhl et al., 2009). Deletion of
pUL48 does not affect the capsid assembly and nuclear
egress of PrV (Fuchs et al., 2002a). These conflicting results
suggest that pUL36 and pUL48 of HSV-1 and PrV may
function differently.

Deenvelopment is a step of herpesvirus nuclear egress
whose details are poorly understood. pUL48 might play a role
in this process for HSV-1, as large numbers of enveloped
particles accumulate between the inner and outer NM in the
absence of pUL48 (Mossman et al., 2000). In addition, HSV-1
gB and gH/gL have redundant or overlapping roles in fusion
with the outer NM (Farnsworth et al., 2007b). Consistent with
this notion, EBV, KSHV and PrV gB null mutants all exhibit
defects in nuclear egress (Peeters et al., 1992; Lee and
Longnecker, 1997; Krishnan et al., 2005). In the primary
enveloped virions, pUS3 can phosphorylate the gB cytoplas-
mic domain and this modification is important for gB-mediated
fusion of the virion envelope and the outer NM (Wisner et al.,
2009). Thus, pUS3 plays important roles in both primary
envelopment and deenvelopment.

SECONDARY ENVELOPMENT

Most tegument proteins are recruited onto the nucleocapsid in
the cytoplasm. The addition of outer tegument is accompa-
nied with virion secondary envelopment. During this process,
several molecular interactions, such as pUL11 (membrane)-
pUL16 (tegument), pUL48 (tegument)-gH (membrane) and
pUL49 (tegument)-gE (membrane), have been implicated in
linking the viral capsid, tegument and membrane (Mettenlei-
ter, 2002, 2004). pUL16 is conserved throughout the
Herpesviridae, and plays a pivotal role in virion morphogen-
esis in the cytoplasm. pUL16 binds to the capsid by
interacting with pUL21 which is also a tegument protein
associated with capsid in both the nucleus and the cytoplasm
(de Wind et al., 1992; Takakuwa et al., 2001; Klupp et al.,
2005). pUL16 has another binding partner, named pUL11,
which is a membrane-bound tegument protein (Loomis et al.,
2003). Two distinct binding sites exist in pUL16 for pUL11 and
pUL21, as covalent modification of its free cysteines with N-
ethylmaleimide blocks its binding to pUL11 but not to pUL21
(Yeh et al., 2008; Harper et al., 2010). This observation
suggests that pUL16 may interact with pUL21 and pUL11 in
sequence and both interactions contribute to efficient
incorporation of pUL16 into virions (Meckes et al., 2010).
The pUL11 tegument protein is also conserved among all
herpesviruses, and each homolog contains amino acid motifs
that allow covalent modifications with two fatty acids,
myristate and palmitate (MacLean et al., 1989; Loomis
et al., 2001). These two modifications allow pUL11 accumu-
lating at TGN-derived vesicles in the absence of other
viral proteins (Loomis et al., 2001). In addition, there exist
leucine-isoleucine and acidic cluster motifs, responsible for
recovering pUL11 from plasma membrane to the internal
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membrane. This might enable the recruitment of other
membrane proteins (virus or host encoded) from the plasma
membrane for secondary envelopment occurring around the
TGN-vesicles (Loomis et al., 2001).

Similar to the conservation of pUL16 and pUL11, their
interaction is also conserved among all herpesviruses. In
HCMV, the pUL11 homolog pUL99 has been found to interact
with the pUL16 homolog pUL94 (Liu et al., 2009). Consistent
with the previously described model of capsid transport and
budding, herpesviruses lacking pUL16, pUL21 or pUL11 (or
their homologs) have defects in virus egress, resulting in
decreased amounts of extracellular viruses produced and the
accumulation of non-enveloped capsids in the cytoplasm
(MacLean et al., 1989, 1992; Baines and Roizman, 1992;
Baines et al., 1994; Kopp et al., 2003; Schimmer and
Neubauer, 2003; Silva et al., 2003; Britt et al., 2004; Jones
and Lee, 2004; Silva et al., 2005; Seo and Britt, 2006; Guo
et al., 2009).

In murine gammaherpesvirus-68 (MHV-68), the homolog of
pUL16 is ORF33. Our laboratory has confirmed that ORF33
indeed encodes a tegument protein for MHV-68. Through
constructing and analyzing an ORF33 null mutant, we
demonstrated that ORF33 is not required for viral genome
replication or gene expression, but is essential for virion
morphogenesis and egress. More interestingly, ORF33 null
mutation caused a partial retention of nucleocapsids in the
nucleus, and maturation of virions was arrested at a
cytoplasmic stage of partially tegumented nucleocapsids,
indicating that ORF33 participates in both primary envelop-
ment of nucleocapsids and morphogenesis of virions in the
cytoplasm (Guo et al., 2009). We also found that ORF33
localizes in the nucleus during early infection and interacts
with another nuclear tegument protein (Guo et al., unpub-
lished data). We hypothesize that such interaction may
facilitate the nuclear budding or egress of nucleocapsids,
although such an interaction is relatively redundant.

A number of interactions have been identified involving
HSV-1 pUL48 and inner tegument proteins, outer tegument
proteins or the cytoplasmic tails of glycoproteins, supporting
the concept that pUL48 contributes to linking capsid and
envelope during virion formation. For instance, pUL48 has
been shown to interact with the outer tegument proteins
pUL41, pUL46, pUL47 and pUL49, through a combination of
yeast two-hybrid, in vitro pull-down and co-immunoprecipita-
tion studies (Smibert et al., 1994; Elliott et al., 1995; Vittone et
al., 2005). HSV-2 pUL48 has also been shown to copurify and
colocalize with pUL46 during the course of infection (Kato
et al., 2000). HSV-1 pUL46 is associated with cellular
membrane independent of the presence of other viral
proteins. Surprisingly, membrane association within the cell
does not translate to association of this protein with the viral
envelope, as pUL46 exhibits a strong affinity for the capsid of
purified viral particles (Murphy et al., 2008). However, deletion
of pUL46 in HSV-1 and PrV does not block virion assembly

(Zhang et al., 1991; Kopp et al., 2002). Although deletion of
pUL47 causes an approximately 10-fold decrease in viral titer,
pUL47 is not essential for virion assembly in the cytoplasm
(Kopp et al., 2002). HSV-1 pUL49 interacts with pUL48, but
this interaction is not required for incorporation of pUL49 into
viral particles (O’Regan et al., 2007). Similar to pUL46,
deletion of pUL49 in HSV-1 does not have a significant effect
on virus assembly (Elliott et al., 2005). In the case of PrV,
deletion of any of pUL46, pUL47, pUL48 or pUL49 does not
prevent incorporation of the remaining three proteins into the
tegument (Fuchs et al., 2002a; Michael et al., 2006).
Furthermore, an increased incorporation of cellular actin
into virions was observed when pUL46, pUL47 or pUL49 was
deleted, suggesting that actin may fill the void left by the
absence of these tegument proteins (del Rio et al., 2005;
Michael et al., 2006). These observations indicate that
redundancy exists in tegument assembly. In addition to
tegument proteins mentioned above, HSV-1 pUL48 also
interacts with the cytoplasmic tails of HSV-1 glyoprotein gB,
gD and gH, as identified by pull-down, co-immunoprecipita-
tion and chemical cross-linking assays (Zhu and Courtney,
1994; Gross et al., 2003; Kamen et al., 2005). However, the
role of these interactions in HSV-1 assembly requires further
investigation.

pUL49, besides an interaction with pUL48, also interacts
with a number of viral envelope proteins. Several studies
have shown that pUL49 interacts with the cytoplasmic tails of
HSV-1 gE, gD and envelope protein pUS9 (Chi et al., 2005;
Farnsworth et al., 2007a; O’Regan et al., 2007). In PrV,
interactions of pUL49 with the cytoplasmic tail of both gE and
gM were identified (Fuchs et al., 2002b). Furthermore, for
both HSV-1 and PrV, gE or gM is sufficient for recruitment of
pUL49 into virions through a direct interaction (Fuchs et al.,
2002b; Michael et al., 2006; O’Regan et al., 2007; Stylianou et
al., 2009).

Other tegument proteins promoting secondary envelop-
ment have also been identified. ORF52 is a tegument protein
conserved in gammaherpesviruses. The MHV-68 ORF52
localizes in TGN-derived vesicles in both transfection and
viral infection. Furthermore, ORF52 was found to specifically
function in virus budding into the vesicles in the cytoplasm
(Bortz et al., 2007). The crystal structure of ORF52 has been
determined at 2.1 Å resolution, revealing a dimeric associa-
tion of this protein. The self-association was confirmed by co-
immunoprecipitation and fluorescence resonance energy
transfer experiments. Functional complementation assay
demonstrated that both the N-terminal α-helix and the
conserved Arg95 residue are critical for ORF52 function
(Benach et al., 2007). The detailed mechanism responsible
for involvement of ORF52 in secondary envelopment is
currently under investigation in our laboratory.

In HCMV, the tegument protein pUL32 has been reported
to be important in cytoplasmic maturation of virions, espe-
cially in virus egress (Tandon and Mocarski, 2008). pUL32
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interacts with Bicaudal D1 (BicD1), a protein thought to play a
role in trafficking within the secretory pathway (Indran et al.,
2010). This interaction helps pUL32 to traffic to the virus
assembly compartment, suggesting a primary contribution of
this protein in the morphogenesis and/or cytoplasmic trans-
port of progeny virion particles to sites of virion secondary
envelopment.

TRANSPORT AND RELEASE

How do nucleocapsids or partially tegumented nucleocapsids
transport to the site where secondary envelopment takes
place? Microtubule has been found to be involved in
transporting non-enveloped viral particles. Several tegument
proteins have been identified as candidates linking deenve-
loped nucleocapsids to the anterograde cellular microtubule-
dependent molecular motor kinesin. In alphaherpesviruses,
pUS11 was found to interact with both kinesin-1 and the
kinesin-related protein PAT-1 (Diefenbach et al., 2002;
Benboudjema et al., 2003). An association between pUL21
and microtubules was also detected (Takakuwa et al., 2001),
raising the possibility that pUL21 could be involved with
capsid transport to the TGN-derived vesicles, where pUL16
interacts with pUL11, facilitating the budding process by
linking capsids to the membrane. In gammaherpesviruses,
an interaction between KSHV tegument protein ORF45

and kinesin-2, determined by yeast two-hybrid and co-
immunoprecipitation assays, has been reported (Sathish
et al., 2009). Disrupting the interaction between KSHV
ORF45 and kinesin-2 by a dominant negative mutant of
ORF45 leads to a decreased final production of mature
viruses. This result supports the idea that the association
between a viral tegument protein and a cellular molecular
motor is important for the intracellular movement of deenve-
loped nucleocapsids. The HSV-1 pUL36 is a multifunctional
large tegument protein. As part of the inner tegument, pUL36
is also important for the transport of enveloped virions. A
potential mechanism was proposed that, during viral infection,
pUL36 resides on the surface of organelles which nucleo-
capsids bud into, and pUL36 would directly or indirectly recruit
kinesin motors to the organelles to enable motility (Shanda
and Wilson, 2008).

CONCLUSIONS AND PERSPECTIVES

Through interacting with and manipulating the host micro-
environment, tegument proteins are multifunctional during the
complete cycle of herpesvirus lytic replication. In particular,
they play key structural roles during virion primary envelop-
ment, secondary envelopment and virion trafficking by
forming a bridge between capsid or capsid-associated
proteins and membrane-associated viral proteins or cellular

Figure 2. Diagram summarizing the roles of selected tegument proteins in herpesvirus assembly and egress. Viral

genomes are packaged into preformed capsids in the nucleus. Through primary envelopment at the inner nuclear membrane and
deenvelopment at the outer nuclear membrane, the nucleocapsid is transported into the cytoplasm from the nucleus. Acquisition of
tegument proteins onto the nucleocapsid is completed in the cytoplasm. The immature virion is transported via the microtubules into

a trans-Golgi derived vesicle containing viral glycoproteins. After transport of the vesicle to the cell surface, the vesicle and plasma
membrane fuse, resulting in the egress of a mature, enveloped virion.
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molecular motors (Fig. 2). The herpesvirion assembly and
egress process is complex and dynamic, and so are the roles
of tegument proteins. As a complex process, herpesvirion
assembly and egress involves many protein–protein interac-
tions with marked redundancy. Indeed, interactions between
tegument proteins and other viral and cellular proteins are
increasingly reported in vitro or in vitro. However, future
research on tegument will require identifying herpesviral
protein–protein interaction and herpesviral protein-cellular
protein interaction maps during the course of infecting host
cells and validating such interactions by viral genetics
approach. This has been done to some extent with the
Alphaherpesvirinae subfamily member VZV and the Gamma-
herpesvirinae subfamily members KSHV and EBV (Uetz et
al., 2006; Calderwood et al., 2007; Rozen et al., 2008). Such
information will improve our understanding of the biology of
herpesvirus and the roles of tegument proteins. More
importantly, by examining the importance of each pair of
protein–protein interaction, useful therapeutic targets may be
identified. The current antiviral strategy for treatment of
herpesviruses employs inhibitors of viral DNA replication
which have varying efficacies depending on the Herpesvir-
inae subfamily being treated. Therefore, new targets for
therapeutic interventions through different mechanisms are
useful, especially when combined with the viral DNA
replication inhibitors.

The herpesvirion assembly and egress is also a dynamic
process, and dissecting the roles of tegument proteins in such
a dynamic process calls for integration of different technical
approaches. Recently, combinations of molecular tags visible
in light and electron microscopes have become particularly
advantageous in the analysis of dynamic events at the cellular
level (Martin et al., 2005; Gaietta et al., 2006; Lanman et al.,
2008). Engineering such tags into herpesvirus tegument
proteins as well as capsid/envelope proteins will enable
optical live cell imaging and correlated ultrastructural analysis
by electron microscopy, and help provide high-resolution
information for the dynamic process of herpesvirion assembly
and egress.
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