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ABSTRACT

The study of antibodies has been a focal point in modern
biology and medicine since the early 1900s. However,
progress in therapeutic antibody development was slow
and intermittent until recently. The first antibody therapy,
murine-derived murononab OKT3 for acute organ rejec-
tion, was approved by the US Food and Drug Adminis-
tration (FDA) in 1986, more than a decade after César
Milstein and Georges Köhler developed methods for the
isolation of mouse monoclonal antibodies from hybri-
doma cells in 1975. As a result of the scientific,
technological, and clinical breakthroughs in the 1980s
and 1990s, the pace of therapeutic antibody discovery
and development accelerated. Antibodies are becoming
a major drug modality with more than two dozen
therapeutic antibodies in the clinic and hundreds more
in development. Despite the progress, need for improve-
ment exists at every level. Antibody therapeutics pro-
vides fertile ground for protein scientists to fulfill the
dream of personalized medicine through basic scientific
discovery and technological innovation.

KEYWORDS monoclonal antibodies, personalized
medicine, therapeutic antibodies

INTRODUCTION

The pioneering research by Robert Koch, Kitasato Shibasa-
buro, Emil von Behring, and Paul Ehrlich in late 19th and the
early 20th centuries on the treatment of infectious diseases
with serum from patients who had recovered from the same
disease was the first use of antibodies as therapeutics. The

active components in the serum were described as “anti-
bodies” “antitoxins” and “magic bullets” (Ehrlich, 1908; Winau
et al., 2004). This crude “serum therapy”was later modified by
isolating antibodies from the serum for the treatment of
infectious and immune diseases, known as intravenous
immune globulin (IVIG) (Stangel and Pul, 2006). Despite the
early success of serum therapy and IVIG treatment, no
significant progress was made in therapeutic antibody
discovery and development until César Milstein and Georges
Köhler developed methods for isolating mouse monoclonal
antibodies (mAbs) from hybridoma cells in 1975 (Köhler and
Milstein, 1975). Since then, mAbs have not only fueled
breakthrough discoveries in basic research, but have also
been developed as clinical diagnostics, reagents for high
throughput drug screening, and more importantly, life-saving
medicines. The first therapeutic mAb murononab, a murine-
derived antibody for acute organ rejection, was approved by
the US Food and Drug Administration (FDA) in 1986, a
decade after the discovery of the mouse hybridoma technol-
ogy (Thistlethwaite et al., 1987). As a result of technological
breakthroughs in the 1980s and 1990s, progress in ther-
apeutic mAbs field has been accelerated. Therapeutic
antibodies have shown desirable safety profiles, high target
specificity and affinity, and efficiency in disrupting protein/
protein interactions. They are becoming a major drug
modality with more than 25 therapeutic antibodies in clinical
use and hundreds more in development (Reichert and Valge-
Archer, 2007; An, 2009).

ANTIBODY STRUCTURE

An antibody of the IgG isotype is a homodimer composed of
two heterodimers of one light chain and one heavy chain.
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Both the heterodimers and homodimers are linked by inter
chain disulphide bonds (Stanfield andWilson, 2009) (Fig. 1A).
The light and heavy chains each contain variable and
constant regions. The antigen binding complementarity
determining regions (CDRs) are short hypervariable amino
acid sequences found in the variable domains of both light
(variable light or VL) and heavy (variable heavy or VH) chains.
Each VH and VL contains three pairs of non-identical CDRs
(CDR1, CDR2 and CDR3). CDRs are termed hypervariable
domains because the majority of the sequence variations
associated with antibodies is found in the CDRs. Among the
six CDRs in an IgG molecule, CDR3s have the greatest
variability. The Fc-region (fragment crystalizable region) of a
mAb, residing in the constant regions of the heavy chains, can
recruit effector cells such as natural killer cells, macrophages
or neutrophils to activate the complement system to destroy
the target-associated cells. These functions are referred to as
antibody-dependent cellular cytotoxicity (ADCC) and comple-
ment-dependent cytotoxicity (CDC). Four additional antibody
isotypes are found in humans, IgA, IgD, IgE, and IgM. All five
isotypes share a common theme of a core heterodimer
building unit of a heavy and light chain. In IgG, IgA and IgD
antibody isotypes, the Fc region is composed of two identical
protein fragments, derived from the second (CH2) and third
(CH3) constant domains of the antibody's two heavy chains.
The Fc regions in IgM and IgE contain three heavy chain

constant domains in each polypeptide chain. The IgG isotype
is most commonly used in therapeutic applications.

ANTIBODY THERAPEUTIC HISTORY

The progress of antibody therapeutics is driven by both
scientific and technological breakthroughs (Fig. 2). Thera-
peutic antibody development also parallels the desire of the
industry to reduce immunogenicity. Immunogenicity can
reduce the efficacy of therapeutic mAbs. In severe cases,
immunogenicity can cause anaphylaxis and hypersensitivity
reactions. Soon after the approval of the murine-derived
monoclonal antibody murononab for acute organ rejection in
1986 (Thistlethwaite et al., 1987), it was realized that murine-
derived monoclonal antibodies are less than ideal therapeu-
tics due to their high immunogenicity in humans. Several
strategies to make antibodies more human, such as chimeric
mAb (Morrison et al., 1984) and CDR grafting (Kettleborough
et al., 1991), were devised to reduce the human anti-mouse
antibody (HAMA) responses. It took a decade for the first
chimeric mAb, abciximab for hemostasis, to be approved by
FDA in 1994 (Faulds and Sorkin, 1994). The first humanized
mAb, Zenapax for kidney transplant rejection, was approved
for clinical use by FDA in 1997 (Vincenti et al., 1998).
Humanization alleviated the HAMA response to various
degrees, but many other drawbacks became evident. For
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Figure 1. Diagrams of various antibody structures. (A) A generic IgG molecule. (B) A scFv fragment. (C) A Fab fragment. (D) A
F(ab’)2 fragment. (E) A mouse IgG molecule. (F) A murine:human chimeric IgG molecule. (G) A humanized IgG molecule. (H) A
human IgG molecule.
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example, the humanization process is technically demanding
and the process may result in reduced antigen binding affinity
and decreased efficacy. To avoid the human immune
response to murine-derived mAbs and to overcome the
technical challenges associated with humanizing murine
mAbs, two major approaches were developed for generating
fully human mAbs. The first approach was to express human
antibody fragments on bacteriophage surfaces. The resulting
libraries contain billions of unique human antibody fragments
which can be screened for leads (Vaughan et al., 1996).
Humira, the first fully human mAb derived from a bacterioph-
age displayed antibody library, was approved by the FDA in
2003 for the treatment of rheumatoid arthritis (Weinblatt et al.,
2003). The second approach was to use transgenic mice to
produce fully human antibodies (Russell et al., 2000; Lonberg,
2005). This is achieved by replacing the mouse native antibody
genes with their human counterparts. Vectibix, an anti-EGFR
antibody approved for colorectal cancer therapy in 2006, was
the first fully human antibody therapeutic derived from a
transgenic mice system (Chua and Cunningham, 2006). The
industry trend is to develop more human like antibodies for
clinical use. However, immunogenicity is a complex biological

process and it cannot be predicted solely on human content of
an antibody. For example, Humira, a fully human antibody, has
a relatively high incidence of immunogenicity (Bender et al.,
2007). Surprisingly, there is little difference in immunogenicity
(anti-antibody response) between humanized and chimeric
mAbs in clinical use today (Table 1). Clearly more basic and
clinical research is needed to develop reliable parameters to
predict immunogenicity of therapeutic antibodies prior to their
reaching the clinic.

SOURCES OF THERAPEUTICS ANTIBODIES

Accessing diversified antibody sources are paramount to the
success in the discovery and development of antibody
therapies. Most therapeutic antibodies in the clinic today are
of murine origin largely due to the early availability of the
mouse hybridoma technology; however, entirely mouse
antibodies have poor pharmacokinetics in humans due to
human anti-mouse antibody immune responses (Fig. 1E). To
reduce immunogenicity, murine antibodies are commonly
modified to murine/human chimeric antibodies or humanized
antibodies for therapeutic applications (Carter, 2006; Reichert

Figure 2. History of antibody therapeutics. Green boxes represent scientific and technology milestones. Blue boxes are
antibody therapeutics developed as a result of the scientific and technology breakthroughs.
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and Valge-Archer, 2007) (Fig. 1F–G). Later, transgenic mice
and in vitro phage display were employed to generate fully
human therapeutic antibodies to circumvent the immunogeni-
city issue associated with murine sequences (Fig. 1H)
(Hoogenboom, 2005; Lonberg, 2005; Jakobovits et al.,
2007; Lee et al., 2007). In addition to phage display, antibody
fragments can also be displayed on yeast (Feldhaus et al.,
2003), bacteria (Harvey et al., 2004), mammalian cells (Smith
and Zauderer, 2009) and other in vitro systems such as
ribosomes (Hanes et al., 1998). The pros and cons of the
various antibody platforms have been broadly reviewed
recently (An, 2009). The ever increasing demand for
improved tools for antibody drug discovery will lead to new
platforms and technologies. For example, humanized rabbit
mAbs are being developed as therapeutics (News, 2010; Yu
et al., 2010).

Another important source of antibodies is the human
antibody B cell repertoire. The isolation of human mAbs has
been a labor-intensive endeavor, either through EBV immor-
talization or hybridoma fusion, or by constructing phage-
displayed antibody libraries (Vaughan et al., 1996; Traggiai
et al., 2004; Li et al., 2006b; Rothe et al., 2007). Significant
technological breakthroughs in B lymphocyte culture and
cloning were reported recently including the analysis of HIV
and flu mAbs in naturally infected or vaccinated humans
(Wrammert et al., 2008; Jin et al., 2009; Ogunniyi et al., 2009;
Scheid et al., 2009; Walker et al., 2009; Kwakkenbos et al.,
2010). It is now possible to isolate human memory B cells
(CD27 + , sIgG + , IgD-) from peripheral blood mononuclear
cells (PBMC), and more importantly, culture them where they
proliferate and differentiate to IgG secreting cells (ISC) (Smith
et al., 2009; Walker et al., 2009). Single cell culturing vessels
have been engineered, thus enabling for high-throughput
screening of functional mAbs (Jin et al., 2009; Ogunniyi et al.,
2009). New methods of B cell immortalization other than EBV
infection or hybridoma, such as Bcl-6/Bcl-xL, or hTERT, have
been reported (Kwakkenbos et al., 2010). In addition,
methods for cloning of IgG encoding genes from single B
cells have been optimized (Wrammert et al., 2008; Jin et al.,
2009; Ogunniyi et al., 2009; Scheid et al., 2009; Walker et al.,
2009; Kwakkenbos et al., 2010). These technical and
engineering accomplishments make it feasible to isolate
human mAbs with broad coverage of therapeutic targets.

FORMATS OF ANTIBODY THERAPEUTICS

Most therapeutic antibodies are full length IgG molecules and
IgG1 is the most commonly used sub-isotype (Table 1). This
is because IgG1 molecules possess several favorable
characteristics: they are structurally stable; they have a long
in vivo half life; and IgG1 confer Fc-mediated biological effects.
In designing antibody therapeutics, it is sometimes desirable
to diminish or abolish the ADCC and CDC functions while
retaining its pharmacokinetic profile, in the case of a “benign

blocker” antibody. For this purpose, both IgG2 and IgG4 have
been used in antibody therapeutics (Table 1). Protein
engineering has been applied to create Fc with altered
properties. For example, IgG2m4, a novel engineered IgG
isotype with reduced Fc functionality was recently reported
(An et al., 2009). The engineered IgG2m4 is based on the
IgG2 isotype with four key amino acid residue changes
derived from IgG4 (H268Q, V309L, A330S and P331S). An
IgG2m4 antibody has an overall reduction in complement and
Fcg receptor binding in in vitro binding analyses while
maintaining the normal in vivo serum half-life in rhesus
monkeys.

In addition to IgG molecules, antibody fragments (e.g.,
Fab) have also been developed as therapeutics (Sandborn
et al., 2007). Relative to IgG molecules, antibody fragments
have more extensive penetration of tissues (particularly of
solid tumors) due to their smaller size. The smaller size of
antibody fragments has the advantage of accessing ther-
apeutically important epitopes that may be sterically hindered.
In addition, antibody fragments may be manufactured more
cost effectively in a microbial fermentation system. The
shorter half life of antibody fragments can be extended by
modifying the molecules such as through PEGylation. The
absence of the Fc region in an antibody fragment may lessen
side effects caused by the interaction between Fc and the
immune system. ReoPro, an anti-GPIIb/IIa chimeric Fab for
the prevention of blood clots in angioplasty, was the first
antibody fragment approved for clinic use in the US (Faulds
and Sorkin, 1994). Lucentis, a Fab fragment of Avastin, is
used for the treatment of wet age-related macular degenera-
tion (Kenneth and Kertes, 2006). More recently, Certolizumab
pegol (Cimzia), a PEGylated antibody fragment, was
approved for the treatment of rheumatoid arthritis in Europe
(Rutgeerts et al., 2007). Currently, about 19 antibody
fragment based therapeutics are in active clinical develop-
ment (Nelson and Reichert, 2009).

Other antibody formats such as domain antibodies and
single chain antibodies are also being explored for diagnostic
and therapeutic applications (Holt et al., 2003; Holliger and
Hudson, 2005; Enever et al., 2009). A PEGylated human anti-
IL-1R domain antibody is in clinical testing for the treatment of
rheumatoid arthritis (Vk or VH dABs) (Enever et al., 2009). A
llama nanoantibody targeting the von Willebrand factor is
being developed for the treatment of thrombosis (Van
Bockstaele et al., 2009).

Antibodies can also be used as carrier agents of small
molecule toxins or radiolabeled isotopes, guiding drugs to
specific disease sites and limiting undesired effects on
healthy cells. This application is most commonly employed
in oncology. At least two radiolabeled antibodies, Zevalin and
Bexxar, are approved for clinical use (Table 1). These drugs
are difficult to administer because a radiologist and an
oncologist are needed to oversee the administration. Mylo-
targ, a humanized anti-CD33 IgG4 antibody conjugated to
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calicheamicin, is an example of antibody used to carry a
cytotoxic payload (Table 1). Many challenges still exist in
designing antibody:drug conjugates such as choice of linker,
stoichiometry, and conjugation chemistry. Recent advances
have resulted in linkers having increased stability in the
bloodstream while allowing efficient payload release within
the tumor cell (Ducry and Stump, 2010). Increasing evidence
suggests that conjugated antibodies remain an effective
alternative to mAb, small molecule or radiolabeled isotope
monotherapies.

It is interesting to note that the early antibody therapeutics
started as crude polyclonals (serum therapy and IVIG) and
the majority of today’s antibody therapeutics is target-specific
monoclonals. Progress is being made in developing recom-
binant polyclonal antibodies (rpAb) for the treatment or
prophylaxis of human diseases (Pedersen et al., 2010). The
difference is between IVIG and rpAbs is that rpAbs are
mixtures of carefully selected monoclonal antibodies. Recom-
binant polyclonal antibodies (rpAb) mimic the natural human
immune response in which the human body produces
different types of antibodies targeting different epitopes of
an antigen. This polyclonal response may have a better
chance to neutralize the disease target than a single antibody
does. One of the major challenges facing this approach is to
manufacture the antibody cocktail consistently in both
quantity and quality.

Today’s monoclonal antibody therapeutics functions on a
single disease target. It is advantageous if one antibody
molecule can bind to two or more different targets since many
complex diseases are the result of multiple mediators.
Multispecificity has shown in naturally isolated antibodies,
for example, the monoclonal IgE antibody SPE7 binds not
only to its intended antigen 2,4-dinitrophenyl (DNP) hapten,
but it also binds to several unrelated compounds with a broad
range of affinities (James et al., 2003). More recently,
antibodies that binds to both HER2 and VEGF were reported
(Bostrom et al., 2009). In these cases, the multispecificity is
conferred by a single binding pocket (James et al., 2003;
Bostrom et al., 2009). Multispecifity antibodies are not
common in nature, but they can be constructed by recombi-
nant DNA methods (Kufer et al., 2004; Wu et al., 2007).
Design of bispecifc antibodies is an active research area and
the anti-IL-12/IL-18 dual-variable-domain immunoglobulin
DVD-Ig molecule is an example of the many designs of
bispecific antibodies (Wu et al., 2007).

IMPACT OF POST-TRANSLATIONAL

MODIFCATIONONTHEPHYSICALANDBIOLOGICAL

PROPERTIES OF THERAPEUTIC ANTIBODIES

Antibodies are large proteins which are subjected to
extensive and complex posttranslational modifications, such
as deamidation, glycosylation, N-terminal pyroglutamation,
C-terminal lysine truncation, and methionine oxidation; and

these posttranslational modifications profoundly impact the
physical, chemical, and pharmacological properties of ther-
apeutic antibodies (Wang et al., 2009). Oxidation of methio-
nine residues is one of the most common protein degradation
pathways including antibodies. In addition, methionine
oxidation of recombinant monoclonal antibodies can alter
their interaction with protein A and protein G resulting in a
decrease in binding affinity (Gaza-Bulseco et al., 2008). The
spontaneous nonenzymatic deamidation of glutaminyl and
asparaginyl residues can alter the structure and function of
therapeutic antibodies, potentially resulting in decreased
bioactivity, as well as alterations in pharmacokinetics and
antigenicity of antibody therapeutics (Huang et al., 2005).
Among the various posttranslational processes, glycosylation
has the broadest effect on biologic activity, protein conforma-
tion, stability, solubility, secretion, pharmacokinetics and
immunogenicity of therapeutic antibodies (Arnold et al.,
2007). For example, differential IgG sialylation may provide
a switch from innate anti-inflammatory activity in the steady-
state to generating adaptive pro-inflammatory effects upon
antigenic challenge (Kaneko et al., 2006). Low fucose levels
on antibodies enhance neutrophil- and mononuclear cell-
mediated ADCC (Peipp et al., 2008). Antibody glycoengineer-
ing is one of most active areas of research in therapeutic
antibody discovery and development today (Mimura et al.,
2009).

MANUFACTURING

Manufacturing of mAbs is expensive. A large scale facility can
take multiple years and hundreds millions of dollars to build.
Mammalian cell culture is the dominant production platform
for mAb therapeutics. About half of the current marketed
mAbs are expressed in Chinese hamster ovary (CHO) cell
lines. Recombinant myelomas or hybridomas are still being
used for antibody production, but their utility as a production
platform is limited due to the low expression titer and
instability of the cell lines. To reduce the cost of antibody
production, other methods of antibody expression, such as
bacteria, plants, transgenic animals (milk), eggs, and yeast,
are being developed. Certolizumab pegol is an example of
mAb (fragment) therapeutic made in a bacteria (Rutgeerts
et al., 2007). However, antibodies produced in E. coli are not
glycosylated and this severely limits its use as a manufactur-
ing platform. Antibodies with specific human N-glycan
structures have been expressed in glycoengineered lines of
the yeast Pichia pastoris and its utility as a general platform
for producing recombinant antibodies with human N-glycosy-
lation is being developed (Li et al., 2006a; Lin et al., 2010).
Antibody has been expressed in engineered chicken eggs
and in plants (Zhu et al., 2005; Cox et al., 2006). Despite
significant effort, cost saving alternative antibody manufactur-
ing platforms is still lacking. This is in part due to the effect of
the various expression hosts on antibody posttranslational
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modifications and the low production titers. There is a clear
need for innovation and technology breakthroughs in redu-
cing the manufacturing cost of therapeutic antibodies. This is
not limited to the choice of expression hosts. Purification,
formulation, storage, and other steps in the entire manufac-
turing process need to be improved to bring antibody
therapeutics in a more cost competitive position against
small molecule drugs.

ANTIBODY THERAPEUTIC TARGETS

Antibodies can engage a wide range of extracellular drug
targets such as membrane bound proteins or circulating
ligands and cytokines (Table 1). Even though antibodies do
not readily cross cell membranes or the brain blood barrier
(BBB), about 80% of the current druggable targets are
accessible to antibodies (Strohl, 2009). Extracellular signaling
(ECS) drug targets generally are not modulated by small
molecules as ECS targets typically function through protein-
protein interactions. ECS proteins have been successfully
targeted by antibodies. The therapeutic areas in which
antibodies have the strongest presence, in terms of marketed
products and developmental research, are oncology and
Arthritis, immune and inflammatory disorders (AIID). Of the
more than 200 monoclonal antibodies in clinical use and
development today, about half are being developed for
oncology. The second largest therapeutic category is in the
AIID area, and infectious disease is fast becoming a major
disease area for antibody therapeutics. While the emphasis
on oncology and AIID therapeutic areas will continue,
antibody therapeutics are being developed in almost all
disease areas such as central nervous system, cardiovas-
cular, women's health, diabetes/endocrinology, hematology,
ophthalmology, and respiratory diseases (Strohl, 2009).

SUMMARY

Antibody therapeutics represent a major breakthrough in
combating human diseases and the improvement of human
health. This is reflected by the recent trend in drug discovery
and development. In 2000, nine of the top 10 medicines were
small molecules while only one was a recombinant protein but
by 2008, a short eight years later, half of the top 10 medicines
are recombinant proteins and antibodies. This trend will
continue as about 50% of the new drugs in various stages of
clinical development are antibodies. Despite the remarkable
progress, many scientific, technological, and clinical chal-
lenges remain in the area of therapeutic antibody discovery
and development. Opportunities for innovation exist at every
level: accessing difficult antibody targets (such as G protein-
coupled receptors), novel antibody sources and formats,
crossing the BBB and cell membranes, modified effector
functions, improved formulation and delivery methods, and
lower cost manufacturing, to name a few.

ABBREVIATIONS

AIID, arthritis, immune and inflammatory disorders; ADCC, antibody-
dependent cellular cytotoxicity; BBB, brain blood barrier; CDC,
complement-dependent cytotoxicity; CDRs, complementarity deter-
mining regions; DNP, 2,4-dinitrophenyl; ECS, extracellular signaling;

FDA, Food and Drug Administration; HAMA, human anti-mouse
antibody; IM, intramuscular; ISC, IgG secreting cells; IV, intravenous;
IVIG, intravenous immune globulin; mAbs, mouse monoclonal

antibodies; PBMC, peripheral blood mononuclear cells; rpAb,
recombinant polyclonal antibodies; SC, subcutaneous; VL, variable
light; VH, variable heavy
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