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In the current manuscript, we investigate existence of solutions to a coupled system of fractional

hybrid differential equations (FHDEs). With the help of mixed type Lipschitz and Caratheodory

conditions, some conditions for the existence of solutions to the considered problem are estab-

lished. Considering the tools of nonlinear analysis and hybrid fixed points theory, we establish our

results. Further some new type results about stability including Ulam-Hyers (UH), generalized

Ulam-Hyers (GUH) stability, Ulam-Hyers-Rassias (UHR) and generalized Ulam-Hyers-Rassias

(GUHR) stability are developed. A test problem is given to demonstrate the establish results.
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1. INTRODUCTION

In last few decades, it has been proved that the area involving fractional differential equations (FDEs)

has got considerable attention from many researchers. Because FDEs have many applications in

various disciplines of science and technology, we refer few of them in [4, 6, 13, 17, 22, 24]. An

attractive area for research in the field of fractional calculus is devoted to find positive solutions to

boundary value problems (BVPs) for FDEs, which is widely explored and large numbers of research

papers are available in literature, for detail, see some of them as [5, 14, 16, 18-20, 21]. Moreover

existence theory of solutions to initial and BVPs for systems of FDEs have given some attentions in

last few years, we refer to [1, 3, 23, 25]. However the area involving HDEs is in its initial stage.
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Recently the area involving the quadratic perturbation of nonlinear differential equations of first and

second kind which is also called HDEs has got considerable attention from researchers. Because

the class of HDEs includes the perturbations of original differential equations in various ways. The

HDEs have fundamental importance, as they include several dynamic systems as special cases. The

study of HDEs is implicit in the works of Krasnoselsikii, Dhage and Lakshmikantham and extensively

investigated by many researchers. For the said results, the authors mentioned afore used hybrid fixed

point theory. Consequently several papers on HDEs with different perturbations are available, some of

them are [8, 11, 12, 15, 26]. In [8], authors studied existence and uniqueness results for the following

first order HDE of the form




[w(t)− φ(t, w(t))]
′
= ψ(t, w(t)), a.e t ∈ I = [t0, a + t0],

w(t0) = w0 ∈ R,
(1.1)

where φ, ψ ∈ C(I × R, R). Further they also established some fundamentals inequalities for HDEs

which gave initiation to the existence theory of aforesaid equations. In Lu et al. [15], discussed a

generalization of (1.1) by replacing the classical differentiation by arbitrary order derivative in the

Riemann-Liouvile sense as




Dσ[w(t)− φ(t, w(t)] = ψ(t, w(t), a.e t ∈ [t0, a + t0],

w(t0) = w0 ∈ R,

where 0 < σ ≤ 1, f, g ∈ C(I × R, R). Hilal et al. [11], studied the following BVP for FHDEs

involving Caputo’s fractional order derivative





Dσ[
w(t)

φ(t, w(t))
] = ψ(t, w(t)), a.e t ∈ I = [0, T ],

α
w(0)

φ(0, w(0))
+ β

w(T )
φ(T, w(T ))

= γ,

where 0 < σ < 1 and φ ∈ C(I×R, R\{0}), ψ ∈ C(I×R, R). Also α, β, γ are real constants with

α + β 6= 0.

In last few years along with the existence theory of solutions to nonlinear FDEs, another aspect

known as stability analysis has been attracted the attentions, see [27, 29, 30, 32, 33]. The stability

analysis is very important to establish techniques for numerical solutions as well as in optimization

theory of differential equations. Different kinds of stability like exponential, Mittag-Leffler and Lya-

punov stability have been studied for the said differential equations. Another kind of stability which

greatly attracted the researchers attentions has been recently considered for nonlinear and linear FDEs

and fractional partial differential equations, we refer [35-41]. This important form of stability was
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first pointed out by Ulam in 1940 and was brilliantly explained by Hyers in 1941, see [31]. After

that valuable contributions have been done in this regards. In 1997, Rassias extended the aforemen-

tioned stability to some other forms known as UHR and GUHR stability. The concerned stability

results have been investigated recently for fractional differential equations, ordinary and functional

equations, see [28]. The aforementioned stability have been investigated for functional, integral and

differential equations very well, see [42-44]. To the best of our knowledge the said stability has not

yet considered for FHDEs.

Therefore motivated by the afore mentioned work, in this paper, we study existence of mild

solutions to the following coupled systems of FHDEs. The initial conditions are nonhomogeneous

and the quadratic perturbation is of second type. The system is given by




cDσ (w(t)− φ1(t, w(t), z(t))) = ψ1(t, w(t), z(t)), a.e t ∈ I,

cD% (z(t)− φ2(t, w(t), z(t))) = ψ2(t, w(t), z(t)), a.e t ∈ I],

w(t)|t=0 = w0, z(t)|t=0 = z0,

(1.2)

where σ, % ∈ (0, 1],c D is fractional derivative in Caputo’s sense and w0, z0 are real numbers. Where

φi, ψi : I × R × R → R, i = 1, 2, are continuous nonlinear functions. In this regard we can claim

that the mentioned stability has not investigated for FHDEs yet. So we for the first time study the

mentioned stability for the considered problem (1.2). upon using fixed point theorem due to [?, ?, ?],

we form appropriate conditions for existence and uniqueness of at least one solution to the problem

under consideration. Further we also investigate different kinds of Ulam stability for the considered

system (1.2). In last we give an example to verify our establish results.

2. BACKGROUND MATERIALS

For further analysis, some fundamental results and notions are needed throughout this paper which

we take from [7-10, 19, 22].

Definition 2.1 — The Riemann-Liouville type integral of order σ ∈ (0,∞) for a function z ∈
L1([0, T ], R) is defined as

Iσz(t) =
1

Γ(σ)

∫ t

0
(t− ξ)σ−1z(ξ) dξ,

provided that integral exists on right side.

Definition 2.2 — The Caputo’s derivative of a function z over the interval [0, T ] of order σ ∈
(0,∞) is defined by

cDσz(t) =
1

Γ(k − σ)

∫ t

0
(t− ξ)k−σ−1z(k)(ξ) dξ,
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where k = [σ] + 1 and [σ] is the integer part of σ.

Lemma 2.3 — Corresponding to FDE, we have a result

Iσ[cDσh(t)] = h(t) + a0 + a1t + a2t
2 + · · ·+ ak−1t

k−1,

for arbitrary ai ∈ R, i = 0, 1, 2, . . . , k − 1, where k = [σ] + 1 and [σ] is the integer part of σ.

The Banach space of all continuous functions from I → R is denoted by X endowed with a norm

norm ‖w‖ = max{|w(t)| : t ∈ I}. The space denoted by E = X ×Y is a Banach space endowed

with a norm ‖(w, z)‖ = ‖w‖+ ‖z‖.

Theorem 2.4 — (Dhage, et. al. [8]). Let W ⊂ E be the closed and bounded subset and

T : E → E, S : W → E be two operators satisfying

(A1) T is nonlinear contraction;

(A2) S is continuous and compact, and

(A3) (w, z) = T (w, z) + S (µ̄, ~ν) for all (µ̄, ν̄) ∈ W ⇒ (w, z) ∈ W.

Then the operator equations T (w, z) + S (w, z) = (w, z) has a solution in W .

The following hypothesis are required for our analysis onward in this paper.

(H1) There exist constants K, L :> 0 ∈ R such that

|φ1(t, w, z)− f1(t, w̄, z̄)| ≤ K[|w − w̄|+ |z − z̄|], for all t ∈ I, w, w̄, z, z̄ ∈ R,

and

|φ2(t, w, z)− φ2(t, w̄, z̄)| ≤ L[|w − w̄|+ |z − z̄|], for all t ∈ I, w, w̄, z, z̄ ∈ R;

(H2) There exist continuous functionals α, β : [0, 1] → R satisfy

|ψ1(t, w, z)| ≤ α(t), and |ψ2(t, w, z)| ≤ β(t).

(H3) The following notations are used for easiness

Λ1 = sup
t∈[0,1]

|φ1(t, 0, 0)|, Λ2 = sup
t∈[0,1]

|φ2(t, 0, 0)|

and

‖α‖L =
∫ 1

0
|α(s)|ds, ‖β‖L =

∫ 1

0
|β(s)|ds.
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Definition 2.5 — We recall that T : E → E is µ-Lipschitz if there exists constant µ satisfies

‖T (w, z)−T (w̄, z̄)‖ ≤ µ (‖w − w̄‖+ ‖z − z̄‖) ,

for all (w, z), (w̄, z̄ ∈ E with µ > 0. Further if µ < 1, then T is a strict contraction.

For the UH, GUH, UHR and GUHR stability, we give the following definitions and remark, for

detail see [45, 46].

Definition 2.6 — The solution w ∈ C[0, T ] of the FDE given by

cDσ [w(t)− φ1(t, w(t), z(t))] = ψ1(t, w(t), z(t)), t ∈ I,

w(t)|t=0 = w0

(2.1)

is UH stable if we can find a real number Ĉσ,%,∆ > 0 with the property that for every ε > 0 and for

every solution w ∈ C[0, T ] of the inequality

∣∣∣∣cDσ [w(t)− φ1(t, w(t), z(t))]− ψ1(t, w(t), z(t))
∣∣∣∣ ≤ ε, t ∈ [0, T ], (2.2)

there exists unique solution x ∈ C[0, T ] of the given FDE (2.1) with a constant Ĉσ,%,∆ > 0 with

‖w − x‖ ≤ Ĉσ,%,∆ε.

Definition 2.7 — The solution w ∈ C[0, T ] of the FDE (2.1) is called to be GUH stable , if we

can find

θ : (0,∞) → R+, θ(0) = 0,

such that for each solution w ∈ C[0, T ] of the inequality (2.2), we can find a unique solution x ∈
C[0, T ] of the FDE (2.1) with

‖w − x‖ ≤ Ĉσ,%,∆θ.

Next we recall the definitions of UHR and GUHR stability [28] for our considered problem (2.1)

as bellow:

Definition 2.8 — FDE (2.1) is said to be UHR stable with respect to ~ ∈ C([0, T ], R) if there exists

a non zero positive real constant Ĉ~,∆ > 0 for each ε > 0 such that for every solution w ∈ C[0, T ] of

the inequality
∣∣∣∣cDσ [w(t)− φ1(t, w(t), z(t))]− ψ1(t, w(t), z(t))

∣∣∣∣ ≤ ε~(t), t ∈ [0, T ], (2.3)
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there exists a solution x ∈ C[0, T ] of the equation (2.1), such that

|w(t)− x(t)| ≤ Ĉ~,∆~(t), t ∈ [0, T ].

Definition 2.9 — The equation (2.1) is said to be GUHR stable with respect to ~ ∈ C[0, T ], if

there exists a real number Ĉ~,∆ > 0 such that for each solution w ∈ C[0, T ] of the inequality

∣∣∣∣cDσ [w(t)− φ1(t, w(t), z(t))]− ψ1(t, w(t), z(t))
∣∣∣∣ ≤ ~(t), t ∈ [0, T ], (2.4)

there exists a solution w ∈ C[0, T ] of the equation (2.1) such that |w(t)−x(t)| ≤ Ĉ~,∆~(t), t ∈ [0, T ].

Remark 2.10 : A function w ∈ C[0, T ] is said to be the solution of inequality given in (2.2) if and

only if, we can find a function ~ ∈ C[0, 1] depends on w only such that

(i) |~(t)| ≤ ε, for all t ∈ [0, T ];

(ii) cDσ [w(t)− φ1(t,w(t), z(t))] = ϕ(t) + ~(t), for all t ∈ [0,T].

3. MAIN RESULTS

This portion is devoted to investigate the conditions for mild solutions to the proposed system of

FHDEs (1.2).

Theorem 3.1 — Let ϕ : I → R, then the solution of the FHDE

cDσ [w(t)− φ1(t, w(t), z(t))] = ϕ(t), σ ∈ (0, 1], t ∈ I,

w(t)|t=0 = w0

(3.1)

is provided by

w(t) = w0 − φ1(0, w0, z0) + φ1(t, w(t), z(t)) + Iσψ1(t, w(t), z(t)) (3.2)

PROOF : In view of application of Iσ on cDσw(t) = h(t) and using Lemma 2.3, (3.2) yields

w(t)− φ1(t, w(t), z(t)) =
∫ t

0

(t− ξ)σ−1

Γ(σ)
ϕ(ξ)dξ + a0

(3.3)
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applying boundary conditions w(t)|t=0 = w0 on (3.3) and after calculating the values of a0, we

obtain

w(t) = w0 − φ1(0, w0, z0) + φ1(t, w(t), z(t)) +
∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ. (3.4)

Similarly repeating the above process with second part of (1.2), we get the solution as

z(t) = z0 − φ2(0, w0, z0) + φ2(t, w(t), z(t)) +
∫ t

0

(t− ξ)%−1

Γ(%)
ψ2(ξ, w(ξ), z(ξ))dξ. (3.5)

To obtain the conditions for at least one solution to (1.2), we give the following theorem.

Theorem 3.2 — Assume that the assumptions (H1) − (H3) and there exist bounded and closed

ball W = {(w, z) ∈ E : ‖(w, z)‖ ≤ R} where

R ≥ |w′−φ∞(′,w′, ‡′)|+ |‡′−φ∈(′,w′, ‡′)|+K+L+∗∞+∗∈+
T σ‖α‖L
−(σ +∞)

+
T %‖β‖L
−(% +∞)

. (3.6)

Then coupled system of FHDEs (1.2) has a solution defined in W.

PROOF : Let us define a closed ball W = {(w, z) ∈ E : ‖(w, z)‖ ≤ R} ⊂ E. obviously W

is bounded closed subset of E. Further we define the operators T = (T1, T2) : E → E and S =

(S1, S2) : W → E by T (w, z) = (T1(w, z),T2(w, z)) and S (w, z) = (S1(w, z),S2(w, z))

T1(w(t), z(t)) = φ1(t, w(t), z(t)), T2(w(t), z(t)) = φ2(t, w(t), z(t)), t ∈ I, (3.7)

S1(w(t), z(t)) = w0 − φ1(0, w0, z0) +
∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ, t ∈ I, (3.8)

and

S2(w(t), z(t)) = z0 − φ2(0, w0, z0) +
∫ t

0

(t− ξ)%−1

Γ(%)
ψ2(ξ, w(ξ), z(ξ))dξ, t ∈ I. (3.9)

Then the coupled system of hybrid integral equations (3.4) and (3.5) is transformed to the system

of operators equation given below

T (w, z) + S (w, z) = (w, z), t ∈ I

(T1(w, z),T2(w, z)) + (S1(w, z),S2(w, z)) = (w, z), t ∈ I

T1(w, z) + S1(w, z) = w, T2(w, z) + S2(w, z) = z, t ∈ I.
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Onward we will show that the operators T ,S satisfy all the assumptions of Theorem 2.4. In this

regard, we will prove that T = (T1, T2) is Lipschitz operator on E with constants K + L and S is

completely continuous operator from W to E. Let (w, z) ∈ E. Then by using (H1) we have

|T1(w, z)(t)−T1(w̄, z̄)(t)| = |φ1(t, w(t), z(t))− φ1(t, w̄(t), z̄(t))|
≤ K[|w(t)− w̄(t)|+ |z(t)− z̄(t)|] ≤ K[‖w − w̄‖+ ‖z − z̄‖], for all t ∈ I,

taking supremum over t, we get

‖T1(w, z)−T1(w̄, z̄)‖ ≤ K[‖w − w̄‖+ ‖z − z̄‖], for all (w, z), (w̄, z̄) ∈ E.

Following the same fashion, one can easily show that T2 is Lipschitz with constant L as

‖T2(w, z)−T2(w̄, z̄)‖ ≤ L[‖w − w̄‖+ ‖z − z̄‖], for every(w, z), (w̄, z̄) ∈ E.

Hence T is Lipschitz with constant K + L as

‖T (w, z)−T (w̄, z̄)‖ ≤ (K + L)[‖w − w̄‖+ ‖z − z̄‖], for every (w, z), (w̄, z̄) ∈ E.

To show that S = (S1, S2) is continuous and compact operator from W to E. For continuity of

S , let (wn, zn) be a sequence in W converging to a point (w, z) ∈ W. Due to Lebesgue dominated

convergence theorem , one has

lim
n→∞S1(wn, zn)(t) = lim

n→∞

[
w0 − φ1(0, w0, z0) +

∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, wn(ξ), zn(ξ))dξ

]

= w0 − φ1(0, w0, z0) +
∫ t

0

(t− ξ)σ−1

Γ(σ)
lim

n→∞ψ1(ξ, wn(ξ), zn(ξ))dξ

= w0 − φ1(0, w0, z0) +
∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ = S1(w, z)(t), for all t ∈ I,

similarly

lim
n→∞S2(wn, zn)(t) = S2(w, z)(t), for all t ∈ I.

Hence S (wn, zn) = (S1(wn, zn), S2(wn, zn)) is converges to S (w, z) point wise on I. Fur-

ther, we will show that {S(wn, zn)} is equi-continuous sequence of functions in E. We have to prove

that S (W) is uniformly bounded and equi-continuous set in E. Then for any (w, z) ∈ W and using
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(H2) one consider

|S1(w, z)(t)| =
∣∣∣∣w0 − φ1(0, w0, z0) +

∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ

∣∣∣∣

≤ |w0 − φ1(0, w0, z0)|+
∫ t

0

(t− ξ)σ−1

Γ(σ)
|ψ1(ξ, w(ξ), z(ξ))|dξ

≤ |w0 − φ1(0, w0, z0)|+ sup
t∈I

∫ t

0

(t− ξ)σ−1

Γ(σ)
|α(ξ)|dξ

which implies that ‖S1(w, z)‖ ≤ |w0 − φ1(0, w0, z0)|+ T σ‖α‖L
Γ(σ + 1)

.

(3.10)

Similarly one can show that

‖S2(w, z)‖ ≤ |z0 − φ2(0, w0, z0)|+ T %‖β‖L
Γ(% + 1)

. (3.11)

Hence from (4.6) and (4.7) we have

‖S (w, z)‖ ≤ |w0 − φ1(0, w0, z0)|+ |z0 − φ2(0, w0, z0)|+ T σ‖α‖L
Γ(σ + 1)

+
T %‖β‖L
Γ(% + 1)

. (3.12)

Thus S is uniformly bounded on W. Now let t, τ ∈ I with t < τ , then for any (w, z) ∈ W, we

have

|S1(w, z)(t)−S1(w, z)(τ)|

≤
∣∣∣∣
∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ −

∫ τ

0

(τ − ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ

∣∣∣∣

+
∣∣∣∣
∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ −

∫ t

0

(τ − ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ

∣∣∣∣

≤ ‖T σα‖L
Γ(σ + 1)

[2(tσ − τσ) + (τ − t)σ]

which implies that

|S1(w, z)(t)−S1(w, z)(τ)| ≤ 2T σ‖α‖L
Γ(σ + 1)

[(tσ − τσ) + (τ − t)σ], (3.13)

similarly we can prove that

|S2(w, z)(t)−S2(w, z)(τ)| ≤ 2T %‖β‖L
Γ(% + 1)

[(t% − τ%) + (τ − t)%]. (3.14)

As t → τ then right hand sides of (3.13) and (3.14) tend to zero. Thus S is equi-continuous for

all t ∈ I and for all (w, z) ∈ W. Hence S(W) is equi-continuous set in E. By using Arzelá Ascoli

theorem S is compact operator and consequently completely continuous.
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Now to prove condition (A3) of Theorem 2.4, let (w, z) ∈ W and using (H1) we have

|T (w, z)(t) + S(w, z)(t)| ≤ |T (w, z)|+ |S (w, z)|
≤ |T1(w, z)(t)|+ |T2(w, z)(t)|+ |S1(w, z)(t)|+ |S2(w, z)(t)|
≤ |w0 − φ1(0, w0, z0)|+ |z0 − φ2(0, w0, z0)|+ |φ1(t, w(t), z(t))|+ |φ2(t, w(t), z(t))|

+
∣∣∣∣
∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ

∣∣∣∣ +
∣∣∣∣
∫ t

0

(t− ξ)%−1

Γ(%)
ψ2(ξ, w(ξ), z(ξ))dξ

∣∣∣∣
≤ |w0 − φ1(0, w0, z0)|+ |z0 − φ2(0, w0, z0)|+ |φ1(t, w(t), z(t))− φ1(t, 0, 0)|+ |φ1(t, 0, 0)|

+ |φ2(t, w(t), z(t))− φ2(t, 0, 0)|+ |φ2(t, 0, 0)|+
∣∣∣∣
∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ

∣∣∣∣

+
∣∣∣∣
∫ t

0

(t− ξ)%−1

Γ(%)
ψ2(ξ, w(ξ), z(ξ))dξ

∣∣∣∣
≤ |w0 − φ1(0, w0, z0)|+ |z0 − φ2(0, w0, z0)|+ K + L + sup

t∈I
|φ1(t, 0, 0)|+ sup

t∈I
|φ2(t, 0, 0)|

+ sup
t∈I

∫ t

0

(t− ξ)σ−1

Γ(σ)
|α(ξ)|dξ + sup

t∈I

∫ t

0

(t− ξ)%−1

Γ(%)
|β(ξ)|dξ

≤ |w0 − φ1(0, w0, z0)|+ |z0 − φ2(0, w0, z0)|+ K + L + Λ1 + Λ2 +
T σ‖α‖L
Γ(σ + 1)

+
T %‖β‖L
Γ(% + 1)

≤ R.

Therefore the criteria of Theorem 2.4 is fulfilled. Hence the proposed problem (1.2) of FHDEs

has a mild solution in W. 2

4. ULAM STABILITY ANALYSIS OF THE SOLUTIONS OF COUPLED SYSTEM OF FHDES (1.2)

In this section, we prove necessary and sufficient conditions for the UH and GUH stability as well as

UHR and GUHR stability of the solutions to considered coupled system (1.2) of nonlinear FHDEs.

To come across the required result, we give the following Remarks first:

Remark 4.1 : The pair of functions (w, z) ∈ E is said to be solution of inequality given by





∣∣∣∣
c

Dσ (w(t)− φ1(t, w(t), z(t)))− ψ1(t, w(t), z(t))
∣∣∣∣ < ε1, a.e t ∈ I,

∣∣∣∣
c

D% (z(t)− φ2(t, w(t), z(t)))− ψ2(t, w(t), z(t))
∣∣∣∣ < ε2, a.e t ∈ I],

(4.1)

for ε1, ε2.0 if and only if, we can find functions ~1, ~2 ∈ C[0, T ] depend only on w, z respectively

such that

(i) |~1(t)| ≤ ε1, |~2(t)| ≤ ε2for all t ∈ [0, T ]
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(ii) and 



cDσ (w(t)− φ1(t, w(t), z(t))) = ψ1(t, w(t), z(t)) + ~1(t), a.e t ∈ I,

cD% (z(t)− φ2(t, w(t), z(t))) = ψ2(t, w(t), z(t)) + ~2(t), a.e t ∈ I].
(4.2)

(H4) Let for continuous functions α, β ∈ ([0, 1], R) we have

|ψ1(t, w(t), z(t))− ψ1(t, x(t), y(t))| ≤ α(t)[|w − x|+ |z − y|]

and

|ψ2(t, w(t), z(t))− ψ2(t, x(t), y(t))| ≤ β(t)[|w − x|+ |z − y|].

Lemma 4.2 — Under the assumption given as (H1)− (H2) and Remark 4.1, the solution (w, z) ∈
E of the system of FHDEs given by





cDσ (w(t)− φ1(t, w(t), z(t))) = ψ1(t, w(t), z(t)) + ~1(t), a.e t ∈ I,

cD% (z(t)− φ2(t, w(t), z(t))) = ψ2(t, w(t), z(t)) + ~2(t), a.e t ∈ I],

w(t)|t=0 = w0, z(t)|t=0 = z0.

(4.3)

satisfies the relation given by
∣∣∣∣w(t)−

(
− w0 + φ1(0, w0, z0)φ1(t, w(t), z(t))−

∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ

)∣∣∣∣
≤ ε1

Γ(σ + 1)
, t ∈ I,

∣∣∣∣z(t)−
(
− z0 + φ2(0, w0, z0)− φ2(t, w(t), z(t))−

∫ t

0

(t− ξ)%−1

Γ(%)
ψ2(ξ, w(ξ), z(ξ))dξ

)∣∣∣∣
≤ ε2

Γ(% + 1)
, t ∈ I.

(4.4)

PROOF : In view of Theorem 3.1, we get the solution of system (4.13) as given by




w(t) = w0 − φ1(0, w0, z0)φ1(t, w(t), z(t)) +
∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ

+
∫ t

0

(t− ξ)σ−1

Γ(σ)
~1(ξ)dξ, t ∈ I,

z(t) = z0 − φ2(0, w0, z0) + φ2(t, w(t), z(t)) +
∫ t

0

(t− ξ)%−1

Γ(%)
ψ2(ξ, w(ξ), z(ξ))dξ

+
∫ t

0

(t− ξ)%−1

Γ(%)
~2(ξ)dξ, t ∈ I.

(4.5)

Now it is easy to obtain (4.14) from the solution given as (4.5). 2
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Theorem 4.3 — Under the assumptions (H1), (H4) and Lemma 4.2 together with the condition

that 1 > (P + Q), where

P = K +
T σ‖α‖L

(σ + 1)
, Q = L +

T %‖β‖L

(% + 1)
,

then the solutions of considered problem (1.2) are UH and consequently GUH stable.

PROOF : Let (w, z) ∈ E is any solution of coupled system (1.2) of FHDEs and (x, y) ∈ E be the

unique solution of the proposed system (1.2), then consider

|x(t)− w(t)| =
∣∣∣∣x(t)−

(
w0 − φ1(0, w0, z0) + φ1(t, w(t), z(t)) +

∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ

)∣∣∣∣

≤
∣∣∣∣x(t)−

(
x0 − φ1(0, x0, x0) + φ1(t, x(t), y(t)) +

∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, x(ξ), y(ξ))dξ

)∣∣∣∣

+
∣∣∣∣
(

x0 − φ1(0, x0, x0) + φ1(t, x(t), y(t)) +
∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ

)

−
(

w0 − φ1(0, w0, z0) + φ1(t, w(t), z(t)) +
∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ

)∣∣∣∣
≤ ε1

Γ(σ + 1)
+ |φ1(t, w(t), z(t)− φ1(t, x(t), y(t))|

+
∫ t

0

(t− ξ)σ−1

Γ(σ)
|ψ1(ξ, w(ξ), z(ξ))− ψ1(ξ, x(ξ), y(ξ))|dξ

≤ ε1
Γ(σ + 1)

+ K[|w − x|+ |z − y|] +
∫ t

0

(t− ξ)σ−1

Γ(σ)
|α(ξ)|[‖w − x‖+ ‖z − y‖]dξ

and hence

‖x− w‖ ≤ ε1
Γ(σ + 1)

+ K[‖w − x‖+ ‖z − y‖] + [‖w − x‖+ ‖z − y‖] T σ‖α‖L

Γ(σ + 1)
. (4.6)

Similarly for second equation of the system (1.2) we have

‖y − z‖ ≤ ε2
Γ(% + 1)

+ L[‖w − x‖+ ‖z − y‖] + [‖w − x‖+ ‖z − y‖] T %‖β‖L

Γ(% + 1)
. (4.7)

From (4.6) and (4.7), we have
[
1−

(
K +

T σ‖α‖L

(σ + 1)

)]
‖x− w‖ −

(
K +

T σ‖α‖L

Γ(σ + 1)

)
‖z − y‖ ≤ ε1

Γ(σ + 1)

−
(

L +
T %‖β‖L

(% + 1)

)
‖x− w‖+

[
1−

(
L +

T %‖β‖L

Γ(% + 1)

)]
‖y − z‖ ≤ ε2

Γ(% + 1)

which further can be written as


1−
(

K + T σ‖α‖L

(σ+1)

)
−

(
K + T σ‖α‖L

Γ(σ+1)

)

−
(

L + T %‖β‖L

(%+1)

)
1−

(
L + T %‖β‖L

Γ(%+1)

)




[
‖x− w‖
‖y − z‖

]
≤




ε1
Γ(σ+1)

ε2
Γ(%+1)


 . (4.8)
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Let use P = K + T σ‖α‖L

(σ+1) , Q = L + T %‖β‖L

(%+1) , then the above system (4.8) can be written as

[
‖x− w‖
‖y − z‖

]
≤

[
1−P −P

−Q 1−Q

]−1



ε1
Γ(σ+1)

ε2
Γ(%+1)


 . (4.9)

Upon simplification and using ∆ = 1− (P + Q) (4.9) gives

‖x− w‖ ≤ 1−Q
∆

ε1
Γ(σ + 1)

+
P
∆

ε2
Γ(% + 1)

(4.10)

‖y − z‖ ≤ 1−P
∆

ε2
Γ(% + 1)

+
Q
∆

ε1
Γ(σ + 1)

. (4.11)

Now from (4.10), and using max{ε1, ε2} = ε, we have

‖(x, y)− (w, z)‖ ≤ Ĉσ,%,∆ε, where Ĉσ,%,∆ =
1
∆

[
1

Γ(σ + 1)
+

1
Γ(% + 1)

]
. (4.12)

Hence the solution of the considered system (1.2) is UH stable. Further let us set θ(ε) = Ĉσ,%,∆ε

which gives on θ(0) = 0. Then the solution of the proposed coupled system (1.2) are GUH stable. 2

(H5) Let for the functions ~1, ~2 the inequalities given by

Iσ~1(t) ≤ λ~1~1(t), I%~2(t) ≤ λ~2~2(t)

holds.

Lemma 4.4 — Under the assumption (H5), the solution (w, z) ∈ E of the system of FHDEs given

by 



cDσ (w(t)− φ1(t, w(t), z(t))) = ψ1(t, w(t), z(t)) + ~1(t), a.e t ∈ I,

cD% (z(t)− φ2(t, w(t), z(t))) = ψ2(t, w(t), z(t)) + ~2(t), a.e t ∈ I],

w(t)|t=0 = w0, z(t)|t=0 = z0.

(4.13)

satisfies the relation given by
∣∣∣∣w(t)−

(
− w0 + φ1(0, w0, z0)φ1(t, w(t), z(t))−

∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ

)∣∣∣∣
≤ ε1λ~1~1(t), t ∈ I,
∣∣∣∣z(t)−

(
− z0 + φ2(0, w0, z0)− φ2(t, w(t), z(t))−

∫ t

0

(t− ξ)%−1

Γ(%)
ψ2(ξ, w(ξ), z(ξ))dξ

)∣∣∣∣
≤ ε2λ~2~2(t), t ∈ I.

(4.14)
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PROOF : The proof is similarly can be obtained as in Lemma 4.2. 2

Theorem 4.5 — Under the assumptions (H1), (H4), (H5) and Lemma 4.4 together with the con-

dition that 1 > (P + Q), where

P = K +
T σ‖α‖L

(σ + 1)
, Q = L +

T %‖β‖L

(% + 1)
,

then the solutions of considered problem (1.2) are UHR and consequently GUHR stable.

PROOF : Let (w, z) ∈ E is any solution of coupled system (1.2) of FHDEs and (x, y) ∈ E be the

unique solution of the proposed system (1.2), then consider

|w(t)− x(t)| =
∣∣∣∣x(t)−

(
w0 − φ1(0, w0, z0) + φ1(t, w(t), z(t)) +

∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ

)∣∣∣∣

≤
∣∣∣∣x(t)−

(
x0 − φ1(0, x0, x0) + φ1(t, x(t), y(t)) +

∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, x(ξ), y(ξ))dξ

)∣∣∣∣

+
∣∣∣∣
(

x0 − φ1(0, x0, x0) + φ1(t, x(t), y(t)) +
∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ

)

−
(

w0 − φ1(0, w0, z0) + φ1(t, w(t), z(t)) +
∫ t

0

(t− ξ)σ−1

Γ(σ)
ψ1(ξ, w(ξ), z(ξ))dξ

)∣∣∣∣
≤ ε1λ~1~1(t) + |φ1(t, w(t), z(t)− φ1(t, x(t), y(t))|

+
∫ t

0

(t− ξ)σ−1

Γ(σ)
|ψ1(ξ, w(ξ), z(ξ))− ψ1(ξ, x(ξ), y(ξ))|dξ

≤ ε1λ~1~1(t) + K[|w − x|+ |z − y|] +
∫ t

0

(t− ξ)σ−1

Γ(σ)
|α(ξ)|[‖w − x‖+ ‖z − y‖]dξ.

Hence we have

‖w − x‖ ≤ ε1λ~1~1(t) + K[‖w − x‖+ ‖z − y‖] + K[‖w − x‖+ ‖z − y‖] T σ‖α‖L

Γ(σ + 1)
. (4.15)

Similarly for second equation we have

‖z − y‖ ≤ ε2λ~2~2(t) + L[‖w − x‖+ ‖z − y‖] + L[‖w − x‖+ ‖z − y‖] T %‖β‖L

Γ(% + 1)
. (4.16)

Now like Theorem 4.3, in matrix form we can write (4.15) and (4.16) as
[

1−P −Q

−P 1−Q

][
‖w − x‖
‖z − y‖

]
≤

[
ε1λ~1~1(t)

ε2λ~2~2(t)

]
. (4.17)

Let max{λ~1~1(t), λ~2~2(t)} = λ~~(t),max{ε1, ε2} = ε and solving system (4.17), we get

‖w − x‖+ ‖z − y‖ ≤ Ĉ~,∆ε~(t), where Ĉ~,∆ =
2λ~
∆

. (4.18)
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Hence the solutions of the considered coupled system of FHDEs are UHR stable with respect to

~. Obviously one can prove that the solutions of the considered coupled system of FHDEs are GUHR

stable with respect to ~. 2

5. EXAMPLE

To demonstrate our above theatrical results, consider the following test problem.

Example 5.1 : Taking the given system of FHDEs




cD
1
2

[
w(t)− 1

4

(
sin(t) + w(t) + z(t)

)]
=

1
3
[t + w(t) + z(t)], t ∈ I,

cD
3
5

[
z(t)− 1

8

(
cos(t) + w(t) + z(t)

)]
=

1
4
[t + w(t) + z(t)], t ∈ I,

w(t)|t=0 = 1, z(t)|t=0 = 1.

(5.1)

From (5.1) we get

φ1(t, w(t), z(t)) =
1
4
[sin(t) + w(t) + z(t)], φ2(t, w(t), z(t)) =

1
8
[cos(t) + w(t) + z(t)],

ψ1(t, w(t), z(t)) =
1
3
[t + w(t) + z(t)], ψ2(t, w(t), z(t)) =

1
4
[t + w(t) + z(t)].

Now it is easy to calculate K = 1
4 , L = 1

8 , |ψ1(t, w(t), z(t))| ≤ t
3 , |ψ2(t, w(t), z(t))| ≤ t

4 , and

Λ1 = 0, Λ2 = 1
8 , T = 1. Hence we conclude that

|w0 − φ1(0, w0, z0)|+ |z0 − φ2(0, w0, z0)|+ K + L + Λ1 + Λ2 +
‖α‖L

Γ(σ + 1)
+

‖β‖L
Γ(% + 1)

= 1 +
7
8

+
1
4

+
1
8

+ 0 +
1
3

Γ(1.5)
+

1
4

Γ(1.6)
≤ 5.

Hence by Theorem 3.2 coupled system of FHDEs (5.1) has a mild solution in W = {(w, z) ∈
E : ‖(w, z)‖ ≤ 5}. Further P = K + K ‖α‖LT σ

Γ(σ+1) = 0.3440,Q = L + L‖β‖LT %

Γ(%+1) = 0.15997. From

which we have P + Q < 1 holds and hence the solution of (5.1) is UH stable and similarly it can

be easily shown that the concerned solution is also GUH stable. Further taking ~1(t) = ~2(t) = t,

then the conditions of UHR stability and GUHR stability as discussed in Theorem 4.5 can be easily

derived.

6. CONCLUSION

With the help of hybrid fixed point theorem due to Dhage, we successfully established some adequate

conditions for at least one solutions to a system of FHDEs. Under the the application of the afore
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said fixed point theorem, a coupled system with initial conditions of nonlinear FHDEs has been in-

vestigated. The newly formed conditions revealed the existence of at least one solutions to such type

interesting system of FHDEs. The idea can be further extended to more complicated problems of dy-

namics involving hybrid differential equations. Some interesting and new results about different kinds

of Ulam’s stability have been developed by using the techniques of nonlinear functional analysis.
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