Skip to main content

Advertisement

Log in

Prevalence of toxicogenic bacteria in some foods and detection of Bacillus cereus and Staphylococcus aureus enterotoxin genes using multiplex PCR

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Thirty-three food samples representing seven different food products were collected from the market in Sharkia Governorate (Egypt) and analyzed for their bacterial burden, including total mesophilic bacteria, spore formers, Staphylococcus aureus, and Bacillus cereus, using specific and selective nutrient media. The identified strains were screened for their virulence factors using the agar diffusion method. B. cereus strains CH, GT1, LB3, and G8 were found to be the most potent isolates, with four S. aureus showing nearly equal potency in terms of the virulence factors investigated. Separation of the extracellular proteins of the four most potent B. cereus strains by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of protein bands with molecular weights ranging from 30 to 53 kDa that were suspected to be hemolytic enterotoxins. Protein bands having molecular weights between 22 and 33 kDa were also observed in three strains (S1, S2, and S3) of the S. aureus strains examined. Applying the multiplex PCR technique, we used two pairs of primers (FHblC and RHblC; FCytK and R2Cytk) to detect the toxin genes (hblC and cytK) in the suspected toxic B. cereus strains and five pairs of primers (SEA-3 and SEA-4; SEB-1 and SEB-2; SEC-5 and SEC-6; SED-1 and SED-2; SEE-1and SEE-2) to detect the five enterotoxins in the S. aureus strains. Our results indicate that the multiplex PCR amplification enabled the rapid detection and identification of enterotoxin genes in food-borne bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agata N, Ohta M, Yokoyama K (2002) Production of Bacillus cereus emetic toxin (cerulide) in various foods. Int J Food Microbiol 73:23–27

    Article  PubMed  CAS  Google Scholar 

  • American Public Health Association (1992) Compendium of methods for the microbiological examination, 3rd edn. APHA, Washington D.C.

    Google Scholar 

  • Argudin M, Mendoza M, Rodicio M (2010) Food poisoning and Staphylococcus aureus enterotoxins. Toxins 2(7):1751–1773

    Article  PubMed  CAS  Google Scholar 

  • Balaban N, Rasooly A (2000) Staphylococcal enterotoxins. Int J Food Microbiol 61:1–10

    Article  PubMed  CAS  Google Scholar 

  • Becker K, Roth R, Peters G (1998) Rapid and specific detection of toxigenic Staphylococcus aureus: use of two multiplex PCR enzyme immunoassays for amplification and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene. J Clin Microbiol 36:2548–2553

    PubMed  CAS  Google Scholar 

  • Beecher DJ, MacMillan JD (1990) A novel bicomponent haemolysin from Bacillus cereus. Infect Immun 58:2220–2227

    PubMed  CAS  Google Scholar 

  • Beecher DJ, MacMillan JD (1991) Characterization of the components of haemolysin BL from Bacillus cereus. Infect Immun 59:1778–1784

    PubMed  CAS  Google Scholar 

  • Beecher DJ, Wong AC (1994) Identification of heamolysin Bl producing Bacillus cereus isolates by a discontinuous haemolytic pattern in blood agar. Appl Environ Microbiol 60:1646–1651

    PubMed  CAS  Google Scholar 

  • Beecher DJ, Wong AC (2000) Cooperative, synergistic and antagonistic haemolytic interactions between haemolysin BL, phosphatidylcholine phospholipase C and sphingomyelinase from Bacillus cereus. Microbiology 146:3033–3039

    PubMed  CAS  Google Scholar 

  • Bergdoll MS (1989) Staphylococcus aureus. In: Doyle MP (ed) Foodborne bacterial pathogens. Marcel Dekker, New York, pp 463–523

    Google Scholar 

  • Bergdoll MS, Huang IY, Schantz EJ (1974) Chemistry of the staphylococcal enterotoxins. J Agric Food Chem 22(1):9–13

    Article  PubMed  CAS  Google Scholar 

  • Boerema JA, Clemens R, Brightwel G (2006) Evaluation of molecular methods to determine enterotoxigenic status and molecular genotype of bovine, ovine, human and food isolates of Staphylococcus aureus. Int J Food Microbiol 107:192–201

    Article  PubMed  CAS  Google Scholar 

  • Callegan MC, Cochran DC, Kane ST, Gilmore MS, Gominet M, Lereclus D (2002) Contribution of membrane-damaging toxins to Bacillus endophthalmitis pathogenesis. Infect Immun 70:5381–5389

    Article  PubMed  CAS  Google Scholar 

  • Difco Laboratories (1994) Difco manual: dehydrated culture media reagents for microbial, 10th edn. Difco Laboratories, Detroit

  • Dinges MM, Orwin PM, Schlievert PM (2000) Exotoxins of Staphylococcus aureus. Clin Microbiol Rev13:16–34

    Article  PubMed  CAS  Google Scholar 

  • Do Carmo LS, Cummings C, Linardi VR, Dias RS, De Souza JM, De Sena MJ, Dos Santos DA, Shupp JW, Peres Pereira RK, Jett M (2004) A case study of a massive staphylococcal food poisoning incident. Food Borne Pathogens Dis 1(4):241–246

    Article  Google Scholar 

  • Doyle MP (ed) (1989) Food borne bacterial pathogens. Marcel Dekker, New York

    Google Scholar 

  • Drobniewski F (1993) Bacillus cereus and related species. Clin Microbiol Rev 4:324–338

    Google Scholar 

  • Duc LH, Dong TC, Logan NA, Sutherland AD, Taylor J, Cutting SM (2005) Cases of emesis associated with bacterial contamination of an infant breakfast cereal product. Int J Food Microbiol 102:245–251

    Article  Google Scholar 

  • Federal Drug Administration (2001) Food and Drug Administration bacteriological analytical manual. FDA, Washington D.C.

  • FDA/CFSAN (2007) Bacillus cereus and other Bacillus spp. In: Food Borne pathogenic microorganisms and natural toxins handbook. Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Washington D.C. Available at: mow/las/dav/ear

  • Fernandez MM, De Marzi MC, Berguer P, Burzyn D, Langley RJ, Piazzon I, Mariuzza RA, Malchiodi EL (2006) Binding of natural variants of staphylococcal superantigens SEG and SEI to TCR and MHC class II molecule. Mol Immunol 43(7):927–938

    Article  PubMed  CAS  Google Scholar 

  • Fueyo JM, Martin MC, Gonzalez-Hevia MA, Mendoza MC (2001) Enterotoxin production and DNA fingerprinting in Staphylococcus aureus isolated from human and food samples. Relations between genetic types and enterotoxins. Int J Food Microbiol 67:139–145

    Article  PubMed  CAS  Google Scholar 

  • Granum PE (2001) Bacillus cereus. In: Doyle MP (ed) food microbiology fundamentals and frontiers. ASM Press, Washington D.C., pp 373–381

    Google Scholar 

  • Granum PE, Baird-Parker TC (2000) Bacillus species. In: Lund B, Baird-Parker T, Gould G (eds) The microbiological safety and quality of food. Aspen Publ, Gaitherburg, pp 1029–1039

    Google Scholar 

  • Granum PE, Lund T (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett 157:223–228

    Article  PubMed  CAS  Google Scholar 

  • Gravet A, Rondeau M, Harf-Monteil C, Grunenberger F, Monteil H, Scheftel JM, Prevost G (1999) Predominant Staphylococcus aureus isolated from antibiotic-associated diarrhea is clinically relevant and produces enterotoxin A and the bicomponent toxin LukE-LukD. J Clin Microbiol 37:4012–4019

    PubMed  CAS  Google Scholar 

  • Guinebretiere M, Fagerlund A, Granum PE, Nguyen-The C (2006) Rapid discrimination of cytK-1 and cytK-2 genes in Bacillus cereus strains by a novel PCR system. FEMS Microbiol Lett 59(1):74–80

    Article  Google Scholar 

  • Hill WE (1996) The polymerase chain reaction: application for the detection of food borne pathogens. Crit Rev Food Sci Nutr 36:123–173

    Article  PubMed  CAS  Google Scholar 

  • Hill WE, Keasler SP (1991) Identification of food borne pathogens by nucleic acid hybridization. Int J Food Microbiol 12:67–76

    Article  PubMed  CAS  Google Scholar 

  • Jett M, Neill R, Welch C, Boyle T, Bernton E, Hoover D, Lowell G, Hunt RE, Chatterjee S, Gemski P (1994) Identification of staphylococcal enterotoxin B sequences important for induction of lymphocyte proliferation by using synthetic peptide fragments of toxin. Infect Immun 62(8):3408–3415

    PubMed  CAS  Google Scholar 

  • Kenny K, Reiser RF, Bastida-Corcucra FD, Norcross NL (1993) Production of enterotoxins and toxic shock syndrome toxin by bovine mammary isolates of Staphylococcus aureus. J Clin Microbiol 31:706–707

    PubMed  CAS  Google Scholar 

  • King NJ, Whyte R, Hudson JA (2007) Presence and significance of Bacillus cereus in dehydrated potatoes. J Food Protect 70(2):514–520

    Google Scholar 

  • Klotz M, Opper S, Heeg K, Zimmermann S (2003) Detection of Staphylococcus aureus Enterotoxins A to D by real-time Fluorescence PCR assay. J Clin Microbiol 41(10):4683–4687

    Article  PubMed  CAS  Google Scholar 

  • Kotiranta A, Lounatmaa K, Haapasalo M (2000) Epidemiology and pathogenesis of Bacillus cereus infections. Microbiol Infect 2:189–198

    Article  CAS  Google Scholar 

  • Krieg NR, Holt JG (1984) Bergey’s manual of systematic bacteriology, 9th edn, vol. 1, 2. Williams & Wilkins, Baltimore

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685

    Article  CAS  Google Scholar 

  • Letertre C, Perelle S, Dilasser F, Fach P (2003) Identification of a new putative enterotoxin SEU encoded by the egc cluster of Staphylococcus aureus. J Appl Microbiol 95:38–43

    Article  PubMed  CAS  Google Scholar 

  • Lindback T, Fagerlund A, Rodland MS, Granum PE (2004) Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology 150:3959–3967

    Article  PubMed  Google Scholar 

  • LKB Application note (1997) SDS-PAGE. LKB, Sweden

  • Llewelyn M, Cohen J (2002) Superantigens: Microbial agents corrupt immunity. Lancet Infect Dis 2:156–162

    Article  PubMed  CAS  Google Scholar 

  • Lund T, Granum PE (1997) Comparison of biological effect of the two different enterobtoxin complexes isolated from three different strains of Bacilus cereus. Microbiology 143:3329–3336

    Article  PubMed  CAS  Google Scholar 

  • Lund T, Buyser ML De, Granum PE (2000) A new cytoxin from Bacillus cereus that may causenecrotic enteritis. Mol Microbiol 38: 254–261

  • Mahler H, Pasi A, Kramer JM, Schulte P, Scoging AC, Bar W, Krahenbuhl S (1997) Fulminant liver failure in association with emetic toxin of Bacillus cereus. N Engl J Med 336:1142–1148

    Article  PubMed  CAS  Google Scholar 

  • Martin MC, Fueyo JM, Gonzalez-Hevia MA, Mendoza MC (2004) Genetic procedures for identification of enterotoxigenic strains of Staphylococcus aureus from three food poisoning outbreaks. Int J Food Microbiol 94(3):279–286

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga T, Kamata S, Kakiichi N, Uccida A (1993) Characteristics of Staphylococcus aureus isolated from peracute, acute and chronic bovine mastitis. J Vet Med Sci 55:297–300

    Article  PubMed  CAS  Google Scholar 

  • McKillip JL (2000) Prevalence and expression of enterotoxins in B. cereus and other B. spp., a literature review. Antonie van Leeuwenhoek 77:393–399

    Article  PubMed  CAS  Google Scholar 

  • McLauchlin J, Narayanan GL, Mithani V, O’Neill G (2000) The detection of enterotoxins and toxic shock syndrome toxin genes in Staphylococcus aureus by polymerase chain reaction. JFood Protect 63(4):479–488

    CAS  Google Scholar 

  • Miethke T, Wahl K, Heeg B, Echtenacher PH, Krammer HW (1992) T cell-mediated lethal shock triggered in mice by the superantigen staphylococcal enterotoxin B: critical role of tumor necrosis factor. J Exp Med 175:91–98

    Article  PubMed  CAS  Google Scholar 

  • Misra AK, Kuila RK (1992) Use of Bifidobacterium bifidum in the manufacture of bifidus milk and its antibacterial activity. Lait 72(2):213–220

    Article  Google Scholar 

  • Ngamwongsatit P, Busari W, Pianariyanon P, Pulsrikarn C, Ohba M, Assavanig A, Panbangred W (2008) Broad distribution of entertoxin genes (hblCDA, nheABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Int J Food Microbiol 121:352–356

    Article  PubMed  CAS  Google Scholar 

  • Olsen JE (2000) DNA-based methods for detection of food-borne bacterial pathogens. Food Res Int 33(3–4):257–266

    Article  CAS  Google Scholar 

  • Olsen JE, Aabo S, Rasmussen OF, Rossen L (1995) Oligo-nucleotide probes specific for the genus Salmonella and for S. typhimurium. Lett Appl Microbiol 20:160–166

    Article  PubMed  CAS  Google Scholar 

  • Ombui JN, Gitahi N, Gicheru M (2008) Direct detection of Bacillus cereus enterotoxin genes in food by multiplex polymerase chain reaction. Int J Integr Biol 2(3):172

    CAS  Google Scholar 

  • Oxoid Ltd. (1990) Culture media, including in gradients and other laboratory services. Oxoid, London

  • Pinto B, Chenoll E, Aznar R (2005) Identification and typing of food borne Staphylococcus aureus by PCR-based techniques. Syst Appl Microbiol 37:4012–4019

    Google Scholar 

  • Reinheimer JA, Demkow MR, Canditi MC, Austr B (1990) J Dairy Technol 45:5–9

    Google Scholar 

  • Rhodehamel EJ, Harmon SM (2001) Bacteriological analytical manual online: chapter 14, Bacillus cereus. Center for Food Safety & Applied Nutrition, FDA, Washington D.C.

    Google Scholar 

  • Schneider KR, Parish ME, Goodrich RM, Cookingham T (2004) Preventing food borne illness: Bacillus cereus and Bacillus anthracis. University of Florida, IFAS Extension. FSHNO04-05. Available at: http://edis.ifas.ufl.edu

  • Schoeni JL, Wong ACL (2005) B. cereus food poisoning and its toxins. J Food Protect 68:636–648

    CAS  Google Scholar 

  • Shaheen R, Andersson MA, Apetroaie C, Schulz V, Salkinoja-Salonen MS (2006) Potential of selected infant food formulas for production of Bacillus cereus emetic toxin, cerulide. Int J Food Microbiol 107(3):287–294

    Article  PubMed  CAS  Google Scholar 

  • Smith BJ (1997) SDS polyacrylamide gel electrophoresis for N-terminal protein sequencing In: Smith BJ (ed) Methodsin molecular biology: protein sequencing protocols. Humana PressTotowa

  • Smyth DS, Hartigan PJ, Meaney WJ, Fitzgerald JR, Deobald CF, Bohach GA, Smyth J (2005) Superantigen genes encoded by the egc cluster and SaPIbov are predominant among Staphylococcus aureus isolates from cows, goats, sheep, rabbits and poultry. J Med Microbiol 54(4):401–411

    Article  PubMed  CAS  Google Scholar 

  • Soriano JM, Font G, Molto JC, Manes J (2002) Enterotoxigenic staphylococci and their toxins in restaurant foods. Trends Food Sci Technol 13(2):60–67

    Article  CAS  Google Scholar 

  • Su YC, Wong AL (1997) Current perspectives on detection of staphylococcal enterotoxins. J Food Protect 60:195–202

    CAS  Google Scholar 

  • Svensson B, Monthan A, Guinebretiere HM, Nguyen C, Christiansson A (2007) Toxin production potential and the detection of toxin genes among strains of Bacillus cereus group isolated along the dairy production chain. Int Dairy J 17:1201–1208

    Article  CAS  Google Scholar 

  • Todar K (2005) Textbook of bacteriology. The Genus Bacillus. Available at: http://www.textbookofbacteriology.net/Bacillus.html

  • Wolcott MJ (1991) DNA-based rapid methods for the detection of food borne pathogens. Journal Food Protect 54:387–401

    CAS  Google Scholar 

  • Wooldridge K (2009) Secretory mechanisms and role pathogenesis. In: Wooldridge K (ed) bacterial secreted proteins. Caister Academic Press, London

  • Wong KKY, Hancock REW (2000) Insertion mutagenesis and membrane topology model of thePseudomonasae ruginosa outer membrane protein OprM. J Bacteriol 182: 2402–2410

    Google Scholar 

  • Wu HJ, Wang AHJ, Jennings PM (2008) Discovery of virulence factors of pathogenic bacteria. Curr Opin Chem Biol 12:93–101

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama K, Ito M, Agata N, Isobe M, Shibayama K, Horii T, Ohta M (1999) Pathological effect of synthetic cerulide, an emetic toxin of Bacillus cereus, is reversible in mice. FEMS Immunol Med Microbiol 24:115–120

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Abdou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdou, M.A., Awny, N.M. & Abozeid, A.AE.M. Prevalence of toxicogenic bacteria in some foods and detection of Bacillus cereus and Staphylococcus aureus enterotoxin genes using multiplex PCR. Ann Microbiol 62, 569–580 (2012). https://doi.org/10.1007/s13213-011-0293-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0293-7

Keywords

Navigation