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Abstract Using different econometric models, Diebold and Li (J Econom 130:337–
364, 2006) addressed the practical problem of forecasting the yield curve by predicting
the factors level, slope and curvature in the Nelson–Siegel framework. This paper
has two main aims: on the one hand, to investigate the predictive possibilities of
the yield curve for the Spanish public debt market, using the methodology proposed
by Diebold and Li (J Econom 130:337–364, 2006); and on the other hand, to study
the capability of generating profits by transforming these yield curve predictions into
technical trading strategies. The Sharpe ratios of our strategies outperform the hedging
strategy benchmarks for long (1 year) horizons in our prediction period (2000–2010)
and also for the current crisis period (2008–2010). Nevertheless, these strategies do not
outperform their benchmarks for short (1 month) horizons. The introduction of non-
parametric models improves the profitability of the strategies in terms of the Sharpe
ratio, especially in the 1-year-ahead predictions. This finding is in line with Diebold
and Li (J Econom 130:337–364, 2006), whose forecasts for long horizons are much
more accurate than those of several standard benchmark models.
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1 Introduction

The study of the Spanish public debt is of special interest in the panorama of the recent
sovereign debt crisis in May 2010 that troubled European economies and threatened
stability and unity in the Eurozone.

In 1997 the Spanish treasury prioritized the achievement of a more liquid and effi-
cient public debt market, undertaking a set of initiatives aimed at attracting investor
savings within the new capital market, providing greater depth and liquidity, decreas-
ing bond yield volatility and increasing pricing efficiency. This was done through two
channels: first, an appropriate exchange policy ensured an adequate tradable supply
of bonds priced near par (at the expense of premium bonds, which some classes of
investors avoid). Second, debt exchanges increased the outstanding amounts of strip-
pable bonds that were critical in supporting bond dealer stripping and reconstitution
operations in the new strips market (see Díaz et al. 2006 for details).

However, since summer 2010 the Spanish debt market, as in other Eurozone periph-
ery countries, suffered a sharp escalation of risk premia. During the recent sovereign
debt crisis in the Eurozone, Spain reflected investors’ perceptions of risks or uncertain-
ties about the Spanish economy and raised important concerns about the possibilities
of contagion to the global financial system, due to the size and importance of its econ-
omy (see Gómez-Puig and Sosvilla-Rivero 2014). Although prior to the crisis Spain
had a low level of debt, in comparison with other developed economies, from late 2009
fears of a sovereign default developed among investors in Spanish public debt, in view
of the growing volume of private debt, arising in turn from a property bubble. In a
disruption scenario within the European interbank market, this situation deteriorated
banking system balance sheets and provoked a downgrading of government debt by
the international rating agencies. In these circumstances, the escalating yields paid on
Spanish public debt increased the interest margin of these securities relative to the
interest cost of bank deposits, making them a very attractive fixed income asset and
providing additional option value for Spanish banks before and after the beginning of
the financial crisis (Pérez-Montes 2013).

Thus, although term structure literature mainly focuses on the government bond
markets of the most highly developed European economies, the analysis and better
comprehension of a peripheral country of the Economic and Monetary Union, such
as Spain, may be of considerable interest for policymakers, academic researchers
and, especially, for international investors, who need to be aware of potential profit
opportunities in the Spanish debt market.

The yield curve or term structure of interest rates is the relation between the (level
of) interest rate (or cost of borrowing) and the time to maturity of the debt for a given
borrower in a given currency. The yield curve forms the basis for the valuation of
all fixed income instruments, because the price of a fixed income security can be
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calculated as the net present value of the stream of cash flows, and each cash flow has
to be discounted using the zero coupon interest rate for the associated term to maturity.
The term structure of interest rates as the interception of macroeconomics and finance
has increasingly been employed as a means of explaining the upward slope of the yield
curve and the bond premium puzzle [see Gürkaynak and Wright (2012) for a survey
on macroeconomics and the term structure or Lange (2013) and Pericoli and Taboga
(2012) for recent specific examples]. Accordingly, fixed income portfolio managers,
central bankers and market participants apply econometric models to achieve a better
representation of the evolution of interest rates, in the view that thesemodels are useful
decision-orienting tools for their purposes.

The Nelson and Siegel (1987) model (NS hereafter) is an exponential component
framework with four parameters by which the yield curve can be estimated parsimo-
niously; these parameters have the economic interpretation of level, slope, curvature
and speed of convergence to long term rates. TheNSmodel provides parametric curves
that are flexible enough to describe a whole family of observed term structure shapes
and is consistent with a factor interpretation of the term structure (Litterman and
Scheinkman 1991). In addition to the factors present in the NS model, the Svensson
(1994, 1996) model contains a second hump/trough factor which allows for an even
broader and more complicated range of term structure shapes.

The NS model has been extensively used by central banks and monetary policy
makers (Bank for International Settlements 2005; European Central Bank 2008) for
more than two decades. It is also used by fixed-income portfolio managers that wish
to immunize their portfolios (Barrett et al. 1995; Hodges and Parekh 2006).

Diebold and Li (2006), taking an explicit out-of-sample forecasting perspective of
the term structure of interest rates, showed that the three-factor NS model, where the
factor measuring the speed of convergence is fixed beforehand, can also be used to
construct accurate term structure forecasts by considering it as a dynamic yield curve
model that is capable of capturing its time-varying shape. These authors considered
the practical problem of forecasting the yield curve by studying variations on the NS
framework to model the entire yield curve, period by period, as a three-dimensional
parameter evolving dynamically. By using a straightforward two-step estimation pro-
cedure, they generated term-structure forecasts for both the short and the long term,
observing that their forecasts appear to be much more accurate for long horizons than
are several standard benchmark forecasts.

The present study has two main goals: on the one hand, to examine the pre-
dictive possibilities of the yield curve for the Spanish public debt market, using
the methodology proposed by Diebold and Li (2006). On the other hand, to con-
sider the capability of generating profits from yield curve predictions, transforming
them into technical trading strategies. The main contribution of our paper is that
the trading strategies presented outperform benchmark hedging strategies for long
(1 year) horizons in our prediction period (2000–2010) and specifically during the
current crisis period (2008–2010). Nevertheless, these strategies do not outperform
the benchmarks for short (1 month) horizons. A further point of interest is that the
introduction of non-parametric models improves the profitability of the level, slope
and curvature strategies in terms of Sharpe’s ratio, especially in 1-year-ahead pre-
dictions. This finding is in line with Diebold and Li (2006), whose forecasts are

123



210 SERIEs (2015) 6:207–245

much more accurate for long horizons than are those of several standard benchmark
models.

2 Methodology and data

The Nelson and Siegel (1987) (NS) model describes the yield curve through the four
parameters {β0, β1, β2, τ } which represent the level β0, the slope −β1, the curvature
β2 and the speed of convergence to long term rates τ , together with the maturity, which
is represented by t . In this model the forward rate curve is given by the expression

ft = β0 + β1e−t/τ + β2
t

τ
e−t/τ

and the spot rate curve by

Rt = β0 + (β1 + β2)
τ

t

(
1 − e−t/τ ) − β2e−t/τ . (1)

These parameters are estimated byweighted nonlinear least squares1 where, in order
to obtain homogeneous errors in the regression, the errors in prices are weighted by the
inverse of the modified duration of the corresponding bond (see Bank for International
Settlements 2005). Therefore, the objective function for estimating the NS model is

Min
β0,β1β2,τ

k∑

i=1

ε2i

M Di
= Min

β0,β1β2,τ

k∑

i=1

(Pi − P̂i )
2

M Di
(2)

with the restrictions β0 > 0, β0 + β1 > 0, τ > 0, where k represents the number of
bonds in the sample, Pi is its market price, P̂i is its theoretical price following the NS
model and M Di is the modified duration.

Data on secondary market operations of Spanish Public Debt were downloaded
from the Bank of Spain website www.bde.es/banota/series.htm. In the construction of
the yield curve, we followed step by step the methodology proposed by Díaz (http://
www.uclm.es/area/aef/etti.asp) and employed in Díaz et al. (2009, 2011). This data
sample includes daily mean prices of 29–39 treasury bills and bonds traded on the
secondary market and ranks from January 2, 1995 to February 8, 2010 (3813 days)
a period which includes interesting events and periods, such as the dotcom bubble,
the Lehman Brothers collapse, financial turmoil, European Central Bank monetary
policy decisions, and the beginning of the sovereign debt crisis. Following Bank for
International Settlements (2005) and Díaz et al. (2011), to obtain a good adjustment
at the short end of the yield curve, we also include, for each day, four bond repos
(termed operaciones simultáneas in Spain) with a maturity of one, seven, fifteen and
30 days. In order to avoid the presence of illiquid assets, we eliminated from the
portfolios all assets with a traded nominal value of <3 million euros in a single day

1 Following Bank for International Settlements (2005), we estimated the Spanish yield curve using the
Levenberg–Marquardt algorithm.
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and bills and bonds with a maturity of <15 days or more than 15 years. Díaz et al.
(2011) argue that transactions involving bonds with <15 days of maturity remaining
usually conceal speculative trading. Bonds with maturities longer than 15 years in the
estimation of the yield curve are discarded for two reasons: on the one hand, very few
bonds have such a maturity (there are only two 30-year bonds in our database). And
furthermore, the long duration of these bonds forces an over fitting of the long endof the
curve.

The estimation of parameter τ in the model (1) always presents special difficulties.
The highly nonlinear nature of the optimization problem in estimating the NS model
parameters is originated by the parameter τ . This parameter determines the shape of
the yield curve since the maturity at which the curvature factor is maximized and the
speed of decay of the slope parameter depend only on τ . Although the simultaneous
estimation of the four NS parameters improves the fitting quality of the yield curve and
is convenient for pricing proposals, the objective function in term structure estimation
with price errors is not only non-linear but also non-convex in parameters. This makes
the final results sensitive both to the choice of the optimization routine and also to the
starting values (initial guess) used in the optimization algorithm (see Virmani 2013,
among others). Alternative proposals to deal with this issue can be found, for instance,
in Bolder and Stréliski (1999) who suggest several global optimization algorithms
based on grid search;Gimeno andNave (2006) use genetic algorithms to find the values
for the initial conditions and to reduce the risk of false convergence in the Spanish bond
market, and Annaert et al. (2013) incorporate a ridge regression approach to the grid
search. Finally, other authors have fixed τ as a specific value congruent with observed
data; Diebold and Li (2006) propose fixing the value of τ at 1.37, approximately, with
annualized data, implying that the maximal value of the curvature component in the
spot rate function will be reached at 2.5 years to maturity, as they observed throughout
their original sample, while Fabozzi et al. (2005) fixed τ at 3 with annualized data
whose maximal curvature component was situated at 5.38 years.

In this paper, all the parameters {β0, β1, β2, τ } in the NS model were initially esti-
mated using an algorithm of nonlinear least squares as in (2), where the starting values
were those obtained by Gimeno and Nave (2006) in their estimation of the Spanish
yield curve, in order to reduce the risk of false convergence. These estimations are
termed τ -free estimations and are very interesting from the point of view of improving
the fitting quality.

Given the erratic values obtained for the parameter τ , in order to obtain smooth
parameters in the NS model and also to reduce problems of multicollinearity in their
estimation, it is common in the literature on yield curve forecasting to fix τ at a constant
value over the whole sample of the term structure and to estimate the beta parameters
by ordinary least squares (OLS) fitting interest rates, as in Diebold and Li (2006).
Given that our database is composed of coupon bonds, together with bills and repos,
we still apply weighted nonlinear least squares, but fix τ at a constant value, to obtain
beta parameters by minimizing (2) (see Bank for International Settlements 2005 for
the Spanish yield curve). In any case, the dimensionality of the optimization problem
is reduced when τ is fixed at a constant value, and this also avoids the need to forecast
the highly erratic parameter τ . We term these τ -fixed estimations and find them very
interesting from the standpoint of predictive quality.
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The τ parameter was fixed at 3, a value considered reasonable for several reasons:
first, the prior inspection of the τ estimated by nonlinear least squares during the first
5-year window of our training period (January 2, 1995–December 31, 1999) ranked
from 1.00 to 7.00 during 90 % of the days, with a mean value close to 3. Second,
numerous authors have observed that the factors (level, slope and curvature) extracted
from the NS model are insensitive to the choice of τ (see, among others, Nelson and
Siegel 1987; Barrett et al. 1995; Willner 1996; Dolan 1999; Czaja et al. 2009; Favero
et al. 2012). More recently, Annaert et al. (2013) estimated the parameters of the NS
model for τ fixed at 1.37 (as in Diebold and Li 2006), and for τ fixed at 3 (as in Fabozzi
et al. 2005) for Euro spot rate curves, obtaining very similar results and being unable
to conclude which of the two τ values is more suitable. We also estimated our results
with τ fixed at 1.37 and they were found to be robust.2 Finally, we also considered the
argument mentioned by Fabozzi et al. (2005) that when the shape parameter is fixed
at 3, the correlation between slope and curvature will not cause severe problems of
estimation; in our case this correlation is very low: −7 %.

Figure 1 shows the daily evolution of the parameters {β0, β1, β2, τ } estimated from
the NS model for the Spanish public debt market from January 2, 1995 to February
8, 2010.3 As mentioned above, two kinds of estimation were considered: τ -free esti-
mations where the four parameters {β0, β1, β2, τ } are estimated using an algorithm
of nonlinear least squares, and τ -fixed estimations for {β0, β1, β2}. Figure 1 shows
two aspects of interest. On the one hand, the estimations of β1 and β0 are similar in
both procedures and the main differences are observed in the β2 estimations; on the
other hand, the τ -free estimations are very erratic, which is in line with the branch of
literature advising τ -fixed estimations for predictive purposes.

These graphs reflect the evolution of the Spanish economy from 1995 to 2010. Until
the establishment of the euro, interest rates fell steadily, due to Spain’s application of
the convergence criteria established in the Maastricht Treaty in 1992. The controls
imposed on inflation, public debt and public deficit, together with exchange rate sta-
bility and convergence of interest rates, all contributed to reducing the rate of interest
paid by the treasury. The evolution of the slope of the yield curve shows the effects
of the Spanish business cycle, where low slopes correspond to the start of recessions
and high ones to expansions after a cyclical trough. The parameter β1 reflects the
long expansion of the economy from 2005 to 2007 toward the end of the Spanish
property bubble and the subsequent deep recession starting in 2008. The behaviour
of the curvature is more erratic and has a more complex relation with the business
cycle.

Figure 2 shows the goodness of fit of the NS model in our whole sample for τ -fixed
estimations, with the evolution of the daily in-sample root mean squared pricing error
(RMSPE) when fitting the NS model:

2 Detailed results are available upon request.
3 Esteve et al. (2013), studying the period January 1974–February 2010, have detected two regimes in
the Spanish term structure of interest rates, having the structural break in June 1979, 16 years before the
beginning of our sample data so our sample does not suffer of structural breaks.
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Fig. 1 Daily evolution of the level β0, slope β1, curvature β2 and the speed of convergence to long term
rates τ of the Nelson and Siegel model for the Spanish public debt market from January 2, 1995 to February
8, 2010. Two kind of estimation have been considered: the τ -free estimations where the four parameters
{β0, β1, β2, τ } are estimated using an algorithm of nonlinear least squares and the τ -fixed estimations for
{β0, β1, β2} for a τ fixed at 3

RMSPEt =
√√
√√

k∑

i=1

(Pi − P̂i )2

k
.

Thus, the evolution of RMSPE was fairly stable, with a mean value is 0.23 and
minimum and maximum values of 0.02 and 0.72, respectively. This confirms the good
in-sample fit of the NS model for τ -fixed in the Spanish bond market.

Following Diebold and Li (2006), we used various econometric procedures to
forecast the beta parameters {β0, β1, β2} with horizons of 1 year and 1 month (cor-
responding to 260 and 22 trading days, respectively). To prevent possible structure
breaks in the time series of the NS parameters, for the case of the 1 year horizon,
the daily predictions were conducted recursively using a 5-year overlapping rolling
window. The starting rolling window was from January 2, 1995 to December 31, 1999
and advanced, 1 day at a time, until February 8, 2009, i.e., the year before the end of
our sample. Thus, our predicting period extended from January 2, 2000 to February 8,
2010. The 1-month-ahead recursive predictions were implemented in a similar way.

The econometric models used in these predictions are those developed in Diebold
and Li (2006) and Rezende and Ferreira (2013) for forecasting the Brazilian zero-
coupon data, and in other non-parametric models successfully employed in the
prediction of exchange rates by Fernández-Rodríguez et al. (1999).
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Using the Diebold and Li (2006) notation, β̂i,t , i = 1, 2, 3 represents the beta
corresponding to day t , and β̂i,t+h/t represents the prediction of β̂i,t h days ahead. The
econometric models considered are the following

(1) AR(1) model:
β̂i,t+h/t = ĉi + γ̂iβ̂i,t, i = {0, 1, 2}. (3)

The coefficients ĉi and γ̂i are recursively obtained byOLS and h = 260 or h = 22,
for the case of 1 year and 1-month-ahead predictions, respectively.

(2) Random walk model:

β̂i,t+h/t = β̂i,t, i = {0, 1, 2} (4)

(3) VAR(1) on beta levels:

β̂i,t+h/t = ĉ + �̂β̂t, i = {0, 1, 2} (5)

where β̂t =
[
β̂0,t, β̂1,t, β̂2,t

]
, and the ĉ and �̂ are recursively obtained by OLS.

(4) QAR(1) model:

β̂
τ

i,t+h/t = ĉτ
i + γ̂

τ

i β̂i,t, i = {0, 1, 2}. (6)

The coefficients ĉτ
i and γ̂

τ

i are recursively obtained using quantile autoregression
(QAR) estimated at the median (q = 0.5); and h = 260 or h = 22, for the case of
1 year and 1-month-ahead predictions, respectively. So, we follow Rezende and
Ferreira (2013), which use QAR method while comparing the predictive power
of NS class of models with Brazilian zero-coupon data. Contrasting with QAR
model is interesting due to its robustness to the presence of outliers and extreme
values. For details regarding the quantile autoregression model see Koenker and
Xiao (2002, 2004, 2006).

(5) VAR(1) on beta changes:

ẑi,t+h/t = ĉ + �̂zt,

β̂i,t+h/t = β̂i,t + ẑi,t+h/t, i = {0, 1, 2}, (7)

where zt = [(β̂0,t − β̂0,t−1), (β̂1,t − β̂1,t−1), (β̂2,t − β̂2,t−1)], ẑi,t+h/t is the pre-
diction h days ahead of the latter, and the ĉ and �̂ are recursively obtained by
OLS.

(6) Error correction mechanism [ECM(1)] with one common trend (level):

ẑi,t+h/t = ĉ + �̂zt,

β̂i,t+h/t = β̂i,t + ẑi,t+h/t, i = {0, 1, 2} (8)

where zt = [(β̂0,t − β̂0,t−1), (β̂1,t − β̂0,t), (β̂2,t − β̂0,t)], ẑi,t+h/t is the prediction
h days ahead of the latter, and the ĉ and �̂ are recursively obtained by OLS.
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(7) ECM(1) with two trends (level and slope):

ẑi,t+h/t = ĉ + �̂zt,

β̂i,t+h/t = β̂i,t + ẑi,t+h/t, i = {0, 1, 2} (9)

where zt = [(β̂0,t − β̂0,t−1), (β̂1,t − β̂1,t−1), (β̂2,t − β̂0,t)], ẑi,t+h/t is the predic-
tion h days ahead of the latter, and the ĉ and �̂ are recursively obtained by OLS.

(8) Nearest neighbours NN(h): Non-parametric regression model by Fernández-
Rodríguez et al. (1999).

β̂i,t+h/t = â0,iβ̂i,t + â1,iβ̂i,t−1 + · · · + âd−1,iβ̂i,t−(d−1) + âd,i, i = {0, 1, 2} .

(10)

This approach enables direct prediction of the betas in the NS model for the
horizons h = {22,260}. NN(h) is a non-parametric forecasting approach for betas
in the NS model that relies on the idea of predicting their future values in a time
series using the subsequent observations of past histories which are similar to the
current one.
The fact that NN is non-parametric means that it requires minimal assumptions:
(i) the process under study can be non-stationary; (ii) it sidesteps the need to
specify a functional form for the conditional mean and conditional variance of
the process; (iii) it does not require us to choose an innovation distribution driving
the volatility process; and (iv) it is robust to the presence of possible structural
breaks in the time series, so that recursive windows may be employed instead
of rolling ones. Hence, the resulting forecasts are not bedevilled by the model
misspecification risk. The NN regression models are developed in the Appendix.

(9) Simultaneous nearest neighbours (SNN)(h): Non-parametric regression model by
Fernández-Rodríguez et al. (1999)

β̂i,t+h/t = â0,iβ̂i,t + â1,iβ̂i,t−1 + · · · + âd−1,iβ̂i,t−(d−1) + âd,i, i = {0, 1, 2}
(11)

generalizing the nearest neighbours procedure to the multivariate case. This is
also explained in the Appendix.

Besides the econometric models considered above, we also studied another system
of predictions based on the implicit forward rates obtained every day from the yield
curve. Following expectation theory, the implicit forward rates are those expected by
the agents at a future horizon (1 year, 1 month) under the present information of the
yield curve, considered a predictor of future spot rates. In this case, once we have
estimated the spot rates that the market expects in the future through actual forward

123



SERIEs (2015) 6:207–245 217

rates,4 it is also possible to obtain the future level, slope and curvature expected by
the market.

3 Statistical assessment of our predictions

As observed by Gürkaynak et al. (2006), it is possible to find fairly similar yield curve
shapes over most of the maturity range considered, through different combinations
of parameters in a NS framework. Thus, if two econometric models predict different
betas from theNSmodel, these differencesmight not imply differences in interest rates
but rather that a different combination of parameters will produce similar estimated
interest rates. Taking this into account, we assessed the prediction with the parameters
{β0, β1, β2} obtained under the different econometric models mentioned above, and
the implicit forward rates model of our database of bond prices, in three ways. First,
we use the root mean squared error (RMSE) statistic to compare the predicted interest
rates (with τ -fixed) at 3-month, 1, 3, 5 and 10-year expirations for the date t + h with
the real interest rates obtained by estimating the NS model (with τ-free) at the date
t + h, where h is 1 month or 1 year.

Second, we assessed the point prediction for the empirical components of the yield
curve. The empirical level is taken as themean of all former interest rates; the empirical
slope is obtained as the difference between the 10-year interest rates and the 3-month
interest rate; the empirical curvature is obtained as twice the yield where themaximum
curve is situated (in our case, 5 years), minus the 3-month interest rates and the 10-year
interest rates.

Finally, we assessed the point prediction of the yield tomaturity for quoted bills and
bonds, comparing the predictions made by the different econometric models with the
real values given by the market. The predictions of the yields to maturity are obtained
through the predicted parameters from the NS model (with τ-fixed), which enables us
to obtain the theoretical price of the bonds. Having obtained these theoretical prices,
the yield to maturity is derived using the information on coupons, maturity and date
for coupon payments.

Table 1 shows the goodness of fit of the different econometric models used to
predict the interest rates (“Yield” panel, left), the empirical components of the yield
curve (“Term structure interest rates” panel, centre) and the yield to maturity (“Yield
to maturity” panel, right). In all cases the RMSE is shown for 1-month and 1-year
horizons, in the predicting period from January 2, 2000 to February 8, 2010; bold
values correspond to the model with lowest RMSE. Besides, in order to compare the
predictive accuracy of all available models with the random walk model, we indicate
significance at the 10, 5, and 1 % level by *, **, and ***, respectively, if the RMSE of
model i th is statistically lower than random walk using Diebold and Mariano (1995)

4 The usual forward rates for compounding interest rates at 1 year horizon are

f (0, 1, j) =
[

(1+R(0, j)) j

(1+R(0,1))

]1/( j−1)
− 1

where f (0, 1, j) is the implicit forward rate which starts within 1 year and matures within j > 1 years,
and R (0, j) is the actual spot rate which matures within j > 1 years. Therefore, the spot rates that the
market expects within 1 year are f (0, 1, 2) = R (1, 2) ; f (0, 1, 3) = R (1, 3) ; f (0, 1, 4) = R (1, 4) . . ..
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test for comparing predictive accuracy. The results obtained show that, in most cases
and in termsof theRMSE, the randomwalkmodel gives the best point prediction for the
Spanish yield curve. In general, these results demonstrate the difficulty of achieving
a good point forecast for the Spanish yield curve; none of the econometric models
was capable of outperforming the random walk, during most of the period 2000–
2010. Thus, our findings advise against the use of point forecasting in the Spanish
yield curve for either policy-oriented as trading goals with the econometric models
employed in our study. As it will be shown, from the point of view of our trading
strategies, directional prediction is more interesting than point prediction.

Figure 3 compares the random walk model with the other models in terms of the
daily evolution of the RMSE obtained by predicting the yields to maturity (real against
predicted) 1 year ahead. As can be seen, although the random walk is the best model
from the RMSE standpoint, there are periods when other models outperform it. In
particular, the implicit forward rates give better predictions than random walk after
January 2006 and during almost the whole crisis period, proving to be a good predictor
of future yields to maturity for this period. As expected, the highest peak in RMSE
occurredduring the current crisis period (2008–2010),when trading activity on thedebt
markets of the peripheral European countries, especially in Spain, fell dramatically,
rapidly increasing yields and the country risk, i.e., the differential on long yields against
the German bond yields. As shown in Fig. 3, this produced difficulties in accurately
fitting the yield to maturities, and accordingly the yield curves, and worsened the
forecasts of all the econometric models.

For additional statistical evidence on the performance of the econometric models
and the implicit forward rates, we also studied their rate of directional success in pre-
dicting the rise and fall of empirical components of the yield curve (from the point
of view of our trading strategies, directional prediction is more interesting than point
prediction). Table 2 shows the percentage of directional success with respect to the
empirical level, slope and curvature, comparing the predictionsmade by the economet-
ric models (parameters of the NS model with τ -fixed) with their real empirical values
(with τ -free), as described above. Bold values correspond to the best econometric
model for each empirical component of the yield curve and horizont. For instance,
if the empirical slope predicted by an econometric model at date t + h is increased
(obtained as the difference between the empirical slope predicted at date t + h minus
the real empirical slope at date t with τ -free) in line with the real empirical slope at
date t + h (obtained as the difference between the real empirical slope at date t + h
minus the real empirical slope at date t both with τ -free), the econometric model is
considered successful in the directional prediction of the empirical slope. The random
walk model is not reported in Table 2 because this model, by definition, does not
predict any movement in the empirical components of the yield curve.

As shown in Table 2, not all models attain a rate of success of 50 % in predicting
the level and the slope, and higher success rates are achieved for the curvature. In the
1-month-ahead directional prediction, ECM(1) is the most successful model, with two
common trends in predicting the level and the slope, and one common trend in pre-
dicting the curvature. In the 1-year-ahead directional prediction, the most successful
models are the ECM(1) with two common trends in predicting the level, the NN in
predicting the slope, and ECM(1) with one common trend in predicting the curvature.

123



SERIEs (2015) 6:207–245 221

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Random Walk AR(1)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Random Walk VAR(1)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Random Walk VAR(1) changes

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Random Walk ECM (1) 1 common trend

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

Random Walk ECM (1) 2 common trends

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Random Walk NN

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Random Walk SNN

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Random Walk Forward

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Random Walk QAR(1)

Fig. 3 Comparison of the random walk model with the other models in terms of the daily evolution of the
RMSE obtained by predicting the yields to maturity (real against predicted) 1 year ahead
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Table 2 Percentage of directional success with respect to the empirical level, slope and curvature, com-
paring the predictions made by the econometric models (parameters of the Nelson and Siegel model with
τ -fixed at 3) with their real empirical values (with τ -free), as described above

Models Level Slope Curvature

AR(1)

1 year 0.5219 0.4946 0.6736

1 month 0.5339 0.5646 0.6233

VAR(1) levels

1 year 0.4863 0.5180 0.6332

1 month 0.5441 0.5445 0.6214

QAR(1)

1 year 0.5654 0.4420 0.6810

1 month 0.5362 0.5496 0.6225

VAR(1) changes

1 year 0.5511 0.3133 0.5332

1 month 0.5114 0.5753 0.5961

ECM(1) 1 common trend

1 year 0.4515 0.4376 0.7175

1 month 0.5016 0.5607 0.6517

ECM(1) 2 common trends

1 year 0.5837 0.4181 0.6280

1 month 0.5670 0.6198 0.6068

NN

1 year 0.5632 0.5598 0.6080

1 month 0.4890 0.5879 0.6131

SNN

1 year 0.4976 0.4602 0.5511

1 month 0.4811 0.5642 0.5859

Forward

1 year 0.3546 0.4588 0.5612

1 month 0.4764 0.5460 0.5932

Bold values denote the best econometricmodel for each empirical component of the yield curve and horizont
For instance, if the empirical slope predicted by an econometric model at date t + h is increased (obtained
as the difference between the empirical slope predicted at date t + h minus the real empirical slope at date
t with τ -free) in line with the real empirical slope at date t + h (obtained as the difference between the real
empirical slope at date t + h minus the real empirical slope at date t both with τ -free), the econometric
model is considered successful in the directional prediction of the empirical slope

4 Economic assessment of our predictions and technical strategies

This section addresses our second objective, and the main contribution of this paper,
which consists of using the econometric predictions on the parameters of the yield
curve for the NS model to develop trading strategies in the Spanish bond market [see
Martellini et al. (2003) as a general reference in fixed-income strategies]. Once the
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yield curve is predicted, on the basis of the parameters of the NS model with τ -fixed,
three active trading strategies are defined to bet on yield curve changes by comparing
the empirical level, slope and curvature of the implicit forward interest rates and those
of the interest rates predicted by our 1-year and 1-month-ahead econometric models.

Every day we start with 29–39 fixed-income assets (Spanish treasury bills and
bonds) quoted that day on the secondary market. Note that the portfolios employed in
the trading strategies are composed of the same repos, bill and bonds used to estimate
the NS model in Sect. 2, i.e., we have eliminated from the portfolio all assets with a
traded nominal value of <3 million euros in a single day, as well as bills and bonds
with a maturity of <15 days or more than 15 years.

The only exception to this is that, in all the strategies described below, except for
immunizations and bets on the empirical level, the maturities of the traded assets are
>18 months for the 1 year and 1 month investment horizons. This selection of assets
that do not mature within our investment horizon avoids the need for rebalancing the
portfolios.

In accordance with the expectations theory, the forward curve reflects the agent’s
expectations on the future evolution of interest rates. Therefore, and following this
theory, in order to take positions in the assets of the Spanish bond market, we compare
the expectations ofmarket agents for the future yield curve (1 year, 1month) reflected in
the forward curve, with the predictions of our econometric models. More specifically,
we estimate the empirical components (level, slope and curvature) resulting from
the current estimated NS parameters with τ -free, from the forward yield curve and
compare it with the empirical predicted components resulting from the forecast NS
parameters with τ -fixed. Hence, there are three kinds of strategies, as explained below.

4.1 Strategies betting on the future evolution of the empirical level

This strategy bets on the future evolution of the empirical level of the yield curve for
an investment horizon of 1 year or 1 month, i.e., it is betting that all the interest rates
move in parallel. When our econometric models predict a rise (fall) in the empirical
level of the yield curve with respect to the empirical level of today’s forward curve
for this horizon, we decrease (increase) the Macaulay (1938) duration (henceforth,
simply duration) of our portfolio with respect to the investment horizon, buying assets
of adequate duration. In this strategy, only long positions are employed.

For the 1-year horizon, we consider a strategy consisting of reducing (increasing)
by 1 month the duration of the portfolio when a rise (fall) in the empirical level of the
yield curve is predicted. For the case of an investment horizon of 1 month, the strategy
consists in increasing or reducing the duration of the portfolio by 15 days.5 To that
end, we estimate the empirical level (the mean of all the interest rates) expected by
the market, resulting from the current estimated NS parameters with τ -free, from the
forward yield curve, Level Forward

t+h , at a horizon h = {22,260} days, and compare it
with the empirical level, Levelt+h , resulting from the forecast NS parameters with

5 Theperiods employed for increasing or reducing the duration of the portfoliowith respect to the investment
horizon were considered arbitrarily; nevertheless the results are robust to other selections.
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τ -fixed of our econometric models. This is achieved as follows. The duration of the
portfolio is reduced by a time K, holding short-term instruments until their maturity,
if Level Forward

t+h < Levelt+h , where K is 1 month for a 1-year investment horizon or
15 days for a 1-month investment horizon. We then rebalance the portfolio in order to
make the duration equal to the time remaining until the end of the investment horizon.
This strategy is known as rollover (see Martellini et al. 2003). Instead, the duration of
the portfolio is increased by a time K, if Level Forward

t+h ≥ Levelt+h .
Each time the portfolio is altered because of the payment of coupons or the maturity

of an asset, we must rebalance the portfolio by buying new assets to bring the duration
into line with that advised by our strategy (i.e., the time until the end of the investment
horizon ±K, depending on the prediction). As the problem of selecting several assets,
and their weightings, in order to create a portfolio with a specific duration has multiple
solutions,we employ theweight-selecting criteria suggested byNawalkha et al. (2005),
thus making the duration of the portfolios equal to the 1-month or 1-year investment
horizon ±K, depending on the kind of prediction.

4.2 Strategies betting on the future evolution of the empirical slope

We now estimate the empirical slope (10-year interest rate minus 3-month interest
rate) resulting from the current estimated NS parameters with τ -free, from the forward
yield curve, SlopeForward

t+h , at a horizon h = {22,260} days, and compare it with the
empirical slope, Slopet+h , resulting from the forecast NS parameters with τ -fixed
obtained from our econometric models. In this strategy, we choose a maturity of 5
years, employed as a pivot which corresponds to half of the maturities of the empirical
slopes.

In order to limit the number of assets in our portfolios, we always use six fixed-
income assets,6 three with maturities lower than the pivot (5 years) and three with
maturities higher than the pivot.

A bet for the empirical slope to rise (SlopeForward
t+h < Slopet+h) means that we

expect the yields of the three assets with maturities lower than the pivot (5 years) to
fall and those of the other three assets to rise. Thus, we take a long position in the three
assets with maturities lower than the pivot (their prices are expected to increase) and
a short position in the three assets with maturities higher than the pivot (their prices
are expected to decrease). These short positions are taken through a repo reverse.7

6 The choice of just six assets is subjective and intended only to set a limit on the number of assets in the
portfolio. Nevertheless, the results are robust to other combinations of assets.
7 The returns in the short positions are divided into two components: the return generated by the short
position itself (the difference between the price at which the asset was sold and the price at which it was
bought) and the return earned by the repo reverse which is known from the beginning of the investment
horizon. Instead, the returns in the long positions are composed of the capital gains (the differences in
prices), the coupon paid and the reinvestment of the coupon at the risk free rate. As our point of view is a
fund manager who takes both positions with the fund’s endowment, neither long nor short positions need
additional funding.
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On the contrary, a bet for the empirical slope to fall (SlopeForward
t+h ≥ Slopet+h)

means we take a long position in the three assets with maturities higher than the pivot
and a short one in the other three assets.

The positions advised by our econometric predictions with 1-month or 1-year hori-
zons are held until the end of the strategy (1 month or 1 year, respectively). Thus, no
rebalancing is made of strategies betting on the empirical slope; positions are taken
at the beginning of the investment horizon and closed at the end of the investment
horizon.

As 29–39 fixed-income assets are quoted in the market every day, and as our port-
folio in this case has only six assets, we have the same problem as before, i.e., that of
selecting those six assets, and the fact that they can be weighted in many ways. We
decided to immunize the portfolio by employing the weighting criteria suggested by
Nawalkha et al. (2005) and thus hedge the portfolio against the risks of parallel shifts
in the yield curve. Specifically, we employed the criterion of maximizing the diversifi-
cation, making the durations equal to the investment horizon of 1 month or 1 year (see
Nawalkha et al. 2005, page 89, equation 4.19). In this case, we seek the combination
of six assets that matches the duration objective and maximizes the convexity.

4.3 Strategies betting on the future evolution of the empirical curvature

A change in the empirical curvature is related to butterfly movements on the yield
curve, that is, a rise (fall) of the short term and long term rates (the wings of the
butterfly), complemented with a fall (rise) of the intermediate term rates (the body of
the butterfly) [seeMartellini et al. (2002) as a general reference to butterfly strategies].

Our strategy uses a portfolio of six assets, two for short term rates (maturities shorter
than 3 years), two in the body of the butterfly (maturities between 3 and 8 years) and
two for long term rates (maturities >8 years).

We now estimate the empirical curvature (twice the 5-year interest rate minus the
3-month interest rates and the 10-year interest rates), resulting from the current esti-
mated NS parameters with τ -free, from the forward yield curve, CurvatureForward

t+h ,
at a horizon h = {22,260} days, and compare this with the empirical curvature,
Curvaturet+h , resulting from the forecast NS parameters with τ -fixed obtained from
our econometric models. The strategy is now:

If a fall in the empirical curvature is predicted:CurvatureForward
t+h >Curvaturet+h ,

we take a long position in assets on the body (these prices are expected to increase),
and a short position in the wings (these prices are expected to fall).

If a rise in the curvature is predicted: CurvatureForward
t+h < Curvaturet+h , we

take a short position in assets on the body, and a long position in the wings.
As in the slope strategies, the positions advised by our econometric predictions with

1-month or 1-year horizons are held until the end of the strategy (1 month or 1 year,
respectively). Furthermore, and as in the case of the slope strategies, we immunize the
portfolio by employing the weight selection criterion suggested by Nawalkha et al.
(2005) in order to hedge our portfolios against the risks of parallel shifts in the yield
curve. To this end, the portfolios are immunized by making their durations equal to
the investment horizon, and maximizing their convexities.
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4.4 Our benchmarks

Various benchmarks are used to compare the strategies applied.
For the level bets, we take as a benchmark the immunization strategy in which the

duration of the portfolio is equal to the investment horizon. This ensures that a small
parallel shift in the yield curvewill not affect an objective return (the 1-year or 1-month
yield initially defined). In this strategy, only long positions are permitted. As there is
an infinite number of combinations of portfolio weights to perform the immunization,
once again the selection criteria suggested by Nawalkha et al. (2005) are employed.8

For the case of slope and curvature bets, two benchmarks are considered. On the
one hand, the “riding the yield curve” strategy in which the benchmark selected is an
equally-weighted portfolio, as in the ladder strategy, taking long positions in the same
assets selected by each econometric model in the original strategy. This target strategy
represents the bet made with the random walk model, that is, assuming that the yield
curve will have the same shape in the future. In this case (provided the yield curve
continues to present an upward slope, as is usually the case), it could be profitable to
buy long-maturity assets and sell them later, benefiting from the fall in interest rates,
and the consequent rise in prices, which represents a future yield curve with the same
shape as the current one.

On the other hand, the benchmark portfolio for each empirical component of the
yield curve, given by the NS model, should have a neutral sensitivity to movements of
this component, and therefore the benchmark portfolio needs to be hedged against it.
Therefore, the performance of the active strategy should be measured by comparing
the results of two portfolios with the same components in which the weights would be
provided by two programmes. One portfolio would be constructed to hedge against
shape changes and the other portfolio would bet on the predicted movements. In this
way, our active trading strategy based on the predictions of one of the econometric
models should have a good performance whether or not we systematically beat this
new benchmark portfolio. Thus, for the case of slope and curvature bets, we considered
a second benchmark, provided by hedging strategies, consisting of a portfolio with the
same components and positions as our strategy but with weights designed to hedge
the portfolio against movements of the slope or curvature. Following Martellini et al.
(2003, pages 196–197), these weights make the slope (or curvature) duration of the
hedging portfolios equal to zero. In otherwords, the hedge strategies are hedged against
slope or curvature movements, depending on the bet.

Finally, in order to discard spurious signals and excessively intensive trading strate-
gies, we filter the trading signals using a trading threshold of {5%}. For instance, if

∣
∣∣SlopeForward

t+h − Slopet+h

∣
∣∣ ≤ threshold j ,

8 The reported results for level and immunization strategies are obtained by minimizing the M-Squared
subject to the condition that the portfolio’s duration is equal to the target duration. The findings with the
rest of the selection criteria of Nawalkha et al. (2005) are similar; although not reported here for reasons of
space, they are available from the authors.
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no position is taken for this day. In the above formula

threshold j = [max (Slope1:t ) − min (Slope1:t )] .c j ,

where c j = {0.05} and Slope1:t is the in-sample empirical slope obtained by updating
the strategy.

5 Empirical results

One of themost widely employedmeasures of performance used to compare strategies
in terms of risk is the Sharpe ratio (SR). This consists in estimating the excess return
of a strategy over the risk-free return (the repo rate) per unit of volatility. This risk-free
asset represents the opportunity costs of investing in the repo rate at the beginning of
each investment horizon and holding for 1 year or 1 month.

S R =
Mean

(
RPort f

t+h − R f ree
)

σPort f

where RPort f
t+h is the annualized return of the portfolios for a given day and investment

horizon of 1 month or 1 year9 which started on date t and ended on date t + h, with
t from January 2, 2000 to February 8, 2009 for a 1-year investment horizon and from
January 2, 2000 to January 8, 2010 for a 1-month investment horizon), presenting

a standard deviation σPort f = Std
(
RPort f

t+h

)
. As is very well known, the higher the

Sharpe ratio of a strategy, the better its performance.
Recently, adjustments to the Sharpe ratio have been proposed to account for non-

normality in the returns. Thus, Díaz et al. (2009) estimated alternative Sharpe ratios.
Besides the traditional Sharpe ratio, they considered an “adjusted Sharpe ratio” (ASR)
which accounts for non-normality in the distribution of returns by making use of the
value at risk (VaR).

AS R =
Mean

(
RPort f

t+h − R f ree
)

VaR

where VaR is equal to N times σPort f and N = 2.33 is the number of standard
deviations associatedwith a 1% level of probability, assuming that returns are normally
distributed.

In order to extend the tail risk to othermoments of the distribution, these authors also
considered the “modified Sharpe ratio” (MSR), which corrects the adjusted Sharpe
ratio to include the impact of skewness and excessive kurtosis.

9 A new trading strategy is started each day of our prediction period and closed within h = {22,260} days,
obtaining a return for the whole investment horizon equal to RPort f

t+h .
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MSR =
Mean

(
RPort f

t+h − R f ree
)

MVaR
,

where the MVaR is measured as

MVaR =
(

N + 1

6

(
N 2 − 1

)
S + 1

24

(
N 3 − 3N

)
K − 1

36

(
2N 3 − 5N

)
S2

)
σPort f

where S and K stand for the skewness and kurtosis of the returns, respectively.
In order to study the economic significance of our Sharpe ratios, we also considered

the Opdyke (2007) test, which, under very general conditions of time-varying condi-
tional volatilities, serial correlations and non-IID returns, allows us to test whether the
Sharpe ratios for each of the predictions provided by the econometric models are sta-
tistically different from those for the benchmarks (riding the yield curve and hedging
strategies).

Tables 3 and 4 show the annual SR, the annual ASR and the annual MSR over
overlapping portfolios for 1-year-ahead predictions (Table 3) and 1-month-ahead pre-
dictions (Table 4), obtained by our econometric models for the prediction period
2000–2010. Bold values correspond to the models with highest values for SR, ASR
and MSR. These tables also show whether the null hypothesis of the Opdyke test
of equal Sharpe ratios for the strategy and the benchmark is rejected, together with
the size of the rejection and the acceptances of the Jarque and Bera test of normal
distribution in RPort f

t+h returns for the prediction period 2000–2010. For the sake of
simplicity, only the hedging strategy was considered as a benchmark. Although not
reported here, for reasons of space, the results for the ridingthe-yield-curve benchmark
are qualitatively similar; they can be obtained from the authors upon request. In order
to avoid spurious signals, a filter of {5%} was also applied.

Summarizing the data shown in Table 4, the trading strategies associated with the
signals provided by the 1-month-ahead predictions do not improve on the hedging
strategy benchmark, with the exception of slope bets with a 5 % trading threshold.10

On the contrary, it can be seen in Table 3 that most of the models for the 1-year-
ahead predictions outperform the hedging strategy, with the exception of level bets,
which fail to outperform the immunization strategy (this has a SR of 0.1429, an ASR
of 0.0613 and a MSR of 0.0479 for the 1-year investment horizon). As shown in
Table 3, for 1 year horizon, QAR(1) strategies obtain the highest SR, ASR, and MSR
average for level, and NN and VAR(1) changes for betting for slope and curvature,
depending on the threshold. As shown in Table 4, for a 1 month horizon, QAR(1)
strategies obtain the highest SR, ASR, and MSR average for level, and NN and
ECM(1) with 2 common trend, for betting for slope and curvature, depending on the
threshold.

To gain a broader perspective of the findings of Table 3 and Fig. 4 plots the daily
evolution of the returns for our best strategies, given their Sharpe ratios, on level [the
QAR(1)], slope (the NN) and curvature (the NN) without trading threshold based on

10 None of the level strategies give a signal higher than the trading threshold for a 1 month horizon.
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1-year-ahead predictions. In contrast, Fig. 5 shows the daily evolution of the returns
for our worst strategies on level [the VAR(1) levels], slope [the VAR(1) changes] and
curvature [the ECM(1) 2 common trends].

Both figures show that our strategies obtain positive returns during the prediction
period from January 2000 to February 2010, i.e., at any time it is profitable to apply
our strategies for a 1-year investment horizon. However, the same bets do not always
obtain the highest return in our sample; thus, there could be factors other than each
empirical component of the yield curve which explain the profitability of our trading
rules; however, seeking to determine other macroeconomic or financial factors that
might explain the profitability of our strategies is a question that is beyond the scope
of this paper.

On comparing Figs. 4 and 5 with the behaviour of slope parameter β1 in Fig. 1, we
can see how strategies for betting on empirical slope movements achieve the highest
returns for periods close to changes in slope trends, i.e., 2001, 2003, 2005 and during
the current crisis period; it is also interesting to note that the huge change in the slope
trend during the crisis period in 2009 produced a positive peak in the slope strategies;
we attribute this to the fact that the movements in the prices of fixed-income assets,
when the slope trend changed in 2009, were more urgent and rapid than any other
yield curve shape. Curvature strategies were fairly stable during our prediction period.
Finally, the level strategies are the smoothest of all, following the actual evolution of
the empirical level in the prediction period.

In the previous results, transaction costs were not considered because our strategies
are not trading intensive and so transaction costs are very low. For instance, we used
only six assets in our bets on slope and curvature, and these were only traded at the
beginning and end of the investment horizon, while the bets on the level generally
involved two assets, at most, with just a little rebalancing, and transaction costs were
only paid twice, to open and close the positions.

As each financial institution which is able to sell bonds determines its own levels
of commission, and given the difficulty of finding suitable transaction costs in the
literature, in order to take a view on the transactions costs in our trading strategies,
we report the break-even transaction cost for each strategy. This is defined as the
transaction cost per trade which makes the mean return of the strategy equal to zero
for our prediction period, 2000–2010. The higher the break-even level, the lower
the trading intensity of the strategy and the higher the transaction costs required to
eliminate its profitability.

Table 5 shows the break-even transaction cost for the different trading strategies
adopted. As expected, these costs are higher for the trading thresholdwhere no position
is taken and the latter is not overcome. On average, the 1-year-ahead strategies produce
a break-even transaction cost between 0.29 and 0.42 per asset trade without trading
threshold. The models AR(1), and ECM(1) with two common trends require a higher
and a lower transaction cost to eliminate their profitability, respectively, in the 1-year-
ahead strategies. On the other hand, in the 1-month-ahead strategies, the econometric
models with highest and lowest break-even transaction costs are the QAR(1) and
the VAR(1) changes in the yield curve, respectively. These findings corroborate our
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conclusions that the trading strategies described are profitable even after accounting
for high transaction costs per asset trade.11

Finally, in order to determine the profitability of our trading strategies with respect
to the current crisis period, Table 6 shows the annual SRs and the Opdyke test for
the period January 2008 to February 2010. As before, bold values correspond to the
models with highest values for SR. The crisis period (2008–2010) includes interesting
events, such as Lehman Brothers’ demise, financial turmoil, European Central Bank
monetary policy decisions and the beginning of the sovereign debt crisis. During this
period, trading activity on the debt markets of the peripheral European countries fell
drastically, with increasing yields and risk premiums with respect to the German bond
market. As mentioned above, this situation can make it difficult to accurately fit yield
curves and so forecasts and performance worsened.

As in the prediction period 2000–2010 reported in Table 4, our 1-month-ahead
trading strategies did not outperform the hedging strategies, except for ECM(1) with
two common trends, VAR(1) changes in betting for slope and ECM(1) with one com-
mon trend in betting for level. Nevertheless, the bets for level based on the models
ECM(1) with one and two common trends did outperform the level benchmark, which
is the immunization strategy at the 1-year investment horizon. Moreover, all the slope
and curvature strategies were capable of outperforming the benchmarks provided by
hedging strategies at the 1-year investment horizon. Of all the strategies the NNmodel
obtained the highest Sharpe ratios, on average, in the current crisis period for a 1month
horizon and QAR(1) for a 1-year horizon.

As mentioned before, on comparing the evolution of parameter β1 in Fig. 1 with
the situation shown in Figs. 4 and 5, we observe that the slope bets had higher Sharpe
ratios, on average, during the current crisis period for the 1-year investment horizon;
we attribute this to the urgent, and faster movements in the prices of fixed-income
assets when slope trendswere increasing drastically. However, the other bets presented
slightly lower Sharpe ratios than those for the period as a whole.

To summarize our results, both with respect to the crisis period (2008–2010) and
for the period as a whole (2000–2010), from the standpoint of statistical prediction,
the NN model is a mediocre performer, and its percentage of success in predicting
the direction of the level and curvature movements is not significantly higher than
that achieved by the other models; nevertheless, the NN model does obtain more
profitable strategies on average than the other econometric models for all the trad-
ing strategies at the 1-month and the 1-year investment horizons, obtaining Sharpe
ratios that are significantly higher than their benchmarks for the Opdyke test in the
slope and curvature strategies for the 1-year horizon. Nevertheless, in general, the NN
model fails to improve on its hedging strategy benchmark for the 1-month investment
horizon.

Finally, our findings suggest there is a mismatch between the statistical significance
and the economic significance of forecasts, and indirectly that purely statistical loss
functions may be of little value to market practitioners, as was highlighted by Satchell
and Timmermann (1995). These authors were the first to explain in theoretical terms

11 The average transaction costs on large stocks for a US institutional investor are estimated at 25–31 basis
points per trade (Peterson and Sirri 2003; Bessembinder 2003).
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the possibility of a disconnection between statistical accuracy and profitability, and
illustrated it through aUS$ trading rule. Thus, and as Satchell andTimmermann (1995)
pointed out, for the case of our non-parametric and non-linear predictions, the standard
criteria for statistical forecast accuracy do not have a direct mapping onto profitability.

6 Conclusions

In this study, we predict the yield curve for the Spanish public debt market, 1 month
and 1 year ahead, using the methodology proposed by Diebold and Li (2006). The
capability of generating profits bymeans of these yield curve predictions, transforming
them into technical trading strategies, is also considered.

By re-interpreting the Nelson–Siegel yield curve as a dynamic model that achieves
a reduction in dimensionality, the factors level, slope and curvature are predicted using
different econometric models, namely the parametric ones suggested by Diebold and
Li (2006) and Rezende and Ferreira (2013), and two non-parametric models suggested
by Fernández-Rodríguez et al. (1999) for exchange rates. Our findings show that the
randomwalkmodel is competitive from the standpoint of point predictions for Spanish
yield curves. However, various econometric models are capable of obtaining a success
rate in the direction of empirical level, slope and curvature exceeding 50 % at 1 year
and 1 month ahead.

In addition, by converting the predictions of the econometric models into technical
trading strategies for betting on the movements of the level, slope and curvature of
the yield curve in the Spanish public debt market, we obtain Sharpe ratios which
outperform the benchmarks of the hedging strategies for long (1 year) horizons both
for the overall prediction period (2000–2010) and also for the current crisis period
(2008–2010). Nevertheless, these strategies do not outperform their benchmarks for
short (1 month) horizons. The Sharpe ratios for all the strategies are reasonably stable
for different econometric models with the same investment horizon. This finding is
in line with the conclusions of Diebold and Li (2006), whose forecasts appear to be
much more accurate for long horizons.

With regard to the introduction of non-parametric models, although, from the stand-
point of point predictions and the success in directional prediction, these models
do not outperform the parametric models proposed by Diebold and Li (2006), the
non-parametric models, and especially the NN model, are capable of obtaining more
profitable strategies than the other econometric models, at both the 1-month and the
1-year investment horizons; in fact, the latter model obtains Sharpe ratios that are sig-
nificantly higher than their benchmarks for the Opdyke test in the slope and curvature
strategies for the 1-year horizon.

Thus, and as Satchell and Timmermann (1995) pointed out for the case of nonlinear
predictions (as is the case of the NN model), we find that the standard criteria for
statistical forecast accuracy do not have a direct mapping onto profitability.
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Appendix: Non-parametric regression models: nearest neighbours (NN)
and simultaneous nearest neighbours (SNN)

In order to reformulate the k-nearest neighbour (k-NN) method, let us consider the
problem of predicting the observation xT +h generated from the stochastic process
xt+h = ft

(
xt , . . . , xt−(d−1)

)+εt , where εt is white noise, and ft (·) is not constrained
to belong to a specific class of functions (see Hastie et al. 2001 for a review of NN
methods).

Let the finite time-series {xt }T
t=1 represent the daily observations available to the

forecaster and assume the goal is to obtain out-of-sample predictions x̂T +h . The first
stage of the NN technique is to subsample data segments of equal length d from the
available time series

xm
t ≡ (

xt , xt−1, . . . , xt−(d−1)
) ∈ Rd , d ≤ t ≤ T − 1

where d is called the embedding dimension. These d-dimensional vectors of con-
secutive observations are also called m-histories and R

d is called the phase space.
The proximity of two m-histories in the phase space Rd allows the notion of ‘nearest
neighbour’. This non-parametric approach to prediction begins by finding the k nearest
neighbours defined as the m-histories xm

ti ≡ (
xti , xti −1, . . . , xti −(d−1)

)
, i = 1, . . ., k,

that represent the first k minima of the Euclidean distance function

||xm
ti − xm

T ||, ti = d, d + 1, . . . , T − 1 (12)

where xm
T represents the lastm-history observed, xm

T ≡ (
xT , xT −1, . . . , xT −(d−1)

)
. Let

the scalar xti +h denote the h steps ahead observation to the m-history or neighbouring
sequence xm

ti . A simple way of obtaining the prediction of xT +h consists in regressing
the observations xti +h , h steps subsequent to the nearest neighbours, on the k nearest
neighbours xm

ti = (
xti , xti −1, . . . , xti −(d−1)

)
, i = 1, . . ., k, by OLS. By using âi to

describe the values of ai that minimize

k∑

i=1

(
xti +h − a0xti − a1xti −1 − · · · − ad−1xti −(d−1) − ad

)2
,

the predictions for xT +h can be obtained from a linear autoregressive predictor with
varying coefficients:

x̂T +h = â0xT + â1xT −1 + · · · + âd−1xT −(d−1) + âd . (13)

This non-parametric regression model permits a direct prediction of the betas in the
NN model for the horizons h = {22,260} as shown in Eq. 9.
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Following Fernández-Rodríguez et al. (1999), it is also possible to generalize the
local regression procedure employed in the NN non-parametric regression to the mul-
tivariate case using the information contained in several time series. This methodology
is termed simultaneous nearest neighbours (henceforth) and avoids the problems that
frequently occur with non-parametric multivariate methodologies, like the curse of
dimensionality, which makes it necessary to use huge amounts of data to estimate the
parameters of multivariate models (see Hastie et al. 2001).

In order to clarify these the ideas and simplify the notation, let us consider a set of
two time series {xt }T

t=1 and {yt }T
t=1. The extension to the general case is similar. We

are now interested in predicting one of the sample observations of these series (e.g.
the observation xT +h), also considering information for the past of both series. With
this purpose, we embed each of these series in the vector space R2d. Thus, taking into
account the vectors

(
xm

ti , ym
ti

) ∈ Rd × Rd ,

this gives us the available m-histories of dimension d for each time series. In order
to establish SNNs for the last m-histories

(
xm

T , ym
T

)
, we search for the k points that

minimize the function

||xm
ti − xm

T

∣∣∣∣+||ym
ti − ym

T

∣∣∣∣ , ti = d, d + 1, . . . , T − 1. (14)

In this way we obtain a set of k simultaneous m-histories in both series

(
xm

t1 , ym
t1

)
,
(
xm

t2 , ym
t2

)
, . . . ,

(
xm

tk , ym
tk

)
.

Now, the predictions for xT +h and yT +h can be obtained from a linear autoregressive
predictor with varying coefficients:

x̂T +h = â0xT + â1xT −1 + · · · + âd−1xT −(d−1) + âd (15)

ŷT +h = b̂0yT + b̂1yT −1 + · · · + b̂d−1yT −(d−1) + b̂d . (16)

The parameters in the linear model for the series xti are estimated by regressing xti +h

on xm
ti = (

xti , xti −1, . . . , xti −(d−1)
)
, i = 1, . . ., k, by OLS. Therefore, the âi are the

values of ai that minimize

k∑

i=1

(
xti +h − a0xti − a1xti −1 − · · · − ad−1xti −(d−1) − ad

)2
.

Analogously, the b̂i are the values of bi that minimize

k∑

i=1

(
yti +h − b0yti − b1yti −1 − · · · − bd−1yti −(d−1) − bd

)2
.
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Therefore, the difference between the NN prediction x̂T +h of xT +h given by (13) and
the SNN prediction given by (15) is the way in which the nearest neighbours employed
in (12) and (14) are selected to estimate the parameters.

In a practical situation, the embedding dimension (d) and the number of nearest
neighbours (k) are estimated by minimizing the in-sample prediction errors, where
d ∈ {2, 3, . . . , 8} and k ∈ {1, 2, . . . , 20} is the percentage of neighbours with respect
to the sample size.
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