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Abstract In this study, enzymatic interesterification is

carried out using encapsulated lipase as biocatalyst with

methyl acetate as acyl acceptor in a solvent-free system.

Lipase, isolated from a marine bacterial isolate, Bacillus

sp.S23 (KF220659.1) was immobilized in sodium alginate

beads. This investigation elaborated on the effects of var-

ious parameters, namely enzyme loading, temperature,

water, molar ratio, reaction time and agitation for inter-

esterification. The study resulted in the following optimal

conditions: 1.5 g immobilized lipase, 1:12 molar ratio of

oil to methyl acetate, 35 �C, 8 % water, 60 h reaction time,

250 rpm of agitation. With the standardized condition, the

maximum conversion efficiency was 95.68 %. The

immobilized beads, even after ten cycles of repeated usage

showed high stability in the presence of methyl acetate and

no loss of lipase activity. The microalgal biodiesel com-

position was analyzed using gas chromatography. The

current study was efficient in using immobilized lipase for

the interesterification process, since the method was cost-

effective and eco-friendly, no solvent was involved and the

enzyme was encapsulated in a natural polymer.
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Introduction

Alternative fuel has become a burgeoning global interest

due to the deterioration and great consumption of fossil

fuels leading to accumulation of greenhouse gases which

paves the way for global warming (Su et al. 2007). Bio-

diesel (monoalkyl esters of long chain fatty acids) is a

potential renewable biofuel and it is biodegradable and

non-toxic, has no net carbon dioxide and is free from sulfur

(Ali et al. 2011; Jeong and Park 2008; Kim et al. 2011; Li

and Yan 2010). Generally, biodiesel is produced from food

and oil crops using conventional methods (Tran et al.

2013); however, these sources cannot realistically satisfy

the wide use of diesel fuel due to increasing population,

which leads to serious land shortage and raises the issue of

food security (Surendhiran and Vijay 2012). Microalgae

have become a recent attraction because of their high oil

content; they can be grown in wastewater, do not compete

with food crops for arable land and water and give 20 times

more biomass productivity rate than terrestrial crops

(Ashokkumar and Rengasamy 2012; Chisti 2007; Lai et al.

2012; Mutanda et al. 2011; Pittman et al. 2011; Vandamme

et al. 2010). Microalgae are photosynthetic microorgan-

isms that utilize light, water and CO2 and accumulate

intracellular lipids as storage materials (Xiao et al. 2010).

Currently, biodiesel is being produced by acid and alkali

transesterification that results in conversion of triglycerides

to fatty acid methyl esters in a shorter period (Jegannathan

et al. 2010; Shao et al. 2008). Demerits of such methods

include high energy input, elimination of salt, difficulty in

recycling glycerol, soap formation and the need of waste-

water treatment (Ban et al. 2002; Al-Zuhair et al. 2007;

Bisen et al. 2010; Jeon and Yeom 2010; Kawakami et al.

2011; Ognjanovic et al. 2009; Rodriques and Zachia Ayub

2011; Yoshida et al. 2012). To overcome this problem,

enzymatic production of biodiesel has become an alternative

for biodiesel production, because the by-product glycerol

can be easily recovered, salt and catalyst can be avoided,

wastewater treatment is not required, it gives high
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production yield under milder conditions and is a eco-

friendly process (Gharat and Rathod 2013; Gumbyte et al.

2011; Salum et al. 2010). One such enzyme used in biodiesel

production is lipases. Lipases (triacylglycerol acylhydrolase,

EC 3.1.1.3) are produced by microorganisms, plants and

animals, out of which microorganisms are highly suitable for

the large scale production (Antczak et al. 2009). Lipases are

denoted as the most industrially important enzymes next to

bacterial amylases. These are primarily used for catalyzing

hydrolytic and ester-synthesizing reactions. It has been

widely implemented in food and pharmaceutical sectors, and

in various reactions such as acidolysis, aminolysis, alco-

holysis, esterification and hydrolysis of triglycerides (Siv-

aramakrishnan and Muthukumar 2012).

However, the enzymatic production of biodiesel has not

yet been commercialized due to the high cost of the

enzyme. The problem can be overcome by immobilization

of lipase by repeated use (Liu et al. 2012; Maceiras et al.

2009; Tamalampudi et al. 2008). In addition, transesteri-

fication is usually performed by methanol, but it deacti-

vates the lipase enzyme resulting in poor yield of biodiesel.

In this study, methyl acetate had been used as an acyl

acceptor instead of methanol and the by-product was tri-

acetin (triacetylglycerol) instead of glycerol. Triacetin

(triacetylglycerol) is used mainly as gelatinizing agents in

polymers and explosives and as additive agent in tobacco,

pharmaceutical industries and cosmetics (Maddikeri et al.

2013). Presently, there has been a worldwide focus on the

production of biodiesel in a solvent-free system using

lipase. These systems are advantageous over solvent-aided

transesterification, as separation processes, toxicity, flam-

mability and high cost of organic solvents can be avoided.

Materials and methods

Culture conditions

Nannochloropsis oculata was obtained from CMFRI, Tu-

ticorin, Tamil Nadu, India and cultivated in a 200 L pho-

tobioreactor (PBR) using sterile Walne’s medium. The

filtered sterilized seawater was enriched with the required

quantity of Walne’s medium containing: NaNO3,

100 g L-1; NaH2PO4�2H2O, 20.0 g L-1; Na2EDTA,

4.0 g L-1; H3BO3, 33.6 g L-1; MnCl2�4H2O g L-1,

0.36 g L-1; FeCl3�6H2O, 13.0 g L-1; vitamin B12,

0.001 g L-1, vitamin B1, 0.02 g L-1 and trace metal

solution 1 ml. The trace metal solution contained:

ZnSO4�7H2O, 21 g L-1; CoCl2 �6H2O, 20 g L-1;

(NH4)6Mo7O24�H2O, 9 g L-1; and CuSO4�5H2O,

20 g L-1. The medium was adjusted to pH 8 and auto-

claved at 121 �C for 20 min. The filter-sterilized vitamins

were added after cooling. Mixing was provided by sparging

air from the bottom of the PBR and lighting was supplied

by cool-white fluorescent light with an intensity of 5,000

lux under 12/12 light/dark cycle for 15 days. The medium

was supplied with nitrogen for the first 4 days, after which

the nutrients were added to PBR without nitrogen to create

a nitrogen stress environment condition to produce more

oil.

Isolation and screening of lipase-producing bacteria

from marine sediments

The lipase-producing bacteria were isolated from marine

sediment at Parangipettai, a coastal area of Tamil Nadu,

India. The samples were collected from sediment (5 cm

depth) using a sterile container and immediately transferred

to laboratory, serially diluted and spread on (medium

composed of: peptone, 10 g L-1; NaCl, 5 g L-1;

CaCl2�2H2O, 0.1 g L-1; agar–agar, 20 g L-1; Tween 20,

10 mL (v/v)) agar plates followed by incubation for 24 h at

37 �C. Lipase-producing bacteria produced a zone of

clearance which was observed under UV transilluminator.

Then the bacterial strain was isolated and subcultured using

nutrient agar with 1 % olive oil and 3 % NaCl and sub-

jected to studying morphological, cultural, spore produc-

tion and biochemical characteristics.

Gene sequence for molecular identification

of the isolated strain

The molecular identification of the characterized culture

was done by analyzing the genomic DNA. PCR analysis

was performed with 16S rRNA primers: 27F (50-AGA GTT

TGA TCC TGG CTC AG-30) and 1492R (50- TAC GGT

TAC CTT GTT ACG ACT T-30). A volume of 25 ll
reaction mixture for PCR was carried out using 10 ng of

genomic DNA, 1X reaction buffer (10 mM Tris–HCl pH

8.8, 1.5 mM MgCl2, 50 mM KCl and 0.1 % Triton X-100),

0.4 mM dNTPs each, 0.5 U DNA polymerase and 1 mM

reverse and forward primers each. The reaction was per-

formed in 35 amplification cycles at 94 �C for 45 s, 55 �C
for 60 s, 72 �C for 60 s and an extension step at 72 �C for

10 min. The sequencing of 16S amplicon was performed

according to the manufacturer’s instructions of the Big Dye

terminator cycle sequencing kit (Applied BioSystems,

USA). Sequencing products were resolved on an Applied

Biosystems model 3730XL automated DNA sequencing

system (Applied BioSystems, USA). The 16S rRNA gene

sequence obtained from the organism was compared with

other Bacillus strains for pairwise identification using

NCBI-BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and

multiple sequence alignments of the sequences were per-

formed using Clustal Omega version of EBI (www.ebi.ac.

uk/Tools/msa/clustalo). Phylogenetic tree was constructed
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by Clustal Omega of EBI (www.ebi.ac.uk/Tools/

phylogeny/clustalw2_phylogeny) using neighbor joining

method.

Harvesting of cells and oil extraction

After the culture reaches the stationary phase at the 15th

day (the culture was checked for growth every 24 h), the

biomass was harvested using marine B. subtilis (MTCC

10619) to get thick microalgal paste as reported in our

previous work (Surendhiran and Vijay 2014a, b). The dried

biomass was subjected to oil extraction by Bligh and Dyer

(1959) technique with slight modification. In brief, the

biomass suspension was mixed with chloroform: methanol

(1:2) ratio, vortexed for few minutes and incubated on ice

for 10 min. Then, chloroform was added followed by

addition of 1 M HCl and again vortexed for a few minutes.

Finally, the whole suspension was centrifuged at a maxi-

mum speed of 12,000 rpm for 2 min. The bottom layer

containing lipid was transferred into a fresh, previously

weighed beaker. Chloroform was added to reextract the

lipid from the aqueous sample. The solvent system was

evaporated using a rotary evaporator at 30 �C. The final

product, lipid, was collected in a screw cap vial and stored

at room temperature.

Fermentation of lipase production using isolated strain

Lipase production was carried out in a 250 ml Erlenmeyer

flask using 100 ml basal medium containing 1 % olive oil,

0.2 % CaCl2�2H2O, 0.01 % MgSO4�7H20, 0.04 %

FeCl3�6H2O and 5 % NaCl, with 2 ml of starting inoculum.

The contents were incubated for 48 h at 37 �C at 200 rpm

and pH 7. After incubation, the culture was centrifuged at

10,000 rpm for 10 min at 4 �C. The supernatant of crude

lipase was quantified using lipase assay and used for

immobilization.

Immobilization of crude lipase

Crude lipase (6 ml) was mixed with 14 ml of sodium

alginate solution (2 %). The mixer was dripped into cold

sterile 0.2 M CaCl2 using sterile syringe from a constant

distance and was cured at 4 �C for 1 h. The beads were

hardened by suspending it again in a fresh CaCl2 solution

for 24 h at 4 �C with gentle agitation. After immobiliza-

tion, the beads were separated by filtration and washed with

25 mM phosphate buffer (pH 6.0) to remove excess cal-

cium chloride and enzyme. Then the beads were preserved

at 18 �C using 0.9 % NaCl solution for future use (Kavardi

et al. 2012; Vimalarasan et al. 2011).

Lipase assay and protein determination

Lipase activity was determined for free and immobilized

enzymes according to Burkert et al. (2004) and Padilha

et al. (2012). The olive oil emulsion was prepared by

mixing 25 ml of olive oil and 75 ml of 7 % Arabic gum

solution in a homogenizer for 5 min at 500 rpm at room

temperature. The reaction mixture containing 5 ml of

emulsion, 2 ml of 10 mM phosphate buffer (pH 7.0) and

1 ml of the culture supernatant was incubated at 37 �C for

30 min in an orbital shaker. The reaction was stopped by

addition of 15 ml of acetone–ethanol (1:1v/v), and the

liberated fatty acids were titrated with 0.05 N NaOH. One

unit of lipase activity was defined as the amount of enzyme

that liberated 1 lmol of fatty acid per minute. The protein

content in the crude enzyme was determined by Lowry

et al.’s (1951) method with BSA as standard. The same

procedure was done with 1 g of immobilized lipase to

determine the percentage of immobilization according to

Kavardi et al. (2012). The presence of protein in crude

lipase was identified using sodium dodecyl sulfate–poly-

acrylamide gel electrophoresis (SDS-PAGE) with 12 %

polyacrylamide gel.

Determination of molecular weight of microalgal oil

According to Sathasivam and Manickam (1996), the

saponification and acid value of microalgal oil were

determined. The molecular weight of the oil was calculated

as in Xu et al. (2006), the formula being:

M ¼ 168; 300

SV - AV
;

where M is the molecular weight of the oil, SV the

saponification value and AV the acid value.

Optimization of enzyme transesterification process

by a solvent-free system

The enzymatic transesterification reaction was carried out

in a 20 ml screw cap glass bottle. No solvent was added in

this reaction. The reaction mixture consisted of 3 g of

microalgal oil and 1 g of immobilized enzyme and methyl

acetate. The oil to acyl acceptor (methyl acetate) was

optimized ranging from 1:4, 1:6, 1:8, 1:10, 1:12 and 1:14.

The effect of temperature was studied at various ranges of

25, 30, 35 and 40 �C. To investigate the effect of water,

enzymatic transesterification was carried out by adding

small amounts of water, at concentrations of 0, 2, 4, 6, 8

and 10 wt% of the total amount of the reaction mixture.

The interesterification reaction was allowed for 48 h at a

constant speed of 200 rpm. All the experiments were
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carried out in triplicate and the biodiesel yield was calcu-

lated according to Umdu et al. (2009).

Gas chromatographic analysis of fatty acid methyl

esters

Fatty acid methyl ester composition of biodiesel produced

from N. oculata oil was analyzed by gas chromatography–

mass spectrometry (GC–MS-QP 2010, Shimadzu) equip-

ped with VF-5 MS capillary column (nonpolar, 30 mm

length, 0.25 mm diameter and 0.25 lm film thickness).

The column temperature of each run was started at 70 �C
for 3 min, then raised to 300 �C and maintained at 300 �C
for 9 min. GC conditions were: column oven temperature,

70 �C; injector temperature, 240 �C; injection mode, split;

split ratio, 10; flow control mode, linear velocity; column

flow, 1.51 ml/min; carrier gas, helium (99.9995 % purity);

and injection volume, 1 ll. MS conditions were: ion source

temperature, 200 �C; interface temperature, 240 �C; scan
range, 40–1,000 m/z; solvent cut time, 5 min; MS start

time, 5 min; end time, 35 min; ionization, EI (-70 eV);

and scan speed, 2,000.

Results and discussion

Identification and characterization of lipase-producing

marine bacterial isolate using 16S rRNA gene

sequencing

Lipase-producing bacteria produced a zone of clearance

around colonies with calcium precipitation due to hydro-

lysis of lauric, myristic, palmitic and stearic acids present

in the medium containing Tween 20. The calcium precip-

itation was due to the formation of calcium salts and fatty

acids released by the hydrolysis of lipase. The isolated

marine sediment microorganism was analyzed by mor-

phological and biochemical tests and found to be a Gram-

positive rod, producing spores. The results obtained

through various biochemical tests showed that the bacte-

rium belonged to Bacillus subtilis. 16S rRNA gene

sequencing was performed to identify the species and

strain; culture confirmed that it was Bacillus sp.S23

(KF220659.1) through the phylogenetic tree.

Quantification and characterization of microalgal oil

The oil content of N. oculata was calculated according to

Suganya and Renganathan (2012) and the oil extraction

yield was found to be 54.26 g (% w/w). The lipid con-

centration was defined as dry weight ratio of extracted

lipids to biomass. The molecular weight of N. oculata oil

was found to be 863.28, calculated from the acid value

(0.58) and saponification value (195.53).

Quantification of lipase assay and molecular weight

determination of isolated lipase

The isolated marine Bacillus sp.S23 (KF220659.1) was

used for lipase production at an optimum condition of 48 h

at 40 �C at 200 rpm. 1 % olive oil was used for enhancing

lipase production. The lipase activity from the culture

supernatant was found to be 9.26 Uml-1. SDS-PAGE study

revealed that the molecular weight of ammonium sulfate

(40 % saturation)-purified extracellular lipase was nearly

20 kDa and crude lipase was around 45 kDa, which was

confirmed with a standard marker (Fig. 1). Generally,

genus Bacillus produces various types of lipases, based on

molecular weight of protein ranging between 15 and

60 kDa. In the current study the lipase has low molecular

weight of 20 kDa, which might be due to the conservative

peptides such as Ala-His-Ser-Met-Gly in the protein (Siv-

aramakrishnan and Muthukumar 2012).

Effect of enzyme loading

Effect of enzyme loading was studied to enhance transe-

sterification in the range of 0.5–2.5 g. Figure 2 shows that

the increasing enzyme loading resulted in increase in bio-

diesel yield when the load of immobilized beads was 1.5 g.

The methyl ester yield was decreased at higher enzyme

concentration. This is in agreement with Maceiras et al.

(2009) and Jegannathan et al. (2010), who found that

higher dosage of immobilized lipase results in lower yield

Fig. 1 SDS-PAGE study of lipase isolated from marine bacteria

Bacillus sp.S23 (KF220659.1). Lane 1 protein marker, lane 2 alum-

purified lipase and lane 3 crude lipase
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of biodiesel. This is because the superfluous enzyme would

unite and reduce the activity of lipase (Li and Yan 2010).

Effect of oil and methyl acetate molar ratio

The effect of oil and methyl acetate ratio was investigated.

It was found that 1:12 molar ratio of oil to methyl acetate

gave maximum fatty acid methyl esters yield of 67.34 % at

48 h in the absence of any solvents, similar to previous

study done by Ognjanovic et al. (2009). However, the

biodiesel yield declined when the molar ratio was raised to

1:14 (Fig. 3), due to the excessive amount of methyl ace-

tate that diluted the oil resulting in poor yield of fatty acid

methyl esters. The conventional short chain alcohols such

as ethanol and methanol inactivate the lipase enzyme when

exceeding the 1:3 molar ratio. In support of this, Shimada

et al. (1999) reported that inactivation of immobilized

lipase Novozym 435 from C. antarctica occurred at a

molar ratio of 1:5 of plant oil and methanol. In addition,

during methanolic transesterification, the main by-product

is glycerol, which is hydrophilic in nature and insoluble in

oil, resulting in a decrease in the reactivity of immobilized

lipase due to mass transfer resistance (Tran et al. 2013; Xu

et al. 2003; Ruzich and Bassi 2011). Methyl acetate pro-

duces triacetylglycerol instead of glycerol, which does not

inactivate lipase (Ruzich and Bassi 2011).

Effect of temperature

To study the effect of temperature on the enzymatic bio-

diesel process, the range studied was between 25 and 40 �C
with an interval of 5 �C. The temperature was not allowed

to exceed 40 �C, because sodium alginate dissolves at

higher temperature. Tran et al. (2013) reported that FAME

production decreased when the temperature increased to

50 �C for freshwater microalgae C. vulgaris ESP-31 by

enzymatic transesterification. However, most of the enzy-

matic reaction does not require higher temperature (Je-

gannathan et al. 2010). In the current findings, 35 �C gave

the highest yield of 73.79 % (Fig. 4), thereby reducing the

energy consumption since higher temperature had not been

used.

Effect of water

For biocatalyst-mediated transesterification, water acts as a

key factor for enhancing the lipase activity by increasing

interfacial area of oil–water droplets (Li and Yan 2010; Liu

et al. 2012; Tran et al. 2012). Lipase activity generally

depends on the availability of interfacial area (Dizge and

Keskinler 2008). Li and Yan (2010) reported that exceed-

ing the water content over 7 % of the total volume of the

reaction mixture leads to decrease in the formation of

FAME. However, in our study, there was no decrease of

methyl esters until 8 % water content was achieved, which
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was due to the formation of triacylglycerol (triacetin) that

did not disturb lipase activity. The highest yield of bio-

diesel was 85.36 % at 8 % water content. When the water

content reached beyond 8 %, the yield was reduced

(Fig. 5), due to the excess water content that reduced the

transesterification reaction rate (Dizge and Keskinler 2008;

Fukuda et al. 2006).

Effect of reaction time on biodiesel yield

Effect of reaction time was investigated in the range of

12–72 h. The optimized reaction time for conversion of

microalgal oil to FAME by immobilized biocatalyst was

found to be 60 h and the maximum yield was 89.48 %

(Fig. 6). Beyond the maximal reaction at 60 h, a decrease

in FAME was obtained. This is due to the increase in the

water concentration during transesterification, which trig-

gers the hydrolysis of the biodiesel (Jeong and Park 2008;

Li and Yan 2010; Eevera et al. 2009; Leung et al. 2010).

Effect of agitation speed

Agitation is one of the important parameters in immobi-

lized enzymatic transesterification. In the immobilization

reaction system, the reactants need to diffuse from the bulk

liquid to the external surface of the particle and then into

the interior pores of the catalyst (Kumari et al. 2009). The

effect of mixing on biodiesel production was conducted

between 100 and 300 rpm with an interval of 100 rpm.

Figure 7 shows the methyl ester production rate with the

respective speed of agitation. The maximum yield of bio-

diesel was found to be 95.68 % at 250 rpm; thus, agitation

enhances the rate of reaction. Agitation reduces the mass

transfer resistance between oil and acyl acceptor and

immobilizes lipase at the catalyzing interface, thus

enhancing the reaction rate. On the other hand, when the

speed reaches beyond 250 rpm, the biodiesel yield is

decreased. This is due to the damage of the immobilized

beads, leading to inactivation of lipase by mechanical

agitation (Li and Yan 2010; Ognjanovic et al. 2009; Tran

et al. 2012).

Xu et al. (2005) obtained a FAME yield of 67 % at

40 �C from refined soybean oil during interesterification

reaction carried out at atmospheric pressure, with an oil to

methyl acetate molar ratio of 1:12 and a reaction time of

36 h using Novozym (0.1 g of enzyme per 1 g of oil).

Similarly, Usai et al. (2010) obtained 80 % of fatty acid

methyl esters from olive oil with the reaction conditions of

oil to methyl acetate molar ratio of 1:20 using immobilized

lipase Candida antarctica. In our current study, the total

biodiesel was 95.68 % at 1.5 g immobilized lipase, 1:12

molar ratio of oil to methyl acetate and at 35 �C.
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Reusability of immobilized enzyme

The main advantage of immobilized enzyme is its reus-

ability. Reusability of enzyme is the important parameter to

decide the possibilities of industrial-scale enzymatic bio-

diesel production (Gharat and Rathod 2013). Stability and

reusability of immobilized lipase from marine Bacillus

sp.S23 (KF220659.1) was investigated in this section.

There was no significant loss of lipase activity even after

immobilized enzyme beads were used for ten cycles

(Fig. 8). As previously reported by Du et al. (2004), no

enzyme loss was found even after 100 cycles of repeated

usage in the presence of methyl acetate. When short chain

alcohols (methanol and ethanol) are used as acyl acceptor,

removal of glycerol from immobilized lipase must be

carried out using large amounts of hydrophilic solvents,

which is a cost-effective process and inhibits lipase activ-

ity. Thus, the current study indicates that immobilized

lipase can be used for many repeated cycles in biodiesel

production from microalgal oil with methyl acetate as acyl

acceptor, which will minimize the cost factor in the overall

process.

Analysis of FAME

The fatty acid composition of biodiesel synthesized from

N. oculata grown under nitrogen-depleted condition was

analyzed and compared with FAME produced from nitro-

gen-repleted culture using GC (Table 1).

From the retention time obtained by GC, peak values

were analyzed and observed as myristic acid (C14:0),

palmitic acid (C16:0), stearic acid (C18:0), oleic acid

(C18:1), linoleic acid (C18:2) and arachidic acid (C20:0),

which were commonly found in biodiesel synthesized from

N. oculata oil (Fig. 9). However, under nitrogen starvation

condition, the lipid content not only doubled but also

gradually changed the fatty acid composition of N. oculata

oil (Surendhiran and Vijay 2014a, b; Huang et al. 2010;

Widjaja et al. 2009). Moreover, in N. oculata, the oleic acid

content increased from 35.21 to 44.68 % (Yoshida et al.

2012). This result was in better agreement with a previous

study conducted by Zhila et al. (2005).

Unsaturated fatty acids have been reported to have a

reasonable balance of fuel properties (Zheng et al. 2011).

We have reported that the chain length of fatty acids in N.

oculata was between C14 and C20 in our previously study

(Surendhiran and Vijay 2014a, b). In a previous report, it

was stated that fatty acids with maximum of C16 and C18

series were recognized as the most common components of

biodiesel (Lin et al. 2012). Therefore, fatty acids from N.

oculata were more applicable for producing a high quality

of biofuel, since it contained a high content of C16 (pal-

mitic acid) and C18 (oleic acid).

Properties of biodiesel from N. oculata

The properties of N. oculata biodiesel synthesized through

interesterification are listed in Table 2. The results were

compared with that of diesel fuel and biodiesel from

jatropha oil as stated by ASTM standard D6751. The final

results revealed that no substantial variations were

observed between the biodiesel properties of N. oculata

and jatropha oil.
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Fig. 8 Reusability and stability of immobilized lipase on biodiesel

yield (%). Reaction conditions: 1.5 g immobilized lipase, 1:12 oil/

methyl acetate molar ratio, 4 % water (w/w), 35 �C, 250 rpm and

60 h

Table 1 Fatty acid composition of N. oculata FAME under nitrogen-repleted and nitrogen-depleted growth

Lipid number Common Name Systematic name Molecular structure Fatty acid (N?) % Fatty acid (N-) %

C14:0 Myristic acid Tetradecanoic acid C12H24O2 9.86 8.94

C16:0 Palmitic acid Hexadecanoic acid C16H32O2 19.39 13.83

C18:0 Stearic acid Octadecanoic acid C18H36O2 10.76 9.79

C18:1 Oleic acid 9-Octadecenoic acid C18H34O2 35.21 44.68

C18:2 Linoleic acid 9,12-Octadecadienoic acid C18H32O2 8.15 6.92

C20:0 Arachidic acid Eicosanoic acid C18H30O2 16.62 15.84

N? presence of nitrogen, N- absence of nitrogen
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Fig. 9 GC–MS chromatograms of N.oculata FAME under nitrogen-repleted (a) and nitrogen-depleted (b) growth
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Conclusion

In this study, we have reported the conversion efficiency of

marine microalga N. oculata oil to biodiesel using immo-

bilized lipase in a solvent-free system with methyl acetate

as the acyl acceptor. On studying the effects of different

parameters influencing the process, an effective conversion

rate of 95.68 % was observed. The optimized reaction

conditions were 1.5 g immobilized lipase, 1:12 oil/methyl

acetate molar ratio, 4 % water (w/w), 35 �C, 250 rpm and

60 h. The study revealed the potentiality of encapsulated

lipase in transesterification due to its high stability and

efficient activity after repeated usage. The present work is

more advantageous than previous investigations, as it is a

solvent-free system using only methyl acetate as the acyl

acceptor, resulting in triacetin as the by-product that could

be useful in various applications. The process also proved

to be environmentally friendly and cost-effective due to the

reusability of the immobilized beads.
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