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Abstract A set of molecular dynamics simulations was con-

ducted, as thefirst comparative studyof the adsorptionbehavior of

liquid hydrocarbon/acid gases/water molecules over f10�14g
calcite surface and {001} octahedral kaolinite surface in nano-

confined slit. According to atomic z-density profiles, hydrocarbon

molecules have higher tendency towards the f10�14g calcite sur-

face than the {001}octahedral kaolinite surface. In addition,water

molecules form stronger adsorption layer over calcite surface than

kaolinite. In contrast, acid gas molecules have higher tendency

towards kaolinite surface than calcite. This behavior was spotted

within nanometer-sized slit pores. The results also point to

reduction in self-diffusion coefficient of molecules with strong

adsorption over mineral surfaces in nano-confined environment.

Keywords Molecular dynamics � Calcite � Kaolinite �
Nano-confinement

Introduction

As a magnificent analytical tool, molecular dynamics (MD)

technique has found its applicability in a diverse spectrum of

research. An example of this kind is the study the interaction

of carbon dioxide and clay minerals, a matter of potential

usage for underground carbon sequestration purposes (Chen

et al. 2015a, b, c; Javanbakht et al. 2015; Makaremi et al.

2015; Tenney and Cygan 2014). Another example of the

kind is the study of interactions between mineral surfaces

(representative of reservoir rocks) and mixture of hydro-

carbon/water/acid gases (representing typical reservoir flu-

ids), to put petroleum production industry in target (Chun

et al. 2015; Fazelabdolabadi and Alizadeh-Mojarad 2016;

Underwood et al. 2015; Wu et al. 2012) or analysis of

mobilization and recovery of fluids/asphaltene from nano-

pores usingMD (Oughanem et al. 2015; Youssef et al. 2015;

Stukan et al. 2012). More recently, Xie et al. (2016) studied

oil contamination removal process at microscales, using the

molecular dynamics technique.

Calcite is composed of carbonate mineral and catego-

rized as mineral materials. Calcite differs from kaolinite

(which is known as clay mineral). Clay mineral is a jargon

amongst pedologists and it should be distinguished from

clay materials. Clay materials exist in nature as fine-

grained materials which their size is below 4 lm. Phyl-

losilicates are only fundamental constituents of clay

materials. However, clay mineral materials are both syn-

thetic and natural materials which may contain non-phyl-

losilicates as their principal component. Clay minerals such

as kaolinite have a layered structure, including nanometer-

thick layers. Modification of the surface of clay minerals

can be done by synthesis methods such as adsorption and

grafting (Bergaya et al. 2013).

A plethora of experimental and computational works

is available on wetting behavior of reservoir fluids over

mineral surfaces, such as quartz (Hou et al. 2015; Saraji

et al. 2013; Wu et al. 2013; Xuefen et al. 2009), calcite

(Benlia et al. 2012; Cebecia and Sönmezb 2004; Guiwu

et al. 2009; Khusainova et al. 2015; Sakuma et al. 2014;
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Rezaei Gomari et al. 2006), and kaolinite (Lage et al.

2015; Lebedeva and Fogden 2011; Murgich and Rodrı́-

guez 1998; Tabrizy et al. 2011a, b), to ease the con-

ception of the phenomena. Nevertheless, those researches

pinpoint to the complexity of wetting behavior existent

in different types of minerals. For instance, octahedral

and tetrahedral surfaces of {001} kaolinite are discov-

ered with hydrophilic and hydrophobic characteristics,

respectively (Ni and Choi 2012; Šolc et al. 2011; Tunega

et al. 2004). In addition, hydroxylated surfaces of min-

eral surfaces can reportedly be different in wetting

properties (Chai et al. 2009; Liascukiene et al. 2014).

The findings also conclude the wettability and dynamical

properties, to be affected by confinement size of pores of

reservoir rocks (Al-Quraishi and Khairy 2005; Cui et al.

2003; Standnes and Austad 2000; Yuan et al. 2015). A

few investigations were also directed towards analysis of

adsorption of organic molecules over clay (Hu et al.

2014; Pernyeszi et al. 1998; Wang et al. 2013) (mainly

kaolinite), as well as non-clay (Cooke et al. 2010; de

Leeuw and Parker 1998; Freeman et al. 2009; Guiwu

et al. 2009; Keller et al. 2015; Sakuma et al. 2014)

(mainly calcite) surfaces. In this regards, the main focus

has been devoted to the {001} kaolinite or {1014} cal-

cite structures, on the premise of holding the primary

cleavage planes (Miller et al. 2007; Sekkal and Zaoui

2013; Titiloye et al. 1993; Zielke et al. 2015).

The present article attempts to address the issue through

a comparative framework, to include a mixture of hydro-

carbon/acid gas/water in both clay and non-clay environ-

ments. The authors, however, are unaware of any available

experimental adsorption data with exact correspondence to

the simulation systems considered (i.e., fluid composition

and type of slit wall); therefore, such comparisons are not

attainable at the moment.

Methodology

MD simulations were performed using the LAMMPS sim-

ulation package (Plimpton 1995). The simulation considered

system was composed of two parts, namely, an immobile

(solid) part of mineral structure and a mobile (fluid) part (of

hydrocarbon/acid gas/water mixture). OPLS-AA (Opti-

mized Potentials for Liquid Simulations-All Atoms) force

field, developed by Jorgensen et al. (1996), was used to

describe the interactions among atoms in the hydrocarbon

phase. In this work, carbon dioxide (CO2) and hydrogen

sulfide (H2S) were regarded as acid gas phase. Nath-Es-

cobedo-de Pablo (NERD) (Nath 2003) revised force field and

EPM2 potential model (Harris and Yung 1995) was utilized

to model H2S and CO2, respectively. Extended simple point

charge (SPC/E) model of Berendsen et al. (1987) was also

used to simulate water molecules. According to SPC/E

model, the SHAKE algorithm (Ryckaert et al. 1977) was

used to preserve bond and angle geometry constraints for

water molecules in the course of MD simulations.

Calcite and kaolinite surfaces were considered as rep-

resentative of clay and non-clay materials, to form nano-

slit walls. In case of calcite surface, f10�14g calcite struc-

ture was utilized, as for being the most stable and neutral

surface, to build the 4-nm confined geometry. Neutral

octahedral {001} surface of kaolinite was used, as well. To

model calcite surfaces, rigid ion model of a force field

presented by Pavese et al. (1992, 1996) was employed. The

CLAYFF force field (Cygan et al. 2004) was adopted to

define all bonded and non-bonded interaction parameters of

kaolinite surface. A bread usage of the Pavese and

CLAYFF forcefields can be found in recent literature

adoptions (Fazelabdolabadi and Alizadeh-Mojarad 2016;

Ghatee et al. 2015; Greathouse et al. 2015; Keller et al.

2015; Zielke et al. 2015).

Fig. 1 Rectangular pore configurations for a 40 Å
´
calcite pore and

b 40 Å
´

kaolinite pore. The calcium/carbon/oxygen/hydrogen/alu-

minum/silicon atoms are shown by green/blue/red/white/purple/

yellow spheres, respectively
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In case of f10�14g calcite, the methodology suggested by

Headen and Boek (2011) was used to describe the van der

Waals interaction parameters (to model fluid–solid inter-

face). The van der Waals non-bonded interaction parame-

ters between fluid–solid species in systems, including

{001} kaolinite surface, were estimated using the Lorentz–

Berthelot mixing rule.

MD simulations were performed under canonical (NVT)

ensemble using the Nosé–Hoover thermostat (Hoover

1985; Nosé 1984) with 1 ps relaxation time. Integration of

the equations of motion was done every 1 fs. Ewald sum-

mation technique was used to calculate electrostatic inter-

actions. The long-range/short-range potentials were

truncated at 11 Å distance. Orthorhombic simulation cells

were considered with Periodic Boundary Condition (PBC)

in x–y directions. The Packmol package (Martı́nez et al.

2009) was used to construct the initial configuration of

molecules in the simulation cell.

The nano-slit simulation cell constructed was composed

of two parallel surfaces, with a 4-nm separation distance

(Fig. 1). Two types of surfaces were considered in those

regards: the f10�14g calcite and the {001} kaolinite. The

f10�14g calcite surface contained seven atomic layers

(perpendicular to the z-direction) in a dimension of

82 Å 9 45 Å 9 19.30 Å. The {001} octahedral kaolinite

surface was composed of 6120 atoms in a dimension of

51.42 Å 9 80.40 Å 9 5 Å, with its x–y plane being per-

pendicular to z-direction. For the case of kaolinite walls,

two gaps of 10 Å were introduced to the top/bottom ends

of the simulation cell, to avoid any unphysical interactions

amongst species in the mineral surfaces (Fig. 1b).

Two main systems, namely, S1 and S2, were considered

as for the MD simulations. In S1 case, pure molecules are

confined between mineral surfaces. In S2 case, mixtures of

molecules are placed inside the nano-slit geometry. In

addition, molecular dynamics simulations of pure hydro-

carbons were performed at bulk conditions over a tem-

perature of 340 K, for further comparison. All MD

simulations were attempted under the canonical ensemble.

The time span of MD simulations has been 1 ns (S1

system)/1.5 ns (S2 system). The radius of gyration, Rg, and

end-to-end distance were calculated for hydrocarbon

Table 1 Naming convention for the MD simulations

MD simulation Description

BP-X MD simulation of pure molecules of type Xa under bulk (unconfined) conditions

S1-calcite MD simulation of confined pure molecules between parallel calcite walls

S1-calcite-X MD simulation results pertaining to molecules of type X established under S1-calcite conditions

S1-kaolinite MD simulation of confined pure molecules between parallel kaolinite walls

S1-kaolinite-X MD simulation results pertaining to molecules of type X established under S1-kaolinite conditions

S2-calcite MD simulation of confined mixtureb between parallel calcite walls

S2-calcite-X MD simulation results pertaining to molecules of type X established under S2-calcite conditions

S2-kaolinite MD simulation of confined mixtureb between parallel kaolinite walls

S2-kaolinite-X MD simulation results pertaining to molecules of type X established under S2-kaolinite conditions

a X ¼ C3 for propane, X ¼ C6 for n-hexane, X ¼ C7 for n-heptane, X ¼ C10 for n-decane, X ¼ CO2 for carbon dioxide, X ¼ H2O for water, and

X ¼ H2S for hydrogen sulfide
b Mixture constituents are listed in Table 2

Table 2 Density of molecules for different MD simulations

MD simulation Molecules’ densitya (#/Å3)/10-3 of S1-calcite-X Molecules’ densitya (#/Å3)/10-3 of S1-kaolinite-X

X ¼ C3 0.94 0.94

X ¼ C6 1.60 1.60

X ¼ C7 1.63 1.63

X ¼ C10 2.22 2.22

X ¼ H2O 10.20 10.20

X ¼ H2S 4.08 4.08

X ¼ CO2 2.83 2.83

a Molecules’ density in the non-crystal volume of the simulation box
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Fig. 2 Atomic z-density profiles for A S1-calcite-C10, B S1-calcite-H2O, C S1-calcite-H2S, and D S1-calcite-CO2, a S1-kaolinite-C10, b S1-

kaolinite-H2O, c S1-kaolinite-H2S, and d S1-kaolinite-CO2 simulations at 340 K
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chains to explain the confinement effect on them. For a

given molecule, the radius of gyration was calculated by

Eqs. (1) and (2):

r~cm ¼
Pnsegments

i¼1 r~i
nsegments

ð1Þ

Rg ¼
Pnsegments

i¼1 mi r~i � r~cmk k2
Pnsegments

ii¼1 mi

" #1=2

ð2Þ

where r~cm and nsegments indicate the (vector) of center-of-

mass of a given molecule and the number of (atomic)

segments in a molecular chain, respectively. r~i and mi

denote, respectively, the (vector) of coordinates and the

mass of the iith segment of a given molecule, and k k
represents the vector norm. The mean-squared

displacement (MSD) was computed, and the self-

diffusion coefficient, D, in different systems studied.

Calculation of the self-diffusion coefficient (for a given

molecule type) was performed using the Einstein relation

(Frenkel and Smit 2011) [Eqs. (3), (4)]:

D ¼ 1

2d
lim
t!1

dh Dr~cmðtÞk k2i
dt

ð3Þ

Dr~cmðtÞ ¼
PN

k¼1 ½r~cmk
ðtÞ � r~cmk

ðt ¼ 0Þ�
N

: ð4Þ

Here, r~cmk
refers to the vector of center-of-mass of the

kth molecule of a given species, for which a total of N

molecules exists. In addition, d denotes the dimensionality

of the system (d = 3), and hi indicates the ensemble

average of the quantity.

Results and discussion

The naming convention for the (slit) simulations is intro-

duced in Table 1. The information on the composition of

molecules considered in mixture states (S2 systems) is also

listed in Table 2.

z-Density profiles

Atomic z-density profiles of the MD simulations of S1/S2

systems are presented in Figs. 1 and 2. The position of the

calcite and kaolinite walls in each profile has been

embedded in the figures, to visually aid the comparison on

relative positioning of z-density profiles over the mineral

surfaces. S1 system simulations were attempted for pro-

pane, hexane, heptanes, and decane molecules. However,

for the sake of brevity, only the z-density results for decane

are reported herein. The other z-density results can be

found in Figs. S-1 and S-2 in the Supplementary Infor-

mation to this article.

According to z-density profiles of decane and water in

calcite nano-slit, two major peaks are appeared. The final

configuration of molecules in S1-calcite-C10 and S1-

kaolinite-C10 simulation systems is depicted in Fig. 3.

Given the type of molecule under confinement being the

same (decane), the adsorption layer over the calcite surface

is more ordered state (Fig. 3a) than the kaolinite case

(Fig. 3b). The results for confined CO2 in nano-slit calcite

(Fig. 2d) are in perfect agreement with the previous results

(Fazelabdolabadi and Alizadeh-Mojarad 2016). The

adsorption results for CO2 (Fig. 2d, D) indicate carbon

Fig. 3 Final snapshots of molecular distributions for a S1-calcite-C10 and b S1-kaolinite-C10. The calcium/carbon/oxygen/hydrogen/aluminum/

silicon atoms are shown by green/blue/red/white/purple/yellow spheres, respectively
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Fig. 4 Atomic z-density profiles for A S2-calcite-C10, B S2-calcite-H2O, C S2-calcite-H2S, and D S2-calcite-CO2, a S2-kaolinite-C10, b S2-

kaolinite-H2O, c S2-kaolinite-H2S, and d S2-kaolinite-CO2 simulations at 340 K
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dioxide to have stronger tendency towards hydrophilic

{001} octahedral kaolinite surface than f10�14g calcite

surface, with the same value of CO2 density. A similar

trend is for H2S, with the density of hydrogen sulfide being

kept equal in both the systems (Fig. 2C, c). The trend is

somehow reversed for the water case; and H2O has more

tendency for adsorption onto the calcite surface than {001}

octahedral kaolinite (Fig. 2B, b). The results for z-density

of oxygen atoms over {001} octahedral kaolinite surface

are in good agreement with previous computational reports

(Feibelman 2013; Tunega et al. 2004).

The adsorption profiles (Fig. 4), obtained by MD sim-

ulations, were calculated for the S2 systems (with mixture

of molecules being under slit confinement). For the sake

of comparison, the density of molecules is kept the same,

between the systems of different wall types. Visual

inspection of the final configuration of molecules in sys-

tems (Fig. 5) may lead us to an important finding that

adsorption layer of water molecules over calcite surface

(in S2 systems) looks more ordered than its adsorption

layer counterpart over the kaolinite surface, albeit

kaolinite’s hydrophilicity. The accumulation of hydrocar-

bon molecules in the middle of simulation box can be a

result of hydrophilicity of {001} octahedral kaolinite

surface and this behavior is in agreement with previous

results (Ni and Choi 2012). To obtain accurate results, the

system should have reached equilibrium prior to sampling

the simulation box. For the sake, we followed the standard

protocol, and monitored the system‘s temperature and

energy versus simulation time, to ensure equilibrium. The

data are presented in the Supplementary Information to

this article.

Fig. 5 Final snapshots of molecular distributions for a S2-calcite and

b S2-kaolinite. The calcium/carbon/oxygen/hydrogen/sulfur/alu-

minum/silicon atoms are shown by green/blue/red/white/magenta/

purple/yellow spheres, respectively

Table 3 Average radius of gyration, hRgi (Å), for different MD simulations

BP-X S1-calcite-X S1-kaolinite-X S2-calcite-X S2-kaolinite-X

X ¼ C3 1.25 ± 0.07 1.24 ± 0.04 1.25 ± 0.04 1.24 ± 0.03 1.25 ± 0.02

X ¼ C6 1.92 ± 0.05 1.87 ± 0.03 1.89 ± 0.13 1.89 ± 0.13 1.90 ± 0.09

X ¼ C7 2.59 ± 0.06 2.50 ± 0.13 2.53 ± 0.06 2.50 ± 0.11 2.53 ± 0.12

X ¼ C10 3.59 ± 0.09 3.43 ± 0.21 3.49 ± 0.08 3.35 ± 0.23 3.40 ± 0.20

Table 4 Average end-to-end distance (Å) for different MD simulations

BP-X S1-calcite-X S1-kaolinite-X S2-calcite-X S2-kaolinite-X

X ¼ C3 2.44 ± 0.08 2.43 ± 0.10 2.44 ± 0.11 2.43 ± 0.08 2.43 ± 0.05

X ¼ C6 6.04 ± 0.05 5.09 ± 0.22 6.02 ± 0.57 5.86 ± 0.55 5.96 ± 0.46

X ¼ C7 7.25 ± 0.03 6.93 ± 0.85 6.98 ± 0.68 6.90 ± 0.69 6.95 ± 0.84

X ¼ C10 10.45 ± 0.30 10.23 ± 1.43 10.44 ± 1.34 9.98 ± 1.49 10.32 ± 1.08
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In case of acid gases, the change in type of the slit wall

(S2 systems) seems to alter the arrangement of H atoms in

vicinity of the surfaces by comparing the z-density profiles

of hydrogen atoms in Fig. 4C, c and D, d. The simulation

findings on the tendency of hydrocarbon, acid gases, and

water towards the calcite surface are also in agreement with

published experimental reports (Broseta et al. 2012; Kar-

oussi and Hamouda 2008; Tabrizy et al. 2011a, b).

Radius of gyration and end-to-end distance

The radius of gyration ðhRgiÞ and end-to-end distance of

molecules were computed under canonical ensemble, and

are reported in Tables 3 and 4. The results are in good

agreement to previous reports on pure hydrocarbons

(modeled using United-Atom or All-Atom force fields)

(Feng et al. 2013; Ferguson et al. 2009; Thomas et al.

2006). Comparison against the bulk-configuration results

shows reduction in these properties, which is more con-

spicuous for longer chain hydrocarbons. This change in

conformation of molecules should be regarded as an

apparent effect of nano-slit confinement.

Self-diffusion

Calculation of the ensemble average of the mean square

displacement (MSD) of center-of-mass of each molecule

type was attempted every 4 ps. The data were subsequently

used to establish the two-dimensional self-diffusion coef-

ficient of molecules, using Eqs. (3) and (4). Table 5 lists

the computed self-diffusion values under each wall type. A

huge reduction in diffusion coefficient is seen, for example,

for H2O, in shifting to mixture state (S2 system). This can

be described by strong adsorption of water molecules over

S2-calcite/S2-kaolinite than S1-calcite/S1-kaolinite. How-

ever, in comparison, less water molecules are adsorbed

over the kaolinite surface, giving the molecules more

freedom of movement, and hence, a larger value for dif-

fusion coefficient is obtained for kaolinite case with water.

The phenomenon is somehow reversed for acid gases in

mixture state, with less acid gases being adsorbed onto

calcite surface, resulting to a more freedom of movement

and increased value in self-diffusion of acid gases in S2-

calcite systems. A similar argument may be put forward, to

describe the change-in-value for hydrocarbons.

Conclusions

MD simulation results of pure molecules (S1-calcite/S1-

kaolinite systems) indicate water to have higher tendency

to be adsorbed over the {1014} calcite surface than {001}

octahedral kaolinite surface and supported by two distinct

layers of adsorption. Acid gases follow the opposite trend

of having more tendency of being adsorbed over the

kaolinite surface than calcite. The existence of a middle-

region water phase was also ruled out in a 40-Å calcite slit-

pore in (S2 systems). The change in the radius of gyration

and end-to-end distance of hydrocarbon molecules should

be attributed to a conformational change induced by con-

finement in nano-slit environment. The change-in-value of

diffusion coefficients can be attributed to different levels of

molecular adsorptions, with higher freedom of movement

from less adsorption onto system walls, which results in a

higher value diffusion coefficient.
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