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Abstract
Three valsartan metal (tin, nickel, and magnesium) complexes were examined as capture and storage media for methane under 
high temperature (323 K) and pressure (50 bar) conditions. The surface morphology of the complexes were examined using 
Field emission scanning electron microscopy and displayed porous structures comprising particles of different shapes and 
sizes. The narrow pore-size distribution of metal complexes makes them suitable materials for methane capture. The methane 
adsorption–desorption isotherms of the metal complexes were reversible. The tin(IV) and nickel(II) complexes exhibited 
type-III physisorption isotherms, while the magnesium(II) complex displayed a type-IV physisorption isotherm. Both types 
of isotherms are typical for mesoporous materials. The magnesium(II) complex was more efficient compared with the tin(IV) 
and nickel(II) complexes. It exhibited a remarkable methane uptake capacity of 71.68 cm3/g under optimized conditions.

Keywords  Methane · Storage media · Adsorption capacity · Valsartan metal complexes · Methane · Adsorption–desorption 
isotherms

Introduction

Natural gas is an alternative energy source to petroleum 
and coal. Commercial natural gas contains methane (CH4; 
95%), ethane (3.2%), and other gas impurities (1.7%) [1]. 
Gas impurities have a negative effect on the CH4 storage 
capacities of adsorbent materials. Compared to petroleum, 

the combustion of natural gas produces intense heat and light 
energy, as well as low carbon emissions [2–4]. Two tech-
niques are commonly utilized to measure the quantity of 
CH4 adsorbed onto porous materials [5]. The first technique 
involves the measurement of weight changes in the adsor-
bent at various CH4 pressures by gravimetry [5]. The sec-
ond technique involves employing a volumetric method to 
record the changes in the volume of adsorbed CH4 in porous 
materials under standard conditions [5]. The experiments 
conducted at high pressures are more complicated and gen-
erate errors compared to those performed at low pressures 
[6, 7]. The experimental errors can be effectively reduced 
by measuring the background CH4 adsorption isotherms and 
subtracting the values from the actual experimental read-
ings [8]. In addition, pure CH4 should be used, since trace 
amounts of water and hydrocarbons can induce a large error 
in the adsorption measurements [8]. CH4 capture is a slow 
process, because CH4 is non-polar and its interaction with 
adsorbents is weak [9].

CH4 is responsible for approximately 30% of global 
warming and climate change [9]. Consequently, various 
porous materials have been designed and tested as cap-
ture media for CH4 [10–13]. The most common materi-
als used for the adsorption of CH4 are graphite, zeolites, 
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silica, metal–organic frameworks (MOFs), porous-organic 
polymers, polyphosphates, and activated carbons [14–16]. 
However, limited success has been achieved thus far. 
MOFs are potential effective materials for gas capture, 
and their pores can be tuned to improve their adsorption 
capacities [14]. In addition, the functional groups within 
MOFs control their gas-uptake capacity [15]. The adsorp-
tion and capture of gases over using new materials as stor-
age media have received attention [17–21].

Recently, we reported the synthesis of various materials 
and their efficient applications as storage media for carbon 
dioxide [22–26] as a continuation of our general interest 
in designing and new materials for various applications 
[27–31]. For example, valsartan metal complexes were 
found to be very effective as carbon dioxide (CO2) storage 
media [26]. Therefore, it is of interest to determine if these 
materials can be used to store CH4. Valsartan is a stable, 
safe, and non-toxic medication that contains heterocyclic 
and aryl moieties [32, 33].

Materials and methods

Valsartan metal complexes 1–3 (Fig. 1) were synthesized, 
as previously reported, via the reaction of valsartan and 
metal chlorides in a 2:1 molar ratio [26]. Field emission 
scanning electron microscopy (FESEM) was conducted 
using a TESCAN MIRA3 LMU system. The CH4 uptake 
was measured on an H-sorb 2600 high-pressure volumet-
ric adsorption analyzer. The samples of complexes 1–3 
(1.0 g) were degassed for 1 h at 50 °C in a vacuum oven 
to completely remove any trace of moisture or solvent 
trapped within the pores. Each CH4 uptake experiment 
was repeated several times for pressure optimization.

Results and discussion

The surface morphologies of complexes 1–3 (Fig. 1) were 
examined by FESEM. The FESEM images of 1–3 (Fig. 2) 
show porous structures that are homogeneous and rough 
with irregular surfaces composed of loose agglomerates 
of tiny particles. In addition, the particles are of differ-
ent shapes and contain crystals, and a number of cracks. 
The porosity of complexes was analyzed in terms of 
particles size. The pore volumes and diameters of com-
plexes 1–3 were in the range of 0.011–0.108 cm3/g and 
6.50–12.47 nm, respectively, and their surface areas were 
small (16.6, 22.8, and 16.0 m2/g, respectively) [26]. The 
narrow pore-size distribution of complexes 1–3 makes 
them suitable materials for CH4 capture.

The CH4 adsorption–desorption isotherms of com-
plexes 1–3, recorded at 323 K and 50 bar, are shown in 
Figs. 3, 4 and 5. The selected temperature and pressure 
were based on the profermace of these complexes as stor-
age media for CO2 [26]. There was no overlap between the 
adsorption–desorption isotherms of 1 and 2. However, the 
branches for the adsorption and desorption of 3 overlapped 
completely. Complexes 1 and 2 showed type-III physisorp-
tion isotherms (Figs. 3 and 4, respectively), while complex 
3 exhibited a type-IV physisorption isotherm (Fig. 5). Both 
types of isotherms are typical for mesoporous materials, in 
which multilayers are not formed. The isotherms showed 
that the interaction between CH4 and the complexes (1–3) 
was relatively weak, and the gas mostly adsorbed at the 
active site of each complex [34, 35]. It was evident that 
the CH4 adsorption–desorption isotherms are roughly 
reversible.

The CH4 uptake capacities of complexes 1–3 increased 
sharply with increase in pressure and were found maxi-
mum at 50 bar. Saturation was not achieved in the experi-
ments attempted, which clearly indicated that a high 
adsorption capacity can be achieved at high pressures. 
The Mg(II) complex (3) was the most favorable, desir-
able, and practical medium for CH4 capture. This complex 
could adsorb CH4 even with exposure to the atmosphere 
and could release the gas from its cavities on releasing 
pressure. The CH4 uptake capacities of complexes 1–3 at 
323 K and 50 bar are presented in Table 1.

Complex 3 showed the highest CH4 adsorption capac-
ity (71.68 cm3/g; 5.15 wt%) compared to complexes 1 
and 2 (10.47 and 3.76 cm3/g, respectively). In contrast, 
CO2 adsorption of 1–3 under similar condition was 
mainly dependent on their surface area and the interac-
tion with the gas [26]. Complex 2 which has the highest 
surface area (SBET = 22.75 m2/g) was the most effective 
medium for CO2 storage (6.8 wt%) compared to complexes 
1 (16.63 m2/g; 5.4 wt%), and 2 (15.96 m2/g; 4.8 wt%) 

Fig. 1   Valsartan metal complexes 1–3 
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Fig. 2   FESEM images of complexes 1 (a 2 μm and b 500 nm), 2 (c 2 μm and d 500 nm), and 3 (e 2 μm and f 200 nm)
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[26]. The variation in the CH4 capture capacities of 1–3 
depends mainly on the strength of the interaction between 
the gas and adsorbent materials. Regardless of the pres-
sure (either low or high), the capture of CH4 occurs more 
effectively in particles with tuned pore sizes and volumes. 
It has been reported that the modification of MOF pores, 
though incorporation with magnesium-decorated fuller-
enes, can increase the gas-adsorption capacity significantly 
[36]. This process results in tuned pores and increases the 
enthalpy of adsorption. Carboxylic acid and heterocycles 
are the most common units utilized in the construction 
of MOFs [37]. These units are hydrophobic enough to 
enhance the CH4 uptake of and interaction with the MOFs, 
as well as increase the moisture stability of the framework 
[37, 38].

In addition to the surface area, the tuned pore volume and 
size play significant roles in controlling the gas-adsorption 
capacity of adsorbent materials. In the current work, the 
Ni(II) complex has a larger surface area than the magnesium 
complex; however, it is less efficient as a storage medium for 
CH4. The enthalpy of adsorption can be increased through 
the incorporation of coordinatively unsaturated metal sites 
within the MOFs [39]. In addition, the doping of MOFs with 
a transition metal or alkali can improve their gas-adsorption 
capacities [40]; however, only few examples have been suc-
cessful for CH4 capture [41].

Conclusions

Three valsartan metal complexes were investigated as 
potential capture and storage media for CH4. The com-
plexes exhibited different adsorption–desorption isotherms 
depending on the type of metal. The magnesium complex 
was more effective than the other two as a storage medium 
for CH4. A remarkable CH4 uptake capacity (71.68 cm3/g) 
was achieved using the magnesium–valsartan complex.
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ship of Scientific Research Chairs. We thank Al-Nahrain University 
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Fig. 3   CH4 adsorption–desorption isotherms of 1 

Fig. 4   CH4 adsorption–desorption isotherms of 2 

Fig. 5   CH4 adsorption–desorption isotherms of 3 

Table 1   Methane uptake capacities of complexes 1–3 at 323  K and 
50 bar

Complex CH4 uptake capacity

cm3/g mmol/g wt%

Sn(IV) complex 1 3.76 0.16 0.26
Ni(II) complex 2 10.47 0.46 0.74
Mg(II) complex 3 71.68 3.19 5.15
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